Use este identificador para citar ou linkar para este item:
https://repositorio.ifgoiano.edu.br/handle/prefix/2525| Tipo: | Tese |
| Título: | COMPUTING INEXACT K-STEEPEST DESCENT DIRECTIONS A NEW LINE SEARCH PROCEDURE FOR VECTOR OPTIMIZATION |
| Autor(es): | Vieira, Flávio |
| Primeiro Orientador: | Ferreira, Orizon |
| Primeiro Coorientador: | Pérez, Luis Román |
| Primeiro Membro da Banca: | Ferreira, Orizon |
| Segundo Membro da Banca: | Pérez, Luis Román |
| Terceiro Membro da Banca: | Prudente, Leandro |
| Quarto Membro da Banca: | Gonçalves, Max Leandro |
| Quinto Membro da Banca: | Fukuda, Ellen |
| Resumo: | Tese defendida no Instituto de Matemática e Estatística da Universidade Federal de Goiás (IME/UFG). Neste trabalho, propomos uma nova busca linear para otimização vetorial e uma forma de calcular a direção σ−aproximada de máxima descida. Yunda Dong, em 2010 e 2012, introduziu um procedimento de busca linear para o método de Gradiente Conjugado usando apenas informações de primeira ordem, ou seja, sem utilizar valores funcionais. Estenderemos seus trabalhos para Otimização Vetorial. Estudaremos o método de gradiente conjugado, mostrando a convergência quando são utilizados os seguintes βk's: Fletcher-Reeves, conjugate descent, Dai-Yuan, Polak-Ribière-Polyak e Hestenes-Stiefel. Também usamos essa mesma busca linear para o método tipo-gradiente, mostrando sua convergência. Em 2004, Iusem e Graña Drummond introduziram o conceito de σ-aproximada K-diereção de máxima descida. Eles mostraram que ao substituir a direção de Cauchy por essas direções, o resultado de convergência da sequência gerada é o mesmo: todo ponto de acumulação é crítico. Apresentaremos um procedimento e ciente para calcular essas direções quando o cone K for nitamente gerado. |
| Abstract: | In this work, we proposes a new linear search and a way for the computation of σ-approximate direction. Yunda Dong, in 2010 and 2012, introduced a new linear search procedure for Conjugated Gradient methods using only rst-order information, i.e., without working with functional values. We extend his works to Vector Optimization. We stud conjugate gradient methods, showing convergence when the following βk's are used: Fletcher-Reeves, conjugate descent, Dai-Yuan, Polak-Ribière-Polyak, and Hestenes-Stiefel. We also use this line search in the gradient method, showing its convergence. In 2004, Iusem and Graña Drummond introduced the concept of σ-approximate K-steepest descent direction. They showed that by replacing the Cauchy direction with these directions, the convergence result of the generated sequence is the same: every accumulation point is critical. We will present an e cient procedure for computing these directions when the cone K is nitely generated. |
| Palavras-chave: | Otimização vetorial pareto ótimo otimização irrestrita busca linear não monotona direção σ-aproximada |
| Área do CNPq: | CIENCIAS EXATAS E DA TERRA::MATEMATICA::MATEMATICA APLICADA::MATEMATICA DISCRETA E COMBINATORIA |
| Idioma: | por |
| Pais: | Brasil |
| Editor: | Instituto Federal Goiano |
| Sigla da Instituição: | IF Goiano |
| Campus: | Campus Iporá |
| Programa/Curso: | Instituição externa (descrever o nome da instituição no resumo/abstract) |
| Citação: | VIEIRA, F. P. Computing inexact K-steepest descent directions and a new line search procedure for vector optimization. 2022. 132 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2022. |
| Tipo de Acesso: | Acesso Aberto |
| metadata.dc.identifier.doi: | https://repositorio.bc.ufg.br/tede/handle/tede/12052 |
| URI: | https://repositorio.ifgoiano.edu.br/handle/prefix/2525 |
| Data do documento: | 24-Mar-2023 |
| Aparece nas coleções: | Teses e dissertações defendidas em outras Instituições |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Tese_Flávio Pinto Vieira.pdf | 6,99 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.