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Resumo

Vieira, Flávio Pinto. Computing inexact K-steepest descent direc-
tions and a new line search procedure for Vector Optimization.
Goiânia, 2022. 135p. Tese de Doutorado Relatório de Graduação. Programa
de Pós-Graduação em Matemática, Instituto de Matemática e Estatística,
Universidade Federal de Goiás.

Neste trabalho, propomos uma nova busca linear para otimização vetorial e uma

forma de calcular a direção σ−aproximada de máxima descida. Yunda Dong,

em 2010 e 2012, introduziu um procedimento de busca linear para o método de

Gradiente Conjugado usando apenas informações de primeira ordem, ou seja, sem

utilizar valores funcionais. Estenderemos seus trabalhos para Otimização Vetorial.

Estudaremos o método de gradiente conjugado, mostrando a convergência quando

são utilizados os seguintes βk's: Fletcher-Reeves, conjugate descent, Dai-Yuan,

Polak-Ribière-Polyak e Hestenes-Stiefel. Também usamos essa mesma busca linear

para o método tipo-gradiente, mostrando sua convergência. Em 2004, Iusem e

Graña Drummond introduziram o conceito de σ-aproximada K-diereção de máxima

descida. Eles mostraram que ao substituir a direção de Cauchy por essas direções, o

resultado de convergência da sequência gerada é o mesmo: todo ponto de acumulação

é crítico. Apresentaremos um procedimento e�ciente para calcular essas direções

quando o cone K for �nitamente gerado.

Palavras�chave

Otimização vetorial, pareto ótimo, otimização irrestrita, busca linear não

monotona, direção σ-aproximada.



Abstract

Vieira, Flávio Pinto. Computing inexact K-steepest descent direc-
tions and a new line search procedure for Vector Optimization.
Goiânia, 2022. 135p. PhD. Thesis Relatório de Graduação. Programa de
Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Uni-
versidade Federal de Goiás.

In this work, we proposes a new linear search and a way for the computation

of σ-approximate direction. Yunda Dong, in 2010 and 2012, introduced a new

linear search procedure for Conjugated Gradient methods using only �rst-order

information, i.e., without working with functional values. We extend his works to

Vector Optimization. We stud conjugate gradient methods, showing convergence

when the following βk's are used: Fletcher-Reeves, conjugate descent, Dai-Yuan,

Polak-Ribière-Polyak, and Hestenes-Stiefel. We also use this line search in the

gradient method, showing its convergence. In 2004, Iusem and Graña Drummond

introduced the concept of σ-approximate K-steepest descent direction. They showed
that by replacing the Cauchy direction with these directions, the convergence result

of the generated sequence is the same: every accumulation point is critical. We will

present an e�cient procedure for computing these directions when the cone K is

�nitely generated.

Keywords

Vector optimization, Pareto-optimality, unconstrained optimization, non-

monotone line search, σ-approximate direction.
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Introduction

Given f : Rn → R, the (scalar or common) optimization problem, denoted

by

min f(x), (0-1)

consists in the searching of x∗ ∈ Rn such that f(x) ≥ f(x∗) for all x ∈ Rn. A

point like x∗ is called optimal solution of (0-1). Now, consider F : Rn → Rm and fi,

i = 1, 2, . . . ,m, its coordinate functions. Problem

min
Rn

+

F (x) (0-2)

consists in the searching of x∗ ∈ Rn such that there is no x ∈ Rn with F (x) ̸= F (x∗)

and fi(x) ≤ fi(x
∗) for all i ∈ {1, 2, . . . ,m}, i.e., if fj(x) < fj(x

∗), for some j ∈
{1, 2, . . . ,m}, then there exists l ∈ {1, 2, . . . ,m} such that fl(x) > fl(x

∗). Problem

(0-2) is called a multicriteria, multiobjective or Pareto optimization problem,

and any point like x∗ is called a Pareto point. The multicriteria problem is a

generalization of the scalar optimization problem. Indeed, by taking m = 1, in

Problem (0-2) we have it reduces to Problem (0-1). Observe that

Rm
+ = {y = (y1, . . . , ym) ∈ Rm | y1 ≥ 0, . . . , ym ≥ 0}

is a convex, closed, pointed and non-empty cone, and the relations

u ⪯ v ⇔ v − u ∈ Rm
+ and u ≺ v ⇔ v − u ∈ int(Rm

+ ),

where

int(Rm
+ ) = {y = (y1, . . . , ym) ∈ Rm | y1 > 0, . . . , ym > 0},

de�ne two partial orders in Rm
+ . So, for convex, closed, pointed and non-empty cone

K ⊂ Rm, problem

min
K

F (x) (0-3)

is called a vector optimization problem and consists in the searching of x∗ ∈ Rn

such that it does not exist x ∈ Rn with F (x) ̸= F (x∗) and F (x) ⪯K F (x∗), where
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⪯K is the partial order de�ned by K in Rm as

u ⪯K v ⇔ v − u ∈ K and u ≺K v if v − u ∈ int(K).

Points as x∗ is called K−Pareto minimizer or Pareto efficient point. The image

of x∗ by F is the Pareto front in Rm. Sometimes, it is useful to consider weakly

e�cient solutions of Problem (0-3). A point x̄ is called weakly e�cient when there

is not y such that F (y) ≺K F (x). See [20, 21, 27, 28, 34, 39, 40, 42].

The history of Optimization Problem (0-1) blends together with that of

Mathematics itself and has developed over time. Euclid (300 bc) already considered

the shortest distance between a point and a line and showed that a square have

the largest area between the rectangles of the same perimeter. In the centuries

17 and 19, Newton and Gauss had already proposed iterative methods to move

towards a minimum. In 1847 Cauchy presented the gradient method. The term

"linear programming" was mentioned for some situations by George B. Dantzig,

although the theory was introduced by Leonid Kantorovich in 1939. In 1947 Dantzig

published the Simplex Algorithm and in the same year John von Neuman created

the theory of duality. Over the course of time, several other methods were created

and generalized to more general contexts.

Problem (0-2) emerged aiming to �ll some gaps left by other sciences.

Francis Y. Edgeworth (1845-1926) and Vilfredo Pareto (1848-1923) were the �rst to

introduce the concept of �non-inferiority� in economics and since then multi-objective

optimization has been developing and highlighting in areas such as engineering and

design. In 1881 the concept of �optimum� for multicriteria economic decision making

was de�ned, initially introduced at King's College (London) and later at Oxford, by

Economics professor F.Y. Edgeworth. For them, �optimum� means a point such that

in any direction that we take small steps, the objectives do not increase together,

but one decreases while some others increase. In 1906 Pareto introduced his theory

stating that �The optimum allocation of the resources of a society is not attained

so long as it is possible to make at least one individual better o� in his own

estimation while keeping others as well o� as before in their own estimation�. And

from there, the development of multi-objective methods in Applied Mathematics

and Engineering has �ourished, highlighting the contributions of Stadler 1979 and

Steuer 1985.

According to [39], the vector optimization theory started with the studies

of Edgeworth (1881) and Pareto (1906) about economic equilibrium and welfare

theories and with mathematical backgrounds of ordered spaces of Cantor (1897)

and Hausdor� (1906). Later also collaborated with the development of Problem (0-
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3) the game theory of Borel (1921) and von Neumann (1926) and production theory

of Koopmans (1951). But, only with the publication of Kuhn-Tucker's paper (1951)

on the necessary and su�cient conditions for e�ciency, and of Deubreu's paper

(1954) on valuation equilibrium and Pareto optimum, that vector optimization had

its deserved recognition.

Let F of class C1, i.e., the �rst-order derivative of F at x, the Jacobian of

F at x, denoted by JF (x), is continuous. The image on Rm by JF (x) is denoted by

Image(JF (x)). A necessary condition for the K-optimality of x∗ is

−int(K) ∩ Image(JF (x∗)) = ∅.

A point x∗ of Rn is called K-critical for F when it satis�es this condition. Therefore,

if x is not K-critical, there exists v ∈ Rn such that JF (x)v ∈ −int(K).
In this thesis, we study two kinds of iterative methods for Vector Opti-

mization: the class of steepest-descent methods and the class of conjugate gradient

methods.

One of the oldest and simplest method for Problem 1 is the Cauchy Method

or Gradient Method - see [5]. It consists of generating a sequence {xk} given by

xk + αkd
k where αk is the step length and dk is the direction. This procedure has

been extended by Fliege and Svaiter for the multiobjective context in [21] and for

a more general context of vector optimization by Graña-Drummond and Svaiter in

[28].

In 1964 Fletcher and Reeves introduced in [18] the conjugate gradient

methods for Problem (0-1). It consists of generating a sequence given by

xk+1 = xk + αkd
k, k = 0, 1, 2, . . . ,

where αk > 0 is the step length, and dk ∈ Rn is the line search direction. The

direction is de�ned by

dk =

{
−▽ f(xk), if k = 0,

−▽ f(xk) + βkd
k−1, if k ≥ 1,

where βk is a scalar algorithmic parameter. When f is a nonquadratic function, the

algorithm is known as nonlinear conjugate gradient methods and we have several

formulas for βk. Below we list some of them:

Fletcher-Reeves (FR) [18] : βk =
⟨▽f(xk),▽f(xk)⟩

⟨▽f(xk−1),▽f(xk−1)⟩ ,

Conjugate descent (CD) [19]: βk =
−⟨▽f(xk),▽f(xk)⟩
⟨dk−1,▽f(xk−1)⟩ ,
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Dai-Yuan (DY) [9]: βk =
⟨▽f(xk),▽f(xk)⟩

⟨dk−1,▽f(xk)−▽f(xk−1)⟩ ,

Polak-Ribière-Polyak (PRP) [46, 47]: βk =
⟨▽f(xk),▽f(xk)−▽f(xk−1)⟩

⟨▽f(xk−1),▽f(xk−1)⟩ ,

Hestenes-Stiefel (HS) [30]: βk =
⟨▽f(xk),▽f(xk)−▽f(xk−1)⟩
⟨dk−1,▽f(xk)−▽f(xk−1)⟩ .

The nonlinear conjugate gradient methods, as well as the respective beta's

listed above, were extended to vector context by Lucambio and Prudente, see [40].

Throughout history, iterative methods have been developed to solve Prob-

lem (0-1), where in each iteration xk a line search αk is made along one direction dk.

In addition to those already mentioned, second-order methods stand out for their

rapid convergence, as Newton's method, which consists of generating a sequence

{xk} with the direction given by (−(▽2f(xk))−1 ▽ f(xk)). We also remember the

non-monotone line search methods, which produce a sequence for which not neces-

sarily all objectives are decreasing. Between then, we must highlight the max-type

and the average-type methods introduced in [29] e [54], respectively.

Such methods were generalized to the vector or multicriteria context as

well as their respective directions and line searches. The direction of the Gradient

(Steepest descent) has been extended together with the line search of the Armijo by

Fliege and Svaiter in [21] and Drummond and Svaiter in [28]. The direction of the

Newton in [20] by Fliege, Drummond and Svaiter. The direction of the conjugate

gradient, the standard Wolfe conditions and strong Wolfe conditions have been

extended in [40] by Lucambio and Prudente. In the same way, the max-type and the

average-type non-monotone line searches were generalized in [17, 42, 49].

The object of study in this thesis is the Problem (0-3). We will present a

practical way to calculate a σ−approximate K-steepest descent direction, in addition
to generalizing a new way to calculate step length using gradient information only,

all this in the vector context.

In the �rst part of this work we will present a new way to calculate the

step length αk. Introduced initially in 2010 by Yunda Dong, for the conjugate

gradient method for the scalar problem - see [14]. In this paper, the author presented

general convergence results and in 2012 the same author, in [15], presents speci�c

convergence results for the Polak-Ribière method, see [46, 47]. We will extend this

procedure for vector optimization problem. This new search is of great importance

because works only with gradient information, so the method is quite e�cient for

functions that have a simpler gradient expression than itself.

The idea, for scalar problems, is the following. Assume that d is descent
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direction for F at x̄, i.e., there is an interval of step-sizes, (0, τ), such that 0 < t < τ

implies that F (x̄+ td) ≤ F (x̄). Take ρ > 0 and compute ν > 0, such that

⟨F ′(x̄+ ρd) , d⟩ ≥ ℓ(ρ) = −ν∥d∥2

2
ρ+ δ⟨F ′(x̄) , d⟩,

where δ ∈ (0, 1) is a given parameter. It is easy to �nd such ν. Indeed, if

⟨F ′(x̄+ ρd) , d⟩ ≥ δ⟨F ′(x̄) , d⟩ then, any ν ≥ 0 will ful�ll the condition, otherwise

ν = 2
⟨δF ′(x̄)− F ′(x̄+ ρd) , d⟩

ρ∥d∥2
. (0-4)

Satis�es the required condition. Now, given ω ∈ (0, 1), calculate

i = min{j ∈ N : ⟨F ′(x̄+ ωjρd) , d⟩ < ℓ(ωjρ)} (0-5)

and set the step length α = ωi. Observe that ⟨F ′(x̄ + ωjd) , d⟩ → ⟨F ′(x̄) , d⟩ and
ℓ(ωjρ) → ℓ(0) = δ⟨F ′(x̄) , d⟩ as j → ∞ because ω ∈ (0, 1) and F ′ is continuous.

Henceforth, since δ ∈ (0, 1) and ⟨F ′(x̄) , d⟩ < 0, the existence of i is assured. The

following example shows that our line search procedure can be non-monotone.

Example 0.1. Take ρ = ω = 0.9, δ = 0.001 and

f(x) = − 3

10
x+

1

π2

70∑
m=1

[
−3 sin(mπ/5) + 5 sin(4mπ/5)

m2

]
sin(mπx).

At x = 0, we have f ′(0) = −1. Then, d = 1 is descent direction for f at 0. By (0-4)

ν = 4.5414 and by (0-5) i = 1 because f ′(0, 81) < ℓ(0, 81). Therefore, the new iterate

would be 0, 81 and f(0, 81) = 0.081220 > f(0) = 0.

In the multi-objective setting, de�ne

f(x̄+ αd, d) = max {⟨F ′
r(x̄+ αd) , d⟩ : r = 1, 2, . . . ,m} ,

and the line search to consider is the following: compute ν > 0, such that

f(x̄+ ρd , d) ≥ ℓ(ρ) = −ν∥d∥2

2
ρ+ δf(x̄ , d),

where ρ > 0 is given. Then, using a �xed ω ∈ (0, 1), compute

i = min{j ∈ N : f(x̄+ ωjρd , d) < ℓ(ωjρ)}.

Finally, set the step length α = ωi. As we will see, function f is continuous. Then,
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Figure 1: The line search, case scalar.

all the indicated computations are possible. The following example illustrates the

behavior of our procedure.

Example 0.2. As in Example 1, take ρ = ω = 0.9, δ = 0.001. Consider the bi-

criteria optimization problem where the objective function F : R→ R2 is de�ned as

follows:

F (x) =


− 3

10
x+ 1

π2

∑70
m=1

[
−3 sin(mπ/5)+5 sin(4mπ/5)

m2

]
sin(mπx)

−25
3
x3 + 10x2 − 3x

 .

At x = 0, we have JF (0) = (−0.9827 −3)T , implying that d = 1 is descent direction

for both objective. Observe that f(0, 1) = −0.9827 and f(0.81, 1) = −2.0961. Then
ν = 4.5414. Therefore, f(0.81, 1) < ℓ(0.81) and the new iterate would be x = 0.81.

Function-values F (0) = (0 0)T and F (0.81) = (0.0812 − 0.2976)T are non-

comparable according to the order de�ned by the Pareto cone.

We use this new line search in the vector context for the Conjugate Gradient

method where we reproduce the same results presented by Lucambio and Prudente

in [40]. In addition, we will replace the Armijo-type search in the steepest-descent

algorithm with the new line search that we are proposing. We show some convergence

results and present some numerical experiments testing the e�ectiveness of the

resultant algorithm.

In the multi-objective scenario, the steepest descent direction d is calculated
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Figure 2: The line search, case bi-criterion.

solving the problem - see [21]

Minimize f(x, d) + 1
2
∥d∥2.

subject to d ∈ Rn
(0-6)

Fliege and Svaiter, in this same article, suggested an approximate way to calculate

the direction: d is a approximate solution of (0-6) with tolerance σ ∈ (0, 1] if

f(x, d) + 1
2
∥d∥2 ≤ σθ(x), where f(x, v) = maxi(JF (x)d)i and θ(x) is the optimal

value of Problem (0-6). Drummond and Iusem presented the same de�nition in

[27] and showed that every accumulation point of the sequence generated by the

projected gradient method is a stationary point, and when F is convex the generated

sequence converges to a weakly e�cient solution, in addition to presenting results of

limitation of direction σ−approximate. For Drummond and Svaiter, [28], d is a σ-

approximate K-steepest descent direction at x ∈ Rn if f(x, d)+ 1
2
∥d∥2 ≤ (1−σ)θ(x)

with σ ∈ [0.1), now in the vector context. Moreover, they introduced a succinct

theory that served as the basis for us to present a practical way of calculating

an approximate direction. Fukuda and Drummond in [24] presented an inexact

projected Gradient Method for Vector Optimization Problems, in such work de�ning

a direction σ−approximated in the same way as in [28], they also presented some

properties for direction, obtaining convergence results similar to those in [27].

In the second part of this, we will present a practical way to calculate

a σ-approximate K-steepest descent direction for F at x, for vector Optimization

problem. Some numerical experiments were carried out to verify the e�ciency of

this way of calculating direction.
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0.1 Thesis outline

This work is basically divided into two parts, the �rst one introduces

a manner to calculate the step length using only informations of �rst order,

whereas the second part introduces a practical form of calculating a σ−approximate

K−steepest descent direction for F at x.

In Chapter 1 are present some concepts and results which will used through-

out this work.

In Chapter 2 we present a new way to calculate the step length using

gradient information only. This is composed of six sections where the �rst three

are dedicated to demonstrating the convergence of the method using the convexity

hypothesis of the function, Jacobian JF is Lipschitz continuos and for the general

case, respectively. In the fourth section we discuss the convergence analysis for the

speci�c β's of Fletcher-Reeves, Conjugate Descent, Dai-Yuan, Polak-Rivière-Polyak

and Hestenes-Stiefel. In the �fth section we present some results exploring the idea

of complexity and �nally in the last section we describe the numerical experiments.

In Chapter 3 we present a Gradient-type Algorithm with the new line

search. Initially we present the search and then three algorithms, one using the

convexity of the function, another that use the value of the Lipschitz constant.

And �nally, last one is for the general case, i.e., the objective are not convex and

the Lipschitz constant is unknown. The last section of this chapter is dedicated to

present numerical experiences with our algorithm for the convex case and for the

general case.

In Chapter 4 we present a practical way to calculate a σ−approximate

K−steepest descent direction. In the �rst section, we present some results that

will be used later. In the second section we explain how to calculate the direction

σ−approximate. We show convergence results of a Gradient-type algorithm using the

σ−approximate direction. Several experiments showing e�ciency and robustness of

our propose were performed and are presented at the closing section of the chapter.



CHAPTER 1

Preliminary

In this chapter presents de�nitions and results known in the literature that

will be used later as well as present the notation used throughout this work.

1.1 Basic Results

We denoted by Rn the n-dimensional Euclidean space. A vector x ∈ Rn has

coordinates x1, . . . , xn, that is x = (x1, . . . , xn)T , it will be considered as a column

vector. Now, ⟨·, ·⟩ stands for the usual inner product in Rn and ∥ · ∥ is the Euclidean
norm.

Henceforth, we will follow with the de�nitions of convex sets and functions.

The following results can be found in [6].

De�nition 1.1. A subset C of Rn is called convex if

αx+ (1− α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1].

We will denoted an arbitrary set in Rn by X and if it is convex by C.

De�nition 1.2. Let C be a convex subset of Rn. A function g : C → R is called

convex if

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y).

We will denote by conv(X ) the convex hull of a set X , which is the

intersection of all convex sets containing X , and it is a convex set. The conic hull

of a set X denoted by cone(X) is the intersection of all convex cone containing X.

Next, we will present the de�nition of the Lipschitz continuous gradient,

which will help us in further results.

De�nition 1.3. ([5]) A condition of the form

∥ ▽g(x)−▽g(y) ∥≤ L ∥ x− y ∥, ∀ x, y ∈ Rn,
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is called a Lipschitz continuity condition on ▽g, with constant L > 0.

Now, we introduce the well-known concept of quasi-Fejér convergent in

Euclidean spaces. This de�nition was initially presented in [16], and it can be found

in a more elaborate way in [7, 33].

De�nition 1.4. A sequence {yk} ∈ Rn is said to be quasi-Fejér convergent to

V ⊂ Rn, V ̸= ∅, if for each v ∈ V there exists a sequence of real numbers εk ≥ 0

such that
∑∞

k=0 εk <∞ and

∥ yk+1 − v ∥2≤∥ yk − v ∥2 +εk.

Theorem 1.5. ([33], Theorem 4.1) If {yk} is quasi-Fejér convergent to a nonempty

set V , then {yk} is bounded. If V contains a limit point of {yk} then {yk} converges.

We close this section with the result extracted from [40], which will con-

tribute to the results of Chapter 3.

Lemma 1.6. For any scalar a, b, and α ̸= 0, we have

(a) ab ≤ a2

2
+ b2

2

(b) 2ab ≤ 2α2a2 + b2

2α2

(c) (a+ b)2 ≤ 2a2 + 2b2

(d) (a+ b)2 ≤ (1 + 2α2)a2 + (1 + 1/2α2)b2

Proof. See [40, Lemma 2.3]

1.2 Vector Optimization

In this section we will present results and formalize the notation about

vector optimization problem. Further discussion on the subject can be found in

[34, 39]. Let K ⊂ Rm be a closed, convex and pointed cone with non-empty interior.

The pointed cone means that (K∩ (−K) = {0}), where K de�nes a partial order in

Rm, ⪯K. We say that u ⪯K v if, and only if, v−u ∈ K. Other partial order relations
in Rm are de�ned by K analogously, for example, u ≺K v says that v− u lays in the

interior of K, (v − u ∈ int(K)).
The positive polar cone ofK is the setK∗ = {w ∈ Rm | ⟨w, y⟩ ≥ 0, ∀ y ∈ K}.

Since K is closed and convex, K = K∗∗, −K = {y ∈ Rm | ⟨y, w⟩ ≤ 0, ∀ w ∈ K∗}
and −int(K) = {y ∈ Rm | ⟨y, w⟩ < 0, ∀ w ∈ K∗ − {0}}. Let G ⊂ K∗ − {0} be

compact set such that

K∗ = cone(conv(G)),
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i.e., K∗ is the conic hull of the convex hull of G. For a generic K, the set

G = {w ∈ K∗ | ∥w∥ = 1} ,

has the desired property. In classical optimization K = R+, then K∗ = R+ and we

can take G = {1}. For multiobjective optimization K = Rm
+ , then K∗ = K and

we may take G as the canonical basis of Rm. If K is a polyhedral cone, K∗ is also

polyhedral and G can be taken as the �nite set of extremal rays of K∗.

Let F : Rn → Rm, the �rst-order derivative of F at x, the Jacobian of F at

x, will be denoted by JF (x), and the image on Rm by JF (x) will be denoted by

Im(JF (x)). F is of the classes C1 if, the Jacobian of F is continuous.

Function F is called K-convex when

F (αx+ (1− α)y) ⪯K αF (x) + (1− α)F (y)

for all α ∈ [0, 1]. In the multi-criteria setting we have that Rm
+ -convexity of F is

equivalent to the convexity of all coordinate functions of F . When F is convex and

continuously di�erentiable,

F (y) ⪰K F (x) + JF (x)(y − x),

which is an extension of the classical gradient inequality for convex di�erential

functions. When F is K-convex and m > 1, optimal solution's set may be non-

convex, unlike what occurs in the scalar optimization case.

De�nition 1.7. A point x∗ ∈ Rn is an e�cient or K−optimal solution for problem

(0-3) if does not exist x ∈ Rn with F (x) ̸= F (x∗) and F (x) ⪯K F (x∗). The images

of x∗ by F are called Pareto front in Rm.

When K is the Pareto cone, i.e., K = Rm
+ , (0-3) is known a multicriteria

optimization problem. In this case, optimal solutions are known as Pareto points.

Observe that, if x is Pareto, then it is impossible to improve one objective without

another becoming worse.

Let us geometrically illustrate the de�nitions above. We want to minimize

the functions f1(x) = x2 and f2(x) = (x − a)2, where a > 0, simultaneously, that

is, to minimize the bi-function F (x) = (f1(x), f2(x)) considering the partial order

induced by R2
+. As we can see in �gure 1.1, the minimum of f1(x) is x = 0 whereas

the minimum of f2(x) is x = a. Observe that for values of x greater than “a” the two

objectives increase, if we move to the right, so any values belonging to this interval

would not be optimal or e�cient solutions, the same is true for values of x less than

“0”. On the other hand, for values of x between “0” and “a”, as we move from left
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to right, the values of function f1 increases while those of f2 decrease, the opposite

occurring when we walk from right to left. Therefore, any value of x between “0”

and “a” is an e�cient or optimal point.

x
a0

F (x)

f1(x) = x2

f2(x) = (x− a)2

Figure 1.1: Bi-criterion function.

The graphic of the image of F (x), Figure 1.2, shows that the functional

values for x greater than a or less than 0 do not belong to the Pareto front, because

in these intervals, the functional values increase or decrease simultaneously.

f1(x)a

f2(x)

F (x)

Figure 1.2: Image of F (x).

Figure 1.3 illustrates the Pareto front of F (x). Note that if we choose a value

of F (x) that does not belong in this range, there will always be a point belonging

that is better in at least one of the objectives, and it is not worse on the other.

We need to present optimality conditions for Problem (0-3). So, a necessary

condition for K-optimality of x∗ is

−int(K) ∩ Image(JF (x∗)) = ∅.

A point x∗ of Rn is called K-critical for F when it satis�es this condition. Therefore,

if x is not K-critical, there exists v ∈ Rn such that JF (x)v ∈ −int(K). Every such
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f1(x)a

f2(x)

Figure 1.3: Pareto front.

vector v is a K-descent direction for F at x, i.e., there exists T > 0 such that

0 < t < T implies that F (x+ tv) ≺K F (x), see [27].

The following de�nitions and results can be found in [28]. De�ne the function

φ : Rm → R
y 7−→ φ(y) = sup {⟨y, w⟩ | w ∈ G} .

In view of the compactness of G, φ is well-de�ned. Function φ has some

useful properties.

Lemma 1.8. Let y and y′ ∈ Rm. Then:

(a) φ(y + y′) ≤ φ(y) + φ(y′) and φ(y)− φ(y′) ≤ φ(y − y′);

(b) If y ⪯K y′, then φ(y) ≤ φ(y′); if y ≺K y′, then φ(y) < φ(y′);

(c) φ is Lipschitz continuous with constant 1.

Proof. See [28, Lemma 3.1].

Function φ gives characterizations of −K and −int(K):

−K = {y ∈ Rm | φ(y) ≤ 0} and − int(K) = {y ∈ Rm | φ(y) < 0} .

Note that φ(x) > 0 does not imply that x ∈ K, but x ∈ K implies that φ(x) ≥ 0

and x ∈ int(K) implies that φ(x) > 0.

Now de�ne the function f : Rn × Rn → R by

f(x, d) = φ(JF (x)d) = sup {⟨JF (x)d, w⟩ | w ∈ G} .

The function f gives a characterization of K-descent directions and of K-critical
points:

Lemma 1.9. Let x ∈ Rn, then

(a) d is K-descent direction for F at x if f(x, d) < 0;
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(b) x is K-critical if and only if f(x, d) ≥ 0 for all d.

Proof. See [28].

The next function allows us to extend the notion of steepest descent

direction to the vector case.

De�ne v : Rn → Rn by

v(x) = argmin

{
f(x, d) +

∥d∥2

2
| d ∈ Rn

}
, (1-1)

and θ : Rn → R by θ(x) = f(x, v(x))+∥v(x)∥2/2. Since f(x, ·) is a real closed convex

function, v(x) exists and is unique. Observe that in the scalar minimization case,

where F : Rn → R and K = R+, taking G = {1}, we obtain f(x, d) = ⟨∇F (x), d⟩,
v(x) = −∇F (x) and θ(x) = −∥∇F (x)∥2/2. The following lemma shows that v(x)

can be considered the vector extension of the steepest descent direction of the scalar

case.

Lemma 1.10. (a) If x is K-critical, then v(x) = 0 and θ(x) = 0.

(b) If x is not K-critical f(x, v(x)) ≤ −∥v(x)∥2
2

< 0, and v(x) is a K-descent
direction for F at x.

(c) The mappings v and θ are continuous.

Proof. See [28, Lemma 3.3].

Since f(x, .) is positive homogeneous, it is easy to verify that

f(x, v(x)) = −∥v(x)∥2. (1-2)

For multiobjective optimization, where K = Rm
+ , with G given by the

canonical basis of Rm, v(x) can be computed by solving

Minimize α+ 1
2
∥d∥2

subject to [JF (x)d]i ≤ α, i = 1, . . . ,m.
(1-3)

see [21]. The following result displays the Lipschitz constant for f(x, d) and later we

will show that this same function is monotone non-decreasing.

Lemma 1.11. Function f(x, ·) is continuous. If F is di�erentiable, then f is

continuous. If L is the Lipschitz constant of JF , then L∥d∥ is the Lipschitz constant
of f(· , d).

Proof. Immediate consequence of Lemma 1.8(c).
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Recall that F : Rn → Rm is called K-convex when

F ((1− λ)x+ λy) ⪯K (1− λ)F (x) + λF (y)

for all x, y ∈ Rn and all λ ∈ [0, 1] -see [34, 39]. In other words, λ ∈ [0, 1] implies that

F (x) + λ[F (y)− F (x)]− F (x+ λ(y − x)) ∈ K. (1-4)

Lemma 1.12. If F ∈ C1 is convex then JF (x) is a subgradient of F at x.

Proof. Since F is continuously di�erentiable, by (1-4) we get

lim
λ→0+

F (x)− F (x+ λ(y − x))

λ
+ F (y)− F (x) ∈ K.

Hence,

F (y) ⪰K F (x) + JF (x)(y − x).

Above results can be fond at [34], Theorem 2.20. The last expression is the

K-vector version of the well known Jensen Inequality. Hence, analogous to the scalar

case, JF is K-monotone operator, i.e.,

[JF (x)− JF (y)](x− y) ⪰K 0.

In the following lemma, we summarize two important facts, which we will use later

on.

Observe that

f(x, d) = max{⟨JF (x)d, w⟩|w ∈ G} = max{⟨JF (x)d, w⟩|w ∈ conv(G)}.

Then,

θ(x) = min

{
max {⟨JF (x)d, w⟩|w ∈ conv(G)}+ ∥d∥

2

2
| d ∈ Rn

}
.

The dual of this problem above is

max

{
mim {⟨JF (x)d, w⟩| d ∈ Rn}+ ∥d∥

2

2
|w ∈ conv(G)

}

max

{
mim

{
⟨JF (x)d, w⟩+ ∥d∥

2

2
| d ∈ Rn

}
|w ∈ conv(G)

}
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max

{
−∥JF (x)⊤w∥2

2
|w ∈ conv(G)

}
.

So, we achieve the following results.

Theorem 1.13. The following two statements are true

(a) For all w ∈ conv(G),

θ(x) ≥ −∥JF (x)⊤w∥2

2
.

(b) If w̄ ∈ argmin
{
∥JF (x)⊤w∥ |w ∈ conv(G)

}
then, v(x) = JF (x)⊤w and

θ(x) = −∥JF (x)⊤w∥2
2

.

Proof. Item (a) is true becuase the Weak Duality Theorem. Item (b) is true because

the Strong Duality Theorem since there is not duality's gap between

min

{
f(x, d) +

∥d∥2

2
| d ∈ Rn

}
and max

{
−∥JF (x)⊤w∥2

2
|w ∈ conv(G)

}
.

De�nition 1.14. We say that D ∈ L(Rn,Rm) is a subgradient of F at x if

F (y) ⪰K F (x) +D(y − x), for any y ∈ Rn.

Lemma 1.15. Let F : Rn → Rm be convex and continuously di�erentiable.

(a) If F (y) ⪯K F (x), then

⟨v(x) , x− y⟩ ≤ 0.

(b) Fix x and d ∈ Rn. Function γ : R→ R, de�ned as

γ(t) = f(x+ td, d),

is monotone non-decreasing.

Proof. By De�nition 1.14 and Lemma 1.12, we have that

0 ⪰K JF (x)(y − x)

Take w̄ ∈ conv(G) such that v(x) = −JF (x)⊤w̄. Theorem 1.13 says that such w̄

exists. By Caratheodory's Theorem - see Proposition B.6 in [5]- there are m + 1

elements of G w0, w1, . . . , wm, and m + 1 non-negative scalars, λ0, λ1, . . . , λm, such
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that w̄ =
∑m

i=0 λiwi and
∑m

i=0 λi = 1. Then

⟨v(x), y − x⟩ = ⟨−JF (x)⊤w̄, y − x⟩ = −
m∑
i=0

λi⟨JF (x)⊤wi, y − x⟩ (1-5)

= −
m∑
i=0

λi⟨JF (x)⊤(y − x), wi⟩ ≥ 0. (1-6)

To show item (b) take t ∈ R and w ∈ G such that f(x+ td, d) = ⟨w , JF (x+ td)d⟩.
Then, t̂ > t implies

f(x+ td, d) = ⟨w , JF (x+ td)d⟩ ≤ ⟨w , JF (x+ t̂d)d⟩ ≤ f(x+ t̂d, d)

where in the �rst inequality we use that JF is K-monotone, and in the second one,

we use the de�nition of f .



CHAPTER 2

Conjugate gradient methods with a new

line search

In this chapter we will generalize to the vector context the line search

introduced in 2010 by Yunda Dong for the scalar conjugate gradient method, see

[14, 15]. It line search is characterizes by does not use of functional values, so, it

excels in problems where evaluating its gradients is simpler than the function itself.

This does not make use of functional values, so it has great advantages for problems

where evaluating its gradients is more simpler than the function itself. By extending

the Nonlinear conjugate gradient methods for vector optimization, in [40], Lucambio

and Prudente used as line search the standard Wolfe and strong Wolfe conditions.

We will rewrite the algorithm presented in [40] with the new line search proposed

here for vector optimization, we will call this method Nonlinear Conjugate Gradient

Methods with New Line search. We will show the well de�nition of the search and

convergence results, initially using the convexity hypotheses of the functional values

and after the Lipschitz gradient, and ultimately in the general case. We show too

convergence results for the speci�c beta's of Fletcher-Reeves, conjugate descent,

Dai-Yuan, Polak-Ribière-Polyak and Hestenes-Stiefel. Numerical experiments will

also be presented showing the e�ciency of the new search in the conjugate gradient

algorithms to solve vector problems.

2.1 Convex case

We start this chapter by introducing the Nonlinear conjugate gradient

methods for vector optimization with a new line search for cases in which the

objective F is convex. Initially two basic hypotheses are needed.

Under the hypothesis of K-convexity of F , we have the algorithm.

Algorithm 2.1. Given constants ρ > 0, ω, δ ∈ (0, 1), ν > 1 and e ∈ Int(K) such
that 0 < ⟨e, w⟩, for all w ∈ G. Conjugate gradient algorithm for convex case is

de�ned as follows.
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0. Initialization: Take x0 ∈ Rn. Compute v(x0) and initialize k ← 0.

1. Stopping criterium: If v(xk) = 0, then STOP.

2. Direction: De�ne

dk =

{
v(xk), if k = 0

v(xk) + βkd
k−1, if k ≥ 1,

(2-1)

where βk is an algorithmic parameter.

3. Line search: Compute

jk = min

{
j ≥ 1 | f(xk + ρωdk, dk) +

νjρω∥dk∥2

2
≥ δf(xk, dk)

}
, (2-2)

and

ik = min

{
i ≥ 1|

f(xk + ρωidk, dk) + νkρω
i∥dk∥2
2

≤ δf(xk, dk)

JF (xk + ρωidk)dk + νkρω
i∥dk∥2
2

e ⪯K δJF (xk)dk

}
. (2-3)

4. Iteration step: De�ne

αk = ρωik , (2-4)

and

xk+1 = xk + αkd
k. (2-5)

Compute v(xk+1), set k ← k + 1, and go to Step 1.

The choice of updating βk remains deliberately open. In later sections we

will consider several choices of βk that result in globally convergent methods.

The following Lemma assures us that if there is a t̂ such that

JF (xk + t̂dk)dk +
νk t̂∥dk∥2

2
e ⪯K δJF (xk)dk for all k = 0, 1, . . . ,

then the above inequality holds for all t ∈ [0, t̂].

Lemma 2.2. Assume that F is K-convex, e ∈ Int(K) and there exists t̂ > 0 such

that

JF (xk + t̂dk)dk +
νk t̂∥dk∥2

2
e ⪯K δJF (xk)dk for all k = 0, 1, . . . . (2-6)

Then, t ∈ [0, t̂] implies

JF (xk + tdk)dk +
νkt∥dk∥2

2
e ⪯K δJF (xk)dk for all k = 0, 1, . . . . (2-7)
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Proof. Take t ∈ [0, t̂]. Since JF is K-monotone and νk(t̂−t)∥dk∥2
2

e ⪰K 0, we get

[JF (xk + t̂dk)− JF (xk + tdk)]dk +
νk(t̂− t)∥dk∥2

2
e ⪰K 0.

Then,

JF (xk + tdk)dk +
νkt∥dk∥2

2
e ⪯K JF (xk + t̂dk)dk +

νk t̂∥dk∥2

2
e ⪯K δJF (xk)dk.

Since ρ > 0, ω ∈ (0, 1) and ν > 1, jk will be the smallest positive integer

that ful�lls (2-2). If ik is computable, then Algorithm 2.1 is well-de�ned. Remember

that f is continuous with respect to its �rst argument because F is continuously

di�erentiable - see Lemma 1.11. Next, we prove that ik is computable.

Lemma 2.3. For any k ≥ 0 there exists integer ik ≥ 1 ful�lling (2-3).

Proof. For i = 1

f(xk + ρωdk, dk) +
νkρω∥dk∥2

2
≥ δf(xk, dk)

by the de�nition of νk. Assume that

f(xk + ρωidk, dk) +
νkρω

i∥dk∥2

2
> δf(xk, dk),

for all positive integer i. Then, taking limits as i goes to ∞, we obtain

f(xk, dk) ≥ δf(xk, dk)

because f(·, dk) is continuous and ω ∈ (0, 1). That is a contradiction because

f(xk, dk) < 0 and δ ∈ (0, 1).

The following result is of extreme importance in the demonstration of several

others.

Lemma 2.4. For k = 0, 1, . . . it holds

f(xk, dk−1) < δf(xk−1, dk−1). (2-8)
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Proof. Observe that, by (2-5) and (2-3),

f(xk, dk−1) = f(xk−1 + αk−1d
k−1, dk−1)

≤ δf(xk−1, dk−1)− νk−1ρω
ik−1
∥dk−1∥2

2

< δf(xk−1, dk−1).

Let us now show that dk is descent direction for F at xk.

Lemma 2.5. For k = 0, 1, . . ., βk ≥ 0 and Take any c ∈ (0, 1), it holds

(a) f(xk, dk) ≤ −∥v(x
k)∥2

2
,

(b) f(xk, dk) ≤ cf(xk, v(xk)).

Proof. (a) This proof is given by induction. For k = 0, we have d0 = v(x0),

then, by Lemma 1.10(b), f(x0, d0) < −∥v(x0)∥2/2. For some k ≥ 1, assume

that f(xk−1, dk−1) ≤ −∥v(xk−1)∥2/2 < 0. Then, using de�nitions of dk and f ,

Lemma 1.8(a), non-negativeness of βk, (2-8) and Lemma 1.10(b), we get

f(xk, dk) = f(xk, v(xk) + βkd
k−1) ≤ f(xk, v(xk)) + βkf(x

k, dk−1)

≤ −∥v(x
k)∥2

2
+ βkδf(x

k−1, dk−1)

<
−∥v(xk)∥2

2
< 0

because, by assumption, f(xk−1, dk−1) ≤ −∥v(xk−1)∥2/2 < 0.

(b) When k = 0, d0 = v(x0). Then, f(x0, d0) = f(x0, v(x0)) < cf(x0, v(x0)) , by

Lemma 1.10 (b). For k ≥ 1, we have

f(xk, dk) = f(xk, v(xk) + βkd
k−1)

≤ f(xk, v(xk)) + βkf(x
k, dk−1)

by de�nition of dk and positiviness of βk. By (2-8) and Lemma 1.9,

f(xk, dk−1) < 0. Lemma 1.10 (b) states that f(xk, v(xk)) ≤ 0. Then,

f(xk, dk) ≤ f(xk, v(xk)) < cf(xk, v(xk)).

Actually a stronger result holds: dk satis�es the su�cient descent condition,

that is, f(xk, dk) ≤ cf(xk, v(xk)) for all k = 0, 1, . . . and c ∈ (0, 1).
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Next, we prove that if F is convex, then Algorithm 2.1 generates a monotone

K-decreasing sequence {F (xk)}.

Lemma 2.6. Assume that F is convex. Then,

F (xk+1) ⪯K F (xk) + δαkf(x
k, dk)e, (2-9)

for all k ≥ 0.

Proof. Observe that, for k = 0, 1, 2, . . .,

F (xk+1) = F (xk) +

∫ αk

0

JF (xk + tdk)dkdt

Then, by (2-3) and Lemma 2.2

F (xk+1) ⪯K F (xk) +

∫ αk

0

(
δJF (xk)dk − 1

2
νkt∥dk∥2e

)
dt

= F (xk) + αkδJF (xk)d
k − 1

4
νkα

2
k∥dk∥2e

⪯K F (xk) + αkδJF (xk)d
k. (2-10)

For all w ∈ G, it is true that

⟨ω, f(xk, dk)e− JF (xk)dk⟩ = ⟨ω, f(xk, dk)e⟩ − ⟨ω, JF (xk)dk⟩

= f(xk, dk)⟨ω, e⟩ − ⟨ω, JF (xk)dk⟩

≥ f(xk, dk)− ⟨ω, JF (xk)dk⟩

because 0 < ⟨e, w⟩ < 1. By the de�nition of f ,

f(xk, dk)− ⟨ω, JF (xk)dk⟩ ≥ 0.

Then,

f(xk, dk)e ⪰K JF (xk)dk.

Hence, by (2-10), we have

F (xk+1) ⪯K F (xk) + αkδf(x
k, dk)e.

Corollary 2.7. If F is convex, then {F (xk)}k≥0 is strictly monotone K-decreasing,
i.e., F (xk+1) ≺K F (xk), k = 0, 1, . . ..

Proof. Immediately.
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Assumptions:

A1. Function F is bounded below on L = {x ∈ Rn : F (x) ⪯K F (x0)}, i.e., for any
sequence {yk} ⊂ L with F (yk) ⪰K F (yk+1), for all k, there exists F ∈ Rm

such that F (yk) ⪰K F , for all k. There exists an open N such that L ⊂ N
and JF is Lipschitz-continuous with constant L on N .

A2. Sequence {νk}, generated by Algorithm A, is bounded, i.e., there exists ν̄ such

that 0 < νk < ν̄ for all k = 0, 1, . . ..

The following results are the basis for proving the convergence theorem.

Lemma 2.8. If A1 holds and F is convex, then
∑

k≥0 αkf(x
k, dk) is convergent.

Proof. Observe that under these hypothesis and by (2-9) we get that there exists F
such that

F (x0)−F ≽K F (x0)− F (xk+1) ≽K

k∑
ℓ=0

−αℓδf(x
ℓ, dℓ)e

because A1 holds also. Then,

⟨w,F (x0)−F⟩
δ⟨w, e⟩

≥
k∑

ℓ=0

−αℓf(x
ℓ, dℓ) > 0

for all w ∈ G.

The Zoutendijk condition for vector optimization problems,

∑
k≥0

f 2(xk, dk)

∥dk∥2
<∞,

was introduced in [40]. With the next lemma, we show that a Zoutendijk's like

condition is ful�lled by Algorithm 2.1

Assumptions A1 are minimal, i.e., every results on this work need both to

hold. Such hypotheses were already necessary for the algorithm in the scalar case.

Lemma 2.9. Assume that A1 holds and F is convex. Then,

∑
k≥0

1

L+
νk
2

f 2(xk, dk)

∥dk∥2
<∞. (2-11)
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Proof. Observe that

(
L+

νk
2

)
αkω

−1∥dk∥2 = Lαkω
−1∥dk∥2 + νkαkω

−1∥dk∥2

2

= L∥dk∥∥xk + αkω
−1dk − xk∥+ νkαkω

−1∥dk∥2

2

≥
∣∣f(xk + αkω

−1dk, dk)− f(xk, dk)
∣∣+ νkαkω

−1∥dk∥2

2

≥ f(xk + αkω
−1dk, dk)− f(xk, dk) +

νkαkω
−1∥dk∥2

2
.

Taking in account (2-3), we get

(
L+

νk
2

)
αkω

−1∥dk∥2 ≥ f(xk + αkω
−1dk, dk)− f(xk, dk) +

νkαkω
−1∥dk∥2

2

> (δ − 1)f(xk, dk) > 0. (2-12)

From these last inequalities we get that

0 <
1

L+
νk
2

f 2(xk, dk)

∥dk∥2
<

1

ω(δ − 1)
αkf(x

k, dk).

Since, by Lemma 2.8,
∑

k≥0 αkf(x
k, dk) is convergent, we conclude that

∑
k≥0

1

L+
νk
2

f 2(xk, dk)

∥dk∥2
<∞.

Corollary 2.10. Assume that A1, A2 hold and F is convex. Then,

∑
k≥0

f 2(xk, dk)

∥dk∥2
<∞.

Proof. Immediately.

Theorem 2.11. Assume that A1 and A2 hold and F is convex. If

∑
k≥0

1

∥dk∥2
=∞, (2-13)

then,

lim inf ∥v(xk)∥ = 0.

Proof. Let us assume that there is γ > 0 such that ∥v(xk)∥ > γ for all k ≥ 0. Then,
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using Lemma 2.5, we have

0 <
γ2

2
<
∥v(xk)∥2

2
< −f(xk, dk).

Hence,
γ4

4
(
L+

νk
2

)
∥dk∥2

<
∥v(xk)∥4

4
(
L+

νk
2

)
∥dk∥2

<
1

L+
νk
2

f 2(xk, dk)

∥dk∥2

for all k ≥ 0. Since (2-11) holds,

γ4

4 (L+ ν̄)

∑
k≥0

1

∥dk∥2
<
∑
k≥0

1

L+
νk
2

f(xk, dk)2

∥dk∥2
<∞,

in contradiction to our hypothesis, concluding that

lim inf ∥v(xk)∥ = 0.

Therefore, using the function convexity hypothesis we were able to demon-

strate the standard convergence result of the conjugate gradient method.

2.2 Non-convex case

In this section we consider non-convex F with JF Lipschitz continuous.

This, we can present a new Algorithm of the Conjugate Gradient with a new line

search.

Algorithm 2.12. Let constants: ρ > 0, ω, δ ∈ (0, 1) and ν > 1.

0. Initialization: Take x0 ∈ Rn. Compute v(x0) and initialize k ← 0.

1. Stopping criterium: If v(xk) = 0, then STOP.

2. Direction: De�ne

dk =

{
v(xk), if k = 0

v(xk) + βkd
k−1, if k ≥ 1,

(2-14)

where βk is an algorithmic parameter.

3. Line search: Compute positive integers

jk = min

{
j ≥ 1 | f(xk + ρωdk, dk) +

νjρω∥dk∥2

2
≥ δf(xk, dk)

}
(2-15)
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and

ik = min

{
i ≥ 1|ρωi <

(δ − 1)(
L+ νk

2

)
∥dk∥2

f(xk, dk)

}
(2-16)

where νk = νjk .

4. Iteration step: De�ne

αk = ρωik (2-17)

and

xk+1 = xk + αkd
k. (2-18)

Compute v(xk+1), set k ← k + 1, and go to Step 1.

The following Lemma shows that if JF is L−Lipschitz continuous, then we

can bound the step length.

Lemma 2.13. Suppose that JF is L−Lipschitz continuous and t̂ > 0 is such that

JF (xk + t̂dk)dk +
νk t̂∥dk∥2

2
e ≻K δJF (xk)dk for all k = 0, 1, . . . . (2-19)

Then,

t̂ >
(δ − 1)(

L+
νk
2

)
∥dk∥2

f(xk, dk).

Proof. De�ne l(t) = ⟨[JF (xk + tdk) − δJF (xk)]dk, w⟩ + νkt∥dk∥2
2
⟨e, w⟩. Note that,

l(0) = (1− δ)⟨JF (xk)dk, w⟩ and, by (2-19), l(t̂) > 0.

l(t̂)− l(0) = ⟨[JF (xk + t̂dk)− δJF (xk)]dk, w⟩+ νk t̂∥dk∥2

2
⟨e, w⟩

− (1− δ)⟨JF (xk)dk, w⟩

= ⟨[JF (xk + t̂dk)− JF (xk)]dk, w⟩+ νk t̂∥dk∥2

2
⟨e, w⟩.

By hypothesis, JF is L−Lipschitz continuous, so

⟨[JF (xk + t̂dk)− JF (xk)]dk, w⟩ ≤ ∥[JF (xk + t̂dk)− JF (xk)]dk∥∥w∥

≤ Lt̂∥dk∥2.
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Since l(t̂) ≥ 0, we have

−l(0) < l(t̂)− l(0) ≤ Lt̂∥dk∥2 + νk t̂∥dk∥2

2
⟨e, w⟩

−l(0) <
(
L+

νk
2

)
t̂∥dk∥2

t̂ >
(δ − 1)⟨JF (xk)dk, w⟩(

L+ νk
2

)
∥dk∥2

.

Implying

t̂ >
(δ − 1)(

L+ νk
2

)
∥dk∥2

max⟨JF (xk)dk, w⟩ = (δ − 1)(
L+ νk

2

)
∥dk∥2

f(xk, dk).

Lemma 2.3 and Lemma 2.13 guarantee us the well de�nition of Algo-

rithm 2.12.

Condition (2-16) of Algorithm 2.12 guarantees that αk ≤
(δ − 1)(

L+ νk
2

)
∥dk∥2

f(xk, dk) and therefore by Lemma 2.13, we have JF (xk + t̂dk)dk +

νk t̂∥dk∥2
2

e ⪯K δJF (xk)dk for all k = 0, 1, . . . . So we can rewrite Lemma 2.6 and

Corollary 2.7, whose respective proofs are identical, showing that function F (xk)

will be monotonous descending.

Lemma 2.14. Assume JF L−Lipschitz continuous. Then,

F (xk+1) ⪯K F (xk) + δαkf(x
k, dk)e, (2-20)

for all k ≥ 0.

Corollary 2.15. If JF L−Lipschitz continuous, then {F (xk)}k≥0 is strictly mono-

tone K-decreasing, i.e., F (xk+1) ≺K F (xk), k = 0, 1, . . ..

Following the same idea of replacing the convexity hypothesis of function

F with that of JF L−Lipschitz continuous, the results, Lemma 2.8, Lemma 2.9,

Corollary 2.10, and Theorem 2.11 can be reproduced and demonstrated in the same

way. Thus, convergence is assured for this case.

2.3 General Case

In this section, we present an algorithm applicable to any continuously

di�erentiable function F . This procedure does not require knowledge about the

Lipschitz constant for the Jacobian of F .
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Algorithm 2.16. Let be four exogeneous positive constants: δ and ω < 1, ν > 1

and ρ.

0. Initialization: Take x0 ∈ Rn. Compute v(x0) and initialize k ← 0.

1. Stopping criterium: If v(xk) = 0, then STOP.

2. Direction: De�ne

dk =

{
v(xk), if k = 0

v(xk) + βkd
k−1, if k ≥ 1,

(2-21)

where βk is an algorithmic parameter.

3. Line search: Compute positive integers

jk = min

{
j ≥ 1 | f(xk + ρωdk, dk) +

νjρω∥dk∥2

2
≥ δf(xk, dk)

}
(2-22)

and

ik = min

{
i ≥ 1 | f(xk + ρωidk, dk) +

νkρω
i∥dk∥2

2
≤ δf(xk, dk)

}
(2-23)

where νk = νjk .

4. Iteration step: De�ne

αk = ρωik (2-24)

and

xk+1 = xk + αkd
k. (2-25)

Compute v(xk+1), set k ← k + 1, and go to Step 1.

The choice of updating βk remains deliberately open. In the next section,

we will consider several choices of βk that result in globally convergent methods.

Well de�niteness of Algorithm 2.16 follows from Lemma 2.3.

2.3.1 Convergence Analysis

Algorithm 2.16 successfully stops if a K-critical point of F is found. Hence,

from now on, let us consider that v(xk) ̸= 0 for all k ≥ 0.

From now on, we will need some additional hypotheses on the problem

and/or Algorithm 2.16.

Assumptions

A3. Suppose that 0 < γ ≤∥ v(xk) ∥≤ γ̄, and there exist constants b > 1 and λ > 0

such that, for all k,

βk ≤ b
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and

∥ sk−1 ∥≤ λ⇒ |βk| ≤
1

2b
,

where sk−1 = xk − xk−1.

Gilbert and Nocedal introduced in [25] a property to show the convergence

of the Conjugated Gradient Algorithm in the scalar context for the betas of PRP and

HS, this property has been extended to vector minimization in [40] and is reproduced

in this work as hypothesis A3. The following results assure us that changes in line

search directions are not too sudden.

Lemma 2.17. Consider Algorithm 2.16 with βk ≥ 0 and dk is a K-descent direction
of F at xk. Assume that assumptions A1 and A2 hold. Then,

(i)
∑
k≥0

∥ v(xk) ∥4

∥ dk ∥2
<∞,

(ii)
∑
k≥1

∥ uk − uk−1 ∥2<∞, where uk = dk/ ∥ dk ∥.

Proof. Once we have item (i), the proof of item (ii) would be quite similar to the

proof of Lemma 5.8(ii) in [40]. Let us proof item (i).

Since dk is a descent direction of F at xk, it implies that dk ̸= 0. Hence,

∥ v(xk) ∥4 / ∥ dk ∥2 and uk are well de�ned. For (2-21) −βkd
k−1 = −dk + v(xk), so

∥ −βkd
k−1 ∥2=∥ −dk + v(xk) ∥2 .

By Lemma 1.6 (c)

β2
k ∥ dk−1 ∥2≤ [∥ dk ∥ + ∥ v(xk) ∥]2 ≤ 2 ∥ dk ∥2 +2 ∥ v(xk) ∥2

∥ dk ∥2

∥ dk−1 ∥2
≥ β2

k

2
− ∥ v(x

k) ∥2

∥ dk−1 ∥2
. (2-26)

On the other hand, using (2-21) and (2-8)

0 < −f(xk, v(xk)) ≤ −f(xk, dk) + βkf(x
k, dk−1) ≤ −f(xk, dk) + δβkf(x

k−1, dk−1).

From the previous inequality and Lemma 1.6 (b) with α = 1, we obtain

f 2(xk, v(xk)) ≤ (−f(xk, dk) + δβkf(x
k−1, dk−1))2

= f 2(xk, dk) + δ2β2
kf

2(xk−1, dk−1)− 2f(xk, dk)δβkf(x
k−1, dk−1)

≤ f 2(xk, dk) + δ2β2
kf

2(xk−1, dk−1) + 2f 2(xk, dk)δ2 + β2
kf

2(xk−1, dk−1)/2

= (1 + 2δ2)(f 2(xk, dk) + β2
kf

2(xk−1, dk−1)/2).
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Since dk is a descent direction for F at xk, f(xk, v(xk)) ≤ − ∥ v(xk) ∥2 /2, then

f 2(xk, v(xk)) ≥∥ v(xk) ∥4 /4. Hence,

f 2(xk, dk) +
β2
k

2
f 2(xk−1, dk−1) ≥ 1

1 + 2δ2
f 2(xk, v(xk)) ≥ 1

4(1 + 2δ2)
∥ v(xk) ∥4 .

(2-27)

Note that, by (2-26),

f 2(xk, dk)

∥ dk ∥2
+

f 2(xk−1, dk−1)

∥ dk−1 ∥2
=

1

∥ dk ∥2

[
f 2(xk, dk) +

∥ dk ∥2

∥ dk−1 ∥2
f 2(xk−1, dk−1)

]
≥ 1

∥ dk ∥2

[
f 2(xk, dk) +

(
β2
k

2
− ∥ v(x

k) ∥2

∥ dk−1 ∥2

)
f 2(xk−1, dk−1)

]
=

1

∥ dk ∥2

[
f 2(xk, dk) +

β2
k

2
f 2(xk−1, dk−1)− ∥ v(x

k) ∥2

∥ dk−1 ∥2
f 2(xk−1, dk−1)

]
Using (2-27),

f 2(xk, dk)

∥ dk ∥2
+

f 2(xk−1, dk−1)

∥ dk−1 ∥2
≥ 1

∥ dk ∥2

[
∥ v(xk) ∥4

4(1 + 2δ2)
− ∥ v(x

k) ∥2

∥ dk−1 ∥2
f 2(xk−1, dk−1)

]
=
∥ v(xk) ∥2

∥ dk ∥2

[
∥ v(xk) ∥2

4(1 + 2δ2)
− f 2(xk−1, dk−1)

∥ dk−1 ∥2

]
.

The Zoutendijk condition holds under the hypotheses, and it implies that

f 2(xk, dk)/ ∥ dk ∥2 tends to zero, so we have

f 2(xk, dk)

∥ dk ∥2
+

f 2(xk−1, dk−1)

∥ dk−1 ∥2
≥ ∥ v(xk) ∥4

8(1 + 2δ2) ∥ dk ∥2

for all su�ciently large k. Using Zoutendijk the proof is complete.

For λ > 0 and a positive integer ∆, de�ne

Mλ
k,∆ = {i ∈ N|k ≤ i ≤ k +∆− 1, ∥ sk−1 ∥> λ}

and denote by |Mλ
k,∆| the number of elements ofMλ

k,∆.

Now we will show that the step size can not be too short.

Lemma 2.18. Consider Algorithm 2.16. Assume that A1, A2 and A3 hold. dk is

descent direction of F at xk. If there exists γ > 0 such that ∥ v(xk) ∥≥ γ, for all

k > 0, then there exists λ > 0 such that, for any ∆ ∈ N and any index k0, there is

a greater index k ≥ k0 such that

|Mλ
k,∆| >

∆

2
.
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Proof. See Lemma 5.9 of [40].

Theorem 2.19. Assume that level set L = {x|F (x) ≤ F (x0)} is bounded, A1 and

A3 hold. Consider Algorithm 2.16 where βk ≥ 0, dk is a descent direction of F at

xk. Then,

lim inf ∥v(xk)∥ = 0.

Proof. See Theorem 5.10 of [40].

2.4 Analysis of convergence for speci�c βk's

In this section we will present the convergence analysis using the line search

introduced above, for the βk's speci�cs of the Fletcher-Reeves (FR), Conjugate

Descent (CD), Dai-Yuan (DY), Polak-Ribière-Polyak (PRP) and Hestenes-Stiefel

(HS). These βk's, as well as their convergence analysis were taken to the vector

context in [40], using as line search the standard Wolfe conditions or the strong

Wolfe conditions.

The parameter, originally proposed by Fletcher and Reeves in [18], was

modi�ed as

βFR
k =

f(xk, v(xk))

f(xk−1, v(xk−1))
. (2-28)

The called conjugate descent parameter, proposed by Fletcher in [19], was modi�ed

as

βCD
k =

f(xk, v(xk))

f(xk−1, dk−1)
. (2-29)

Dai and Yuan in [9] proposed this parameter modi�ed as

β̃DY
k =

−f(xk, v(xk))

f(xk, dk−1)− f(xk−1, dk−1)
.

Lemma 1.9 guarantees positiveness of βFR
k and βCD

k . In [40] the positiveness of β̃DY
k

is a consequence of the Wolfe-like line search. In our case, Algorithm 2.16 does not

guarantee that f(xk, dk−1) > f(xk−1, dk−1). Therefore, we rede�ne the Dai-Yuan

parameter as

βDY
k =

{
β̃DY
k , if f(xk, dk−1)− f(xk−1, dk−1) > 0

0, if f(xk, dk−1)− f(xk−1, dk−1) ≤ 0
. (2-30)

Gilbert and Nocedal in [25] proved that global convergence can be obtained

for βk = max{βPRP
k , 0} and βk = max{βHS

k , 0}, for scalar minimization case. In

vector optimization context the PRP and HS parameters are given by
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β̃PRP
k =

−f(xk, v(xk)) + f(xk−1, v(xk))

−f(xk−1, v(xk−1))
, where βPRP

k = max{0, β̃PRP
k }, (2-31)

and

β̃HS
k =

−f(xk, v(xk)) + f(xk−1, v(xk))

f(xk, dk−1)− f(xk−1, dk−1)
, where βHS

k = max{0, β̃HS
k }. (2-32)

Before we begin the analysis for speci�c βk's, let us do an important

observation.

Lemma 2.20. Consider Algorithm 2.16, if A1 hold and and Σ = {k ≥ 0: βk = 0}
is in�nite, then,

lim inf
k
∥v(xk)∥ = 0.

Proof. We claim that

lim
k→∞, k∈Σ

∥v(xk)∥ = 0.

Observe that Lemma 2.8 implies lim
k→∞

αkf(x
k, v(xk)) = lim

k→∞
αk∥v(xk)∥ = 0. Then,

lim
k→∞, k∈Σ

αkf(x
k, v(xk)) = lim

k→∞,k∈Σ
αk∥v(xk)∥ = 0.

Now, we have two cases to analyse.

� Case 1: lim inf αk > 0. In this case lim
k→∞, k∈Σ

∥v(xk)∥ = 0.

� Case 2: lim inf αk = 0. In this case, there exists in�nite Σ0 ⊂ Σ such that

lim
k→∞, k∈Σ0

αk = 0. By (2-23) and (2-24) ,

f(xk +
αk

ω
v(xk), v(xk)) +

νk
αk

ω
∥v(xk)∥2

2
> δf(xk, v(xk)), for all k ∈ Σ0.

Then, for all ε > 0 there exists k̂(ε) such that

0 ≤ (δ − 1)f(xk, v(xk))

≤
∣∣f(xk + αkv(x

k)/ω, v(xk))− f(xk, v(xk))
∣∣+ νkαk∥v(xk)∥2

2ω
< ε

for all k ∈ Σ0 and k ≥ k̂(ε), because f(·, v(xk)) is continuos. In other words,

0 = lim
k→∞, k∈Σ0

f(xk, v(xk)) = lim
k→∞, k∈Σ0

∥v(xk)∥.
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The next paragraphs are dedicated to the convergence studies when the βk's

are speci�ed as one between the presented before.

2.4.1 Fletcher-Reeves

The following theorem shows us that under some hypotheses Algorithm 2.16,

using βFR
k converges. This result will serve as a basis for demonstrating the same

convergence's results for some of the βk's already mentioned.

Theorem 2.21. Consider Algorithm 2.16 with 0 ≤ βk < ηβFR
k , where 0 < η < 1

and assume that A1 hold. Then,

lim inf
k
∥v(xk)∥ = 0.

Proof. know that, dk satis�es the su�cient descent condition. Assume, by contra-

diction, that there exists γ such that 0 < γ ≤ ∥v(xk)∥ for all k ≥ 0. By Lemma 1.10

(b), remember that

∥v(xk)∥2 ≤ −2f(xk, v(xk)).

Then,
∥v(xk)∥2

f 2(xk, v(xk))
≤ 4

∥v(xk)∥2
≤ 4

γ2
. (2-33)

Observe that for any a and b ∈ R, taking α = η/
√

2(1− η2), using Lemma 1.6 (d),

(a+ b)2 ≤ (1 + 2α2)a2 +

(
1 +

1

2α2

)
b2 =

a2

1− η2
+

b2

η2

is true. Then, using (2-21), the Triangle Inequality and equation above we get

∥dk∥2 = ∥v(xk) + βkd
k−1∥2 ≤

(
∥v(xk)∥+ βk∥dk−1∥

)2
≤ ∥v(x

k)∥2

1− η2
+

β2
k∥dk−1∥2

η2
.

Now, dividing by f 2(xk, v(xk)) and using hypothesis,

∥dk∥2

f 2(xk, v(xk))
≤ 1

1− η2
∥v(xk)∥2

f 2(xk, v(xk))
+

β2
k

η2
∥dk−1∥2

f 2(xk, v(xk))

≤ 1

1− η2
∥v(xk)∥2

f 2(xk, v(xk))
+ (βFR

k )2
∥dk−1∥2

f 2(xk, v(xk))

=
1

1− η2
∥v(xk)∥2

f 2(xk, v(xk))
+

∥dk−1∥2

f 2(xk−1, v(xk−1))
.
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Therefore, by (2-33),

∥dk∥2

f 2(xk, v(xk))
≤ 4

(1− η2)γ2
+

∥dk−1∥2

f 2(xk−1, v(xk−1))
...

≤ 4

(1− η2)γ2
k +

∥d0∥2

f 2(x0, v(x0))

≤ 4

(1− η2)γ2
k +

4

γ2

=
4

γ2

(
k

1− η2
+ 1

)
=

4

γ2

(
k + 1− η2

1− η2

)
.

Concluding
f 2(xk, v(xk))

∥dk∥2
≥ γ2(1− η2)

4(k + 1− η2)
≥ γ2(1− η2)

4

1

k + 1
.

Henceforth, by su�cient descent condition and inequality above,

∑
k

f 2(xk, dk)

∥dk∥2
≥
∑
k

c2
f 2(xk, v(xk))

∥dk∥2
≥ c2γ2(1− η2)

4

∑
k

1

k + 1
=∞,

in contradiction with Zoutendijk's condition. Thus, theorem is demonstrated.

2.4.2 Conjugate Descent

Now we will show the convergence of Algorithm 2.16 using the βCD
k .

Convergence is guaranteed by showing that CD is less than a multiple of FR.

Lemma 2.22. Consider Algorithm 2.16 with 0 ≤ βk ≤ cβCD
k . Then, dk satis�es the

su�cient descent condition, with constant c = 1− δ.

Proof. By (2-21) , (2-8), de�nition βCD
k

f(xk, dk) = f(xk, v(xk) + βkd
k−1)

≤ f(xk, v(xk)) + βkf(x
k, dk−1)

≤ f(xk, v(xk)) + βkδf(x
k−1, dk−1)

≤ f(xk, v(xk)) + βCD
k δf(xk−1, dk−1)

≤ f(xk, v(xk)) + δf(xk, v(xk))

≤ (1 + δ)f(xk, v(xk))

≤ (1− δ)f(xk, v(xk)).
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The following Lemma compares βCD
k and βFR

k . So we can use Theorem 2.21

to demonstrate the convergence of Algorithm 2.16 using the βCD
k .

Lemma 2.23. Consider Algorithm 2.16, βFR
k de�ned in (2-28) and βCD

k de�ned in

(2-29). Then,

βCD
k ≤ 1

1− δ
βFR
k .

Proof. By Lemma 2.22 dk satis�es the su�cient descent condition, then

βCD
k =

f(xk, v(xk))

f(xk−1, dk−1)
=

1− δ

1− δ

f(xk, v(xk))

f(xk−1, dk−1)

≤ 1

1− δ

f(xk, v(xk))

f(xk−1, v(xk−1))
≤ 1

1− δ
βFR
k

Theorem 2.24. Consider Algorithm 2.16 where 0 < βk = ηβCD
k and 0 ≤ η ≤ 1− δ.

Assume that A1 holds. Then,

lim inf
k−→∞

∥v(xk)∥ = 0.

Proof. It follows from Lemma 2.22 that dk satis�es the su�cient descent condition,

with c = 1− δ for all k. Therefore,

0 ≤ βk ≤ ηβCD
k ≤ η

1− δ
βFR
k .

As 0 ≤ η

1− δ
≤ 1, this proof follows as the one of Theorem 2.21.

2.4.3 Dai-Yuan

In the same way as in CD, the convergence of Algorithm 2.16 using the βDY
k

will be shown using Theorem 2.21, of the convergence of FR.

Lemma 2.25. Consider Algorithm 2.16, with 0 ≤ βk ≤ βDY
k . Then dk satis�es the

condition of su�cient descent with c = 1/(1 + δ), that is,

f(xk, dk) ≤ cf(xk, v(xk)).

Proof. If f(xk, dk−1)− f(xk−1, dk−1) ≤ 0, then for (2-21),

f(xk, dk) ≤ f(xk, v(xk)) + βkf(x
k, dk−1) ≤ f(xk, v(xk)) + βDY

k f(xk, dk−1)

= f(xk, v(xk)) ≤ cf(xk, v(xk)).
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If f(xk, dk−1)− f(xk−1, dk−1) > 0, for (2-21),

f(xk, dk) ≤ f(xk, v(xk)) + βkf(x
k, dk−1)

≤ f(xk, v(xk)) + βDY
k f(xk, dk−1)

= f(xk, v(xk)) +
−f(xk, v(xk))

f(xk, dk−1)− f(xk−1, dk−1)
f(xk, dk−1)

= f(xk, v(xk))

(
−f(xk−1, dk−1)

f(xk, dk−1)− f(xk−1, dk−1)

)
= f(xk, v(xk))

(
f(xk−1, dk−1)

f(xk−1, dk−1)− f(xk, dk−1)

)
.

Using (2-8) we have, −f(xk, dk−1) ≥ −δf(xk−1, dk−1), so

f(xk, dk) ≤ f(xk, v(xk))

(
f(xk−1, dk−1)

f(xk−1, dk−1)− δf(xk−1, dk−1)

)
= f(xk, v(xk))

(
1

1− δ

)
.

As 1− δ < 1 + δ and f(xk, v(xk)) < 0,

f(xk, dk) ≤ 1

1 + δ
f(xk, v(xk)).

Let the set K = {k ∈ N| βDY
k > 0}. Assume that K is in�nite and k ∈ K.

Theorem 2.26. Let assumption in A1 hold. Consider Algorithm 2.16 with βk =

ηβDY
k where 0 < η ≤ 1− σ

1 + σ
. If K is in�nite, then

lim inf
k−→∞

∥v(xk)∥ = 0.

Proof. Using (2-8) and Lemma 2.25,

f(xk−1, dk−1)− f(xk, dk−1) ≥ f(xk−1, dk−1)− δf(xk−1, dk−1)

= (1− δ)f(xk−1, dk−1)

= −(δ − 1)f(xk−1, dk−1)

≥ (δ − 1)

(
−1
1 + δ

)
f(xk−1, v(xk−1))

=
1− δ

1 + δ
f(xk−1, v(xk−1))
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Then,

1 + δ

1− δ
≥ f(xk−1, v(xk−1))

f(xk−1, dk−1)− f(xk, dk−1)
⇒ −f(xk−1, v(xk−1))

f(xk, dk−1)− f(xk−1, dk−1)
≤ 1 + δ

1− δ
.

De�ne σ =
η(1 + δ)

1− δ
. By de�nition of βk, we have

βk = ηβDY
k

=
σ(1− δ)

1 + δ

(
−f(xk, v(xk))

f(xk, dk−1)− f(xk−1, dk−1)

)
−f(xk−1, v(xk−1))

−f(xk−1, v(xk−1))

=
σ(1− δ)

1 + δ

(
−f(xk, v(xk))

−f(xk−1, v(xk−1))

)(
−f(xk−1, v(xk−1))

f(xk, dk−1)− f(xk−1, dk−1)

)
≤ σ(1− δ)

1 + δ

(
f(xk, v(xk))

f(xk−1, v(xk−1))

)
1 + δ

1− δ

= σ
f(xk, v(xk))

f(xk−1, v(xk−1))

= σβFR
k .

As 0 ≤ σ < 1, by Theorem 2.21, the result follows.

Following the same idea presented in [40], we can modify the βDY
k and get

the convergence of Algorithm 2.16. The modi�ed parameter of the Dai-Yuan will be

de�ned by

β̃mDY
k =

−f(xk, v(xk))

f(xk, dk−1)− τf(xk−1, dk−1)

and

βmDY
k =

{
β̃mDY
k , if f(xk, dk−1)− τf(xk−1, dk−1) > 0

0, if f(xk, dk−1)− τf(xk−1, dk−1) ≤ 0
, Whith τ > 1.

(2-34)

Similarly to Lemma 2.25, we show that dk satis�es the su�cient descent

condition, with c = τ/(τ + δ).

Lemma 2.27. Consider Algorithm 2.16, with 0 ≤ βk ≤ βmDY
k . Then dk satis�es

the condition of su�cient descent with c = τ/(τ + δ), this is,

f(xk, dk) ≤ cf(xk, v(xk)).
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Proof. If f(xk, dk−1)− τf(xk−1, dk−1) ≤ 0, then for (2-21),

f(xk, dk) ≤ f(xk, v(xk)) + βkf(x
k, dk−1) ≤ f(xk, v(xk)) + βmDY

k f(xk, dk−1)

= f(xk, v(xk)) ≤ cf(xk, v(xk)).

If f(xk, dk−1)− τf(xk−1, dk−1) > 0, for (2-21),

f(xk, dk) ≤ f(xk, v(xk)) + βkf(x
k, dk−1)

≤ f(xk, v(xk)) + βmDY
k f(xk, dk−1)

= f(xk, v(xk)) +
−f(xk, v(xk))

f(xk, dk−1)− τf(xk−1, dk−1)
f(xk, dk−1)

= τf(xk, v(xk))

(
−f(xk−1, dk−1)

f(xk, dk−1)− τf(xk−1, dk−1)

)
= τf(xk, v(xk))

(
f(xk−1, dk−1)

τf(xk−1, dk−1)− f(xk, dk−1)

)
.

Using (2-8), we have −f(xk, dk−1) ≥ −δf(xk−1, dk−1), soon

f(xk, dk) ≤ τf(xk, v(xk))

(
f(xk−1, dk−1)

τf(xk−1, dk−1)− δf(xk−1, dk−1)

)
= f(xk, v(xk))

(
τ

τ − δ

)
.

As τ − δ < τ + δ and f(xk, v(xk)) < 0,

f(xk, dk) ≤ τ

τ − δ
f(xk, v(xk))

≤ τ

τ + δ
f(xk, v(xk))

Theorem 2.28. Let it be as assumed in A1. Consider Algorithm 2.16 with βk =

βmDY
k . Then,

lim inf
k−→∞

∥v(xk)∥ = 0.

Proof. See proof of Theorem 5.7 in [40].

2.4.4 Polak-Rivière-Polyak e Hestenes-Stiefel

Lastly, we will demonstrate now the convergence of Algorithm 2.16 for βPRP
k

and βHS
k .

Theorem 2.29. Assume that the level set L = {x|F (x) ≤ F (x0)} is bounded, there
exists an open set N such that L = {x|F (x) ≤ F (x0)} ⊂ N and the Jacobian JF
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is Lipschitz continuos on N with constant L > 0. Consider Algorithm 2.16 with

βk = max{βPRP
k } or βk = max{βHS

k , 0}, dk is a descent direction of F at xk. Then,

lim inf ∥v(xk)∥ = 0.

Proof. See proof of Theorem 5.11 in [40].

2.5 Complexity

In this section we will extend the results presented in [14, 15] to the vector

context. These are about the complexity of Algorithm 2.16.

Lemma 2.30. Consider Algorithm 2.16. Assume that 0 ≤ αk ≤ ρ∥v(xk)∥2/∥dk∥2,
(A1) and (A2). If v(xk) ̸= 0 for all k. Then,

(a) αk ≥ τ ∥ v(xk) ∥2 / ∥ dk ∥2 for some τ > 0.

(b) Consider βPRP
k , ∥ dk ∥≤ (1 + Lρ) ∥ v(xk) ∥.

Proof. First, we will prove (a). By Lemma 2.3, ik is computed and for (3 − 14) αk

can be found after a �nite number of trials. Then, ω−1αk does not satisfy (3-13).

This is,

f(xk + ω−1αkd
k, dk) +

νkω
−1αk∥dk∥2

2
> δf(xk, dk).

Adding −f(xk, dk) to both sides it yields

f(xk + ω−1αkd
k, dk)− f(xk, dk) +

νkω
−1αk∥dk∥2

2
> −(1− δ)f(xk, dk).

From Lemma 1.11,

Lαkω
−1 ∥ dk ∥2 +νkω

−1αk∥dk∥2

2
> −(1− δ)f(xk, dk)(

L+
νk
2

)
αkω

−1 ∥ dk ∥2 > −(1− δ)f(xk, dk).

for Lemma 2.5 and (A2),

(
L+

νk
2

)
αkω

−1 ∥ dk ∥2 > (1− δ)
∥ v(xk) ∥2

2

αk >
(1− δ)ω

L+ ν

∥ v(xk) ∥2

∥ dk ∥2

αk > τ
∥ v(xk) ∥2

∥ dk ∥2
,
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where τ =
(1− δ)ω

L+ ν
. Item (a) is shown.

To prove part (b), if k = 0, then ∥ d0 ∥≤ (1 + Lρ) ∥ v(x0) ∥.
When k ≥ 1, it follows from (2-21), (2-31) and Lemma 1.11 that

∥dk+1∥ = ∥v(xk+1) + βPRP
k+1 dk∥

≤ ∥v(xk+1)∥+ ∥ − f(xk+1, v(xk+1)) + f(xk, v(xk+1))∥
∥ − f(xk, v(xk))∥

∥dk∥

= ∥v(xk+1)∥
(
1 +

Lαk∥dk∥2

∥f(xk, v(xk))∥

)
.

Using Lemma 2.5 and hypothesis,

∥dk+1∥ ≤ ∥v(xk+1)∥
(
1 +

2Lαk∥dk∥2

∥v(xk)∥2

)
≤ ∥v(xk+1)∥(1 + 2Lρ).

Theorem 2.31. Consider Algorithm 2.16 with βPRP
k . Assume that 0 ≤ α ≤

ρ∥v(xk)∥2/∥dk∥2, (A1) and (A2). If v(xk) ̸= 0 for all k, there exist positive numbers

α, β, γ such that the following holds

(a) αk ≥ α > 0;

(b)
∑∞

k=0 ∥v(xk)∥2 ≤ β(F (x0)− F ∗);

(c)
∑∞

k=0 ∥dk∥2 ≤ γ(f(x0) − F ∗), where F ∗ is the limit of the decreasing and lower

bounded sequence {F (xk)}.

Proof.

(a) Follow from Lemma 2.30,

αk ≥ τ
∥v(xk)∥2

∥dk∥2
=

τ

(1 + Lρ)2
:= α > 0.

(b) From Lemma 2.14

F (xk+1) = F (xk + αkd
k) ⪯K F (xk) + δαkf(x

k, dk)e

αk(−f(xk, dk)e) ⪯K δ−1(F (xk)− F (xk+1)).
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By Lemma 2.5 and summing,

k∑
i=0

αi(−f(xi, di)e) ⪯K δ−1(F (x0)− F (xk+1))

k∑
i=0

αi∥v(xi)∥2 ≤ 2δ−1(F (x0)− F (xk+1)).

Using (a)

k∑
i=0

∥v(xi)∥2 ≤ 2(kαδ)−1(F (x0)− F (xk+1))

∞∑
i=0

∥v(xi)∥2 ≤ β(F (x0)− F ∗).

(c) Combining the item (b) with (b) of Lemma 2.30,(
∥dk∥
∥1 + Lρ∥

)2

≤ ∥v(xk)∥2

1

(1 + Lρ)2

k∑
i=1

∥di∥2 ≤
k∑

i=1

∥v(xi)∥2 ≤ β(F (x0)− F ∗)

k∑
i=1

∥di∥2 ≤ β(1 + Lρ)2(F (x0)− F ∗)

k∑
i=1

∥di∥2 ≤ γ(F (x0)− F ∗).

2.6 Computational experiments

We will now present some numerical experiments to verify the applicability

of the proposed conjugate gradient with the new line search. Check e�ectiveness

of the method developed with all the betas presented in section 2.4, in addition

to testing the constants that present best performance of the method. The sets of

examples are divided in two groups, a convex and a non-convex group. All problems

presented in this section are multiobjective, this is, K = Rm
+ .

The experiences were done using MATLAB R2020 on a computer with CPU

Intel Core i7 2GHz and 8GB of memory. We stopped the execution at xk declaring

convergence if θ(xk) ≥ −5× eps1/2, where eps denotes the machine precision, in our

case, eps = 2−52 ≈ 2.22× 10−16. This is the convergence criterion considered in the
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numerical tests of [20]. Since, by Lemma 1.10, v(x) = 0 if and only if θ(x) = 0, this

is a reasonable stopping criterion. The maximum number of allowed iterations was

set to 10000. If iteration 10000 is achieved, the algorithms stop and declare failure.

To calculate the steepest descent direction v(xk), we solved problem 1-3

using the function "quadprog", a Matlab subroutine that solves quadratic problems

with linear constraints.

2.6.1 Constants

Let us start the numerical experiments by verifying the in�uence that

constants η and τ have in the performance of NCGMNL. A similar study was done

in [40]. Remember that in the section 2.4 the convergence of the Algorithm 2.16

was shown with βk ≤ ηβFR
k where 0 < η < 1 see Theorem 2.21 , βk ≤ ηβCD

k where

0 < η < 1 − δ see Theorem 2.24, βk = ηβDY
k where 0 < η < (1 − δ)/(1 + δ) see

Theorem 2.26, βk = βmDY
k see Theorem 2.28.

To verify the in�uence of these constants, let us consider the problem SLC2,

see [50]. This example is convex and not much complicated to solve, given by

F : Rn → R2

F1(x) = (x1 − 1)4 +
n∑

i=2

(xi − 1)2,

F2(x) = (x2 − 1)4 +
n∑

i=1,i ̸=2

(xi + 1)2.

We vary the values of constants η and τ to verify the improvement in method

performance. The problem was compiled 200 times with a number of variables

equal to 100 and the starting point randomly taken in the range of [−50, 50]. The
percentage of times the problem was successfully resolved was recorded, that is, the

algorithm stopped at a critical point. This information is presented in the tables

bellow.

FR
η %
1 68.00

0.99 98.00
0.98 100.00

CD
η %
1 98.00

0.99 100.00
1− δ 100.00

DY
η %
1 80.00

0.99 100.00
1− δ

1 + δ
100.00

DYm
τ %
1 82.00

1.01 100.00

Table 2.1: Constants for betas

The �rst one of tables 2.1 provides us with information about beta FR

and tells us that 68, 00% of the problems stopped at a critical point when η = 1,
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98,00% the times the problem was compiled with η = 0.99 ended successfully and

all problems were resolved with η = 0.98. About CD, we reached 100% of success

with η = 0.99 and η = 1 − δ = 0.999, similar results were obtained for DY with

100% from success to η = 0.99 and η = (1−δ)/(1+δ) = 0, 998. In turn mDY solved

82% of the problems with τ = 1 and 100% with τ = 1.01.

Using the results presented in Tables 2.1 along with the Convergence

Theorems, the numerical experiments were performed with the respective betas

presented in the following way, βk = 0.98βFR
k for the beta of FR, βk = 0.98βCD

k

for the beta CD, βk = 0.98βDY
k for the beta of DY . For PRP+ and HS+ we took

the betas βk = max{βPRP+
k , 0} βk = max{βHS+

k , 0} respectively.

2.6.2 Numerical Results

The tables below transcribe the information about the problems and their

performance against the respective betas. The examples in Table 2.2 are all convex

and the ones in Table 2.3 are non-convex. All problems were compiled 300 times, with

the starting point taken randomly inside the speci�ed range. The tables are presented

in blocks with four lines each. The �rst column gives us problem information, an

acronym to identify it, the bibliographic reference where the problem was found,

number of variables, number of objective functions and interval where the starting

point was taken randomly. The second column refers to the performance of the

problem during numerical tests, the �rst line informs the percentage of solved

problems (%), the second the average of iterations necessary for the algorithm to

�nd a critical point (it), the third presents the average gradient evaluation of the

problems where the algorithm reached a critical point (evalg) and the fourth line

shows the average time needed for each problem to be solved (time). From the

third to the ninth column are presented the performance results in relation to the

respective betas presented in section 2.4.

FR CD DY mDY PRP+ HS+

AP1 , [1] % 72.33 95.33 64.00 79.67 95.00 95.00

n = 2 it 1241.29 1324.12 1801.33 1492.69 669.11 669.11

m = 3 evalg 3829.96 5533.63 7400.43 6079.48 2682.72 2682.72

x0 ∈ [−10, 10] time 2.49 2.70 3.72 3.03 1.37 1.38

AP2 , [1] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 1 it 15.88 18.96 15.03 15.66 12.90 12.90

m = 2 evalg 50.63 77.82 62.12 64.64 53.61 53.61

x0 ∈ [−100, 100] time 0.04 0.04 0.03 0.04 0.03 0.03

AP4 , [1] % 69.67 92.00 59.33 76.33 95.33 95.33
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n = 3 it 1574.85 1488.65 3073.84 1661.93 891.77 891.77

m = 3 evalg 4885.39 6234.23 12343.30 6698.33 3574.15 3574.15

x0 ∈ [−10, 10] time 3.11 2.98 6.12 3.35 1.81 1.81

BK1 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 12.83 15.29 12.20 12.60 10.46 10.46

m = 2 evalg 41.49 63.17 50.80 52.41 43.85 43.85

x0 ∈ [−5, 10] time 0.03 0.04 0.03 0.03 0.03 0.03

DGO2 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 1 it 60.21 97.81 69.21 70.32 93.36 93.36

m = 2 evalg 182.73 392.32 279.41 283.80 374.58 374.58

x0 ∈ [−9, 9] time 0.12 0.19 0.14 0.14 0.18 0.18

FDS , [20] % 100.00 99.67 85.67 100.00 100.00 100.00

n = 5 it 1877.92 382.17 5314.93 1285.97 156.41 156.41

m = 3 evalg 5999.97 1618.18 21264.70 5148.43 628.38 628.38

x0 ∈ [−2, 2] time 4.02 0.82 11.55 2.81 0.34 0.35

IKK1 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 11.43 13.57 10.89 11.34 9.57 9.57

m = 3 evalg 36.87 56.07 45.35 47.14 40.07 40.07

x0 ∈ [−50, 50] time 0.03 0.03 0.03 0.03 0.03 0.03

JOS1 , [35] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 100 it 467.90 416.07 508.19 459.64 406.87 406.87

m = 2 evalg 1404.71 1664.27 2037.77 1842.55 1627.49 1627.49

x0 ∈ [−100, 100] time 1.75 1.56 1.94 1.76 1.56 1.58

Lov1 , [38] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 13.53 16.04 12.84 13.23 10.93 10.93

m = 2 evalg 43.60 66.15 53.37 54.93 45.71 45.71

x0 ∈ [−10, 10] time 0.03 0.04 0.03 0.03 0.03 0.03

MGH33 , [43] % 46.67 46.33 45.33 47.33 46.33 46.33

n = 10 it 5.52 5.50 8.27 5.51 6.12 6.12

m = 10 evalg 28.09 32.33 44.06 33.16 34.80 34.80

x0 ∈ [−1, 1] time 0.02 0.02 0.03 0.02 0.02 0.02

MHHM2 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 10.06 11.79 9.44 9.79 8.19 8.19

m = 3 evalg 33.18 49.15 39.74 41.15 34.77 34.77

x0 ∈ [0, 1] time 0.03 0.03 0.02 0.02 0.02 0.02

MOP7 , [32] % 94.00 94.33 92.67 90.67 95.33 95.33

n = 2 it 195.62 173.87 195.72 232.67 160.28 160.28

m = 3 evalg 589.23 697.14 796.46 938.81 642.79 642.79
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x0 ∈ [−400, 400] time 0.41 0.36 0.41 0.49 0.33 0.34

PNR , [48] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 158.43 47.23 433.59 99.13 22.25 22.25

m = 2 evalg 516.05 199.09 1738.16 400.11 92.15 92.15

x0 ∈ [−2, 2] time 0.32 0.10 0.86 0.20 0.05 0.05

SD , [52] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 4 it 68.56 37.11 159.38 72.24 32.84 32.84

m = 2 evalg 212.13 150.37 639.62 290.96 133.12 133.12

x0 ∈ [1, 3] time 0.14 0.08 0.33 0.15 0.07 0.07

SLC2 , [50] % 100.00 100.00 98.00 100.00 100.00 100.00

n = 100 it 625.33 80.28 814.27 564.13 55.34 54.80

m = 2 evalg 2070.22 352.46 3282.35 2281.43 242.53 239.55

x0 ∈ [−50, 50] time 2.47 0.45 3.20 2.29 0.36 0.36

SLCDT2 , [51] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 10 it 35.73 19.48 70.59 33.32 13.85 13.85

m = 3 evalg 114.37 82.83 286.51 137.46 60.81 60.81

x0 ∈ [−1, 1] time 0.08 0.04 0.15 0.07 0.03 0.03

SP1 , [32] % 98.00 97.67 98.00 98.00 98.67 98.67

n = 2 it 29.83 25.81 29.01 27.73 27.44 25.68

m = 2 evalg 94.55 108.07 122.13 115.86 116.38 110.29

x0 ∈ [−100, 100] time 0.06 0.06 0.06 0.06 0.06 0.06

Toi4 , [53] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 4 it 16.74 19.89 16.34 16.64 13.65 13.65

m = 2 evalg 53.23 81.57 67.38 68.56 56.60 56.60

x0 ∈ [−100, 100] time 0.04 0.05 0.04 0.04 0.03 0.03

Toi8 , [53] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 9.80 9.96 12.53 12.80 10.93 10.93

m = 2 evalg 34.30 43.74 54.20 55.23 47.59 47.59

x0 ∈ [−10, 10] time 0.03 0.03 0.03 0.03 0.03 0.03

ZLT1 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 10 it 20.87 24.95 19.76 20.65 16.95 16.95

m = 5 evalg 65.61 101.80 81.03 84.59 69.81 69.81

x0 ∈ [−102, 102] time 0.06 0.06 0.05 0.05 0.04 0.05

Table 2.2: Convex Problem.

FR CD DY mDY PRP+ HS+

AP3, [1] % 100.00 100.00 100.00 100.00 100.00 100.00
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n = 2 it 184.55 79.75 734.03 175.07 68.36 68.78

m = 2 evalg 2148.46 607.70 12893.24 2112.16 405.76 416.84

x0 ∈ [−10, 10] time 0.39 0.16 1.65 0.37 0.14 0.14

DD1 , [10] % 100.00 100.00 76.33 100.00 100.00 100.00

n = 5 it 1444.38 285.87 3680.58 1040.55 122.37 122.62

m = 2 evalg 4522.28 1208.89 14727.48 4167.16 492.45 493.13

x0 ∈ [−20, 20] time 3.03 0.60 7.90 2.20 0.26 0.27

DGO1, [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 1 it 11.85 11.50 13.08 13.27 16.38 16.32

m = 2 evalg 70.52 71.52 92.77 92.64 97.89 97.06

x0 ∈ [−10, 13] time 0.03 0.03 0.03 0.03 0.04 0.04

Far1 , [32] % 100.00 100.00 90.33 100.00 100.00 100.00

n = 2 it 1048.74 259.65 1909.40 760.25 131.93 139.65

m = 2 evalg 14235.73 2558.03 35520.68 10127.15 935.19 1010.09

x0 ∈ [−1, 1] time 2.27 0.54 4.36 1.63 0.27 0.29

FF1 , [32] % 100.00 100.00 99.33 100.00 100.00 100.00

n = 2 it 496.03 112.89 1764.70 414.83 73.80 74.09

m = 2 evalg 5927.49 871.91 30065.74 5089.50 416.62 419.68

x0 ∈ [−1, 1] time 1.04 0.23 3.92 0.87 0.15 0.15

Hil1 , [31] % 100.00 100.00 99.33 100.00 100.00 100.00

n = 2 it 290.03 71.24 697.88 166.55 33.60 41.10

m = 2 evalg 4213.39 785.99 12781.50 2290.19 287.30 359.35

x0 ∈ [0, 1] time 0.63 0.15 1.56 0.36 0.07 0.09

KW2 , [36] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 269.41 111.22 604.98 186.61 88.70 93.23

m = 2 evalg 3335.39 895.17 10861.19 2298.04 512.92 557.53

x0 ∈ [−3, 3] time 0.57 0.23 1.36 0.40 0.18 0.19

LE1 , [32] % 94.00 100.00 98.33 100.00 100.00 100.00

n = 2 it 980.38 182.02 958.36 329.74 106.00 98.37

m = 2 evalg 20652.71 2463.15 19781.84 5597.37 953.98 771.77

x0 ∈ [−5, 10] time 2.24 0.39 2.20 0.74 0.22 0.20

Lov3 , [38] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 18.31 19.48 22.64 17.65 13.24 13.30

m = 2 evalg 121.36 135.96 220.88 130.50 79.52 80.09

x0 ∈ [−102, 102] time 0.04 0.04 0.05 0.04 0.03 0.03

Lov4 , [38] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 19.92 19.05 25.27 19.35 13.67 13.69

m = 2 evalg 139.14 134.16 247.84 150.52 83.15 83.35
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x0 ∈ [−20, 20] time 0.05 0.04 0.06 0.04 0.03 0.03

Lov5 , [38] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 3 it 113.04 82.42 107.45 115.25 107.16 106.88

m = 2 evalg 826.89 444.94 1020.82 1024.04 524.48 521.05

x0 ∈ [−2, 2] time 0.25 0.17 0.25 0.26 0.23 0.23

MGH16 , [43] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 4 it 100.64 67.97 152.46 111.81 89.42 83.34

m = 5 evalg 730.66 378.16 2130.58 1082.20 455.81 422.40

x0 ∈ [−10, 10] time 0.24 0.15 0.41 0.27 0.20 0.19

MGH26 , [43] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 4 it 26.74 17.48 57.34 24.56 17.52 17.52

m = 4 evalg 232.31 114.31 836.59 221.97 101.23 101.26

x0 ∈ [−1, 1] time 0.07 0.04 0.15 0.06 0.04 0.04

MGH33 , [43] % 45.33 44.33 43.67 44.67 45.00 45.00

n = 10 it 5.74 5.52 7.79 5.24 6.24 6.24

m = 10 evalg 94.19 93.81 127.02 88.67 101.84 101.84

x0 ∈ [−1, 1] time 0.03 0.03 0.04 0.03 0.03 0.03

MHHM2 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 9.96 11.66 9.32 9.72 8.10 8.10

m = 3 evalg 59.74 80.65 64.25 67.02 48.62 48.62

x0 ∈ [0, 1] time 0.03 0.03 0.03 0.03 0.02 0.02

MLF1 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 1 it 7.13 8.28 6.94 7.20 7.01 7.03

m = 2 evalg 47.62 58.62 50.71 52.95 43.88 43.45

x0 ∈ [0, 20] time 0.02 0.02 0.02 0.02 0.02 0.02

MMR1 , [41] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 54.65 23.43 102.48 39.16 14.81 14.78

m = 2 evalg 668.62 234.42 1619.62 471.45 120.65 120.55

x0 ∈ [0, 1] time 0.12 0.05 0.23 0.09 0.04 0.04

MMR3 , [41] % 86.00 87.67 62.67 71.00 87.67 87.67

n = 2 it 267.06 160.43 127.70 207.81 72.32 176.71

m = 2 evalg 3257.10 1531.05 1845.95 2967.39 403.60 1545.29

x0 ∈ [−1, 1] time 0.57 0.33 0.28 0.45 0.15 0.37

MOP2 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 76.48 30.61 146.16 56.79 26.93 27.62

m = 2 evalg 797.44 181.07 2106.53 576.62 122.69 126.32

x0 ∈ [−4, 4] time 0.16 0.06 0.31 0.12 0.06 0.06

MOP3 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00
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n = 2 it 44.58 23.85 81.95 36.80 19.44 20.04

m = 2 evalg 457.07 199.32 1124.60 376.75 149.67 155.63

x0 ∈ [−π, π] time 0.11 0.06 0.20 0.09 0.05 0.05

MOP5 , [32] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 35.92 36.11 47.51 35.21 33.14 33.16

m = 3 evalg 233.99 215.47 459.28 271.94 165.55 165.92

x0 ∈ [−1, 1] time 0.08 0.08 0.11 0.08 0.07 0.07

SK2 , [1] % 100.00 100.00 99.33 100.00 100.00 100.00

n = 4 it 490.05 111.26 1727.52 374.82 55.77 56.66

m = 2 evalg 6029.86 919.33 30039.56 4654.78 321.27 328.56

x0 ∈ [−10, 10] time 1.06 0.23 3.93 0.81 0.12 0.12

SLC1 , [50] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 14.72 16.26 14.71 13.83 12.97 13.00

m = 2 evalg 91.86 110.09 112.50 102.02 75.33 75.30

x0 ∈ [−5, 5] time 0.04 0.05 0.04 0.04 0.04 0.04

SLC2 , [50] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 100 it 207.85 77.02 433.88 141.81 57.22 55.16

m = 2 evalg 2442.78 605.24 7101.08 1630.58 339.87 327.89

x0 ∈ [−50, 50] time 0.98 0.42 2.02 0.71 0.35 0.35

SLCDT1 , [51] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 2 it 14.76 16.32 14.15 13.88 13.10 13.12

m = 2 evalg 91.80 110.24 107.49 102.69 76.00 75.96

x0 ∈ [−5, 5] time 0.04 0.04 0.04 0.03 0.03 0.03

SLCDT2 , [51] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 10 it 37.98 20.01 78.27 35.13 14.12 14.12

m = 3 evalg 349.90 156.31 1016.48 340.23 93.29 93.29

x0 ∈ [−1, 1] time 0.10 0.05 0.21 0.09 0.04 0.04

Toi9 , [53] % 100.00 100.00 100.00 100.00 100.00 100.00

n = 4 it 179.62 54.54 431.79 118.67 29.49 29.25

m = 4 evalg 2484.20 567.32 7850.90 1557.57 229.34 228.15

x0 ∈ [−1, 1] time 0.44 0.13 1.10 0.29 0.07 0.07

Toi10 , [53] % 57.33 93.00 46.67 69.00 100.00 99.67

n = 4 it 1617.16 2447.99 939.89 1887.43 1028.16 1051.93

m = 3 evalg 28641.15 37622.29 18628.08 33336.35 12923.74 13206.96

x0 ∈ [−2, 2] time 3.71 5.42 2.20 4.31 2.23 2.30

VU1 , [32] % 42.33 81.67 18.00 61.00 100.00 100.00

n = 2 it 4606.58 2804.37 5065.57 4139.88 2096.12 2099.95

m = 2 evalg 15537.09 11870.94 20267.76 16598.69 8393.74 8405.55
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x0 ∈ [−3, 3] time 9.17 5.60 10.29 8.34 4.23 4.28

Table 2.3: Non-Convex Problem.

We built the Performance Pro�le [13] in relation to time and iteration.

Compared the NCGMNL for each beta for both the convex examples, �gure 2.1, as

for the non-convex, �gure 2.2.

Figure 2.1: Performance Pro�le-Convex problem

Figure 2.2: Performance Pro�le-Non-Convex problem

The graphics of Figures 2.1 and 2.2 show that the Method performs better

with PRP and HS betas, both in terms of iteration and time, for both sets of convex

and non-convex problems.

From the examples presented in Tables 2.2 and 2.3, we have selected �ve

convex and �ve non-convex problems to graphically display their respective Pareto

Frontier for each beta studied in section 2.4. In Figures 2.3 up to 2.7 the convex

examples are shown: BK1, Lov1, PNR, SD and Toi8. From 2.8 to 2.12 we have the

non-convex: Far1, Hil1, KW2, Lov4, MOP3.

Each �gure presents information about a problem, speci�ed above or in

their respective caption, being composed of nine graphics each. The �rst ones were
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obtained by discretizing the boxes where the starting point is taken, corresponding

through a �ne grid and plotting all the points of the image. This �gure gives us

the representation of the image of F and, in turn, a geometric idea of the Pareto

frontiers.

Second graphics were obtained by running Algorithm 2.16 for each problem

300 times, using randomly generated starting points belonging to the corresponding

boxes. The starting point image is represented by the blue dot on this graph and the

respective image of the critical point obtained by the algorithm is the black point,

the gray line connects these two points.

The third graph was obtained similarly to the second, however running the

problem only 20 times. The starting point image is represented by a blue asterisk,

and the image of each iteration is represented by a blue dot, with each iteration

being linked to the next by a gray line segment. The solution image is represented

by a black dot.

The last six graphs are images of the critical points obtained by NCGMNL

using the respective betas FR, CD, DY, DYm, PRP and HS. That is, the respective

Pareto Fronts.
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BK1

FR CD DY

DYm PRP HS
Figure 2.3: Convex problem-BK1
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Lov1

FR CD DY

DYm PRP HS
Figure 2.4: Convex problem-Lov1
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PNR

FR CD DY

DYm PRP HS
Figure 2.5: Convex problem-PNR
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SD

FR CD DY

DYm PRP HS
Figure 2.6: Convex problem-SD
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Toi8

FR CD DY

DYm PRP HS
Figure 2.7: Convex problem-Toi8
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Far1

FR CD DY

DYm PRP HS
Figure 2.8: Non-Convex problem-Far1
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Hil1

FR CD DY

DYm PRP HS
Figure 2.9: Non-Convex problem-Hil1
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KW2

FR CD DY

DYm PRP HS
Figure 2.10: Non-Convex problem-KW2
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Lov4

FR CD DY

DYm PRP HS
Figure 2.11: Non-Convex problem-Lov4
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MOP3

FR CD DY

DYm PRP HS
Figure 2.12: Non-Convex problem-MOP3



CHAPTER 3

Steepest descent method with a new line

search

In this chapter, we will study the gradient method when the Armijo search

is replaced by the new line search introduced early. A family of conjugate gradient

methods, with this new line search, was studied in Chapter 2. Theoretical results

of convergence and numerical performance were satisfactory when compared with

the results presented in [39]. Therefore, we decided to proceed with a similar study

for the steepest descent algorithm. As was commented before, the new line search

does not make use of function values. So, it may have good performance when the

objectives are functions for which the is simpler to compute the gradient.

3.1 Modifying the new line search

The new line search was presented in Chapter 2. In our studies was necessary

to introduce some hypotheses to guarantee that the sequence νk remains bounded.

Now, we make a modi�cation that assures that νk is bounded.

Let ν : Rn×Rn \{0}× (0, 1)× (0,∞)→ [0,∞) and i : Rn×Rn \{0}×R+×
(0, 1)× (0,∞)× (0, 1)→ Z+ be de�ned as

ν(x, d, δ, ρ) = max

{
0 , 2

δf(x, d)− f(x+ ρd, d)

ρ∥d∥2

}
(3-1)

and

i(x, d, ν, δ, ρ, ω) = min

{
i ≥ 0 | f(x+ ρωid, d) +

νρωi∥d∥2

2
< δf(x, d)

}
, (3-2)

respectively. For some combinations of x and d, which are of our interest, i is well-

de�ned.

Lemma 3.1. If d is K-descent direction for F at x then, i is well de�ned.
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Proof. The proof is by contradiction. Remember that ν and ρ > 0. Assume that

f(x+ ρωid, d) +
νρωi∥d∥2

2
≥ δf(x, d),

for all positive integer i. Then, considering the limit as i→∞, we get

f(x, d) ≥ δf(x, d)

since ω ∈ (0, 1) and f(·, d) is continuous. The inequality above is impossible because

f(x, d) < 0 and δ ∈ (0, 1). Thus, minimum at (3-2) must exist.

Lemma 3.2. Assume L is Lipschitz constant of the Jacobian JF. Then,
ν(x, v(x), δ, ρ)

2
< L+ 1−δ

ρ
.

Proof. As observed in (1-2),

f(x, v(x)) + ∥v(x)∥2 = 0.

Let x be not K-critical. By de�nition (3-1) and Lemma 1.11

ν(x, v(x), δ, ρ)

2
≤ δf(x, v(x))− f(x+ ρv(x), v(x))

ρ∥v(x)∥2

=
(δ − 1)f(x, v(x)) + [f(x, v(x))− f(x+ ρv(x), v(x))]

ρ∥v(x)∥2

≤ δ − 1

ρ

f(x, v(x))

∥v(x)∥2
+ L

=
1− δ

ρ
+ L.

Next, we will propose a procedure for computing a critical point of Prob-

lem 0-3. This method is based on the steepest descent algorithm proposed in [21, 28].

3.2 Convex case

For K-convex and continuously di�erentiable F , our algorithm is the fol-

lowing.

Algorithm 3.3. Consider three exogenous constants: 0 < ρ, ω, δ < 1

0. Initialization: Let it be x0 ∈ Rn. Compute v(x0), and initialize k ← 0.
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1. Stopping criterium: If v(xk) = 0, then STOP.

2. Line search: Compute

ık = min{ı ≥ 1 | f(xk + ρωıv(xk), v(xk)) ≤ δf(xk, v(xk))}. (3-3)

3. Iteration step: De�ne

αk = ρωık (3-4)

and

xk+1 = xk + αkv(x
k). (3-5)

Compute v(xk+1), set k ← k + 1, and go to Step 1.

Herafter, {xk} refers to the sequence generated by Algorithm 3.3. Again, if

there exists k with v(xk) = 0, our procedure stops successfully. Let us then assume

v(xk) ̸= 0 for all k. Henceforth, f(xk, v(xk)) < 0 for all k.

Lemma 3.4. The sequence {F (xk)} is strictly K-decreasing, i.e., F (xk+1) < F (xk)

for all k.

Proof. Observe that

F (xk+1) = F (xk) +

∫ αk

0

JF (xk + tv(xk))v(xk)dt.

Then, considering w ∈ G,

⟨F (xk+1) , w⟩ = ⟨F (xk) , w⟩+ ⟨
∫ αk

0

JF (xk + tv(xk))v(xk)dt , w⟩

= ⟨F (xk) , w⟩+
∫ αk

0

⟨JF (xk + tv(xk))v(xk) , w⟩dt

≤ ⟨F (xk) , w⟩+
∫ αk

0

f(xk + tv(xk), v(xk))dt

≤ ⟨F (xk) , w⟩+
∫ αk

0

f(xk + αkv(x
k), v(xk))dt

= ⟨F (xk) , w⟩+ αkf(x
k + αkv(x

k), v(xk))

≤ ⟨F (xk) , w⟩+ αkδf(x
k, v(xk))

< ⟨F (xk) , w⟩.

The �rst inequality above is validated by f 's de�nition, the second is a consequence

of f(xk + tv(xk), v(xk))'s monotonicity, Lemma 1.15 item (b), the third is true by

(3-3), and f(xk, v(xk)) < 0 implies the fourth. Then,

F (xk+1) < F (xk).
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Lemma 3.5. If there exists F ⪯K F (xk) for all k, then limk→∞ αkf(x
k, v(xk)) = 0.

Proof. Consider e ∈ K such that 0 < ⟨e , w⟩ ≤ 1 for all w ∈ C. In the proof of the

previous lemma we showed that

F (xk+1) ⪯K F (xk) + αkδf(x
k, v(xk))e.

Therefore,

F ⪯K F (xk+1) ⪯K F (xk) + αkδf(x
k, v(xk))e ⪯K F (x0) + δ[

k∑
s=0

αsf(x
s, v(xs))]e,

(3-6)

for all k, series
∑

αkf(x
k, v(xk)) is summable, and limk→∞ αkf(x

k, v(xk)) = 0.

Lemma 3.6. If

T = {x ∈ Rn | F (x) ⪯K F (xk) for all k} ≠ ∅,

then it exists x∗ ∈ T such that limk→∞ xk = x∗.

Proof. The previous Lemma remains holds. Then,
∑

αkf(x
k, v(xk)) is summable.

By Lemma 1.10 (b), f(xk, v(xk)) < −∥v(xk)∥2/2. Therefore,
∑

αk∥v(xk)∥2 < ∞.

Take x̂ ∈ T . By Lemma 1.15 (a), it is true that ⟨xk − x̂, v(xk)⟩ ≤ 0, hence

∥xk + αkv(x
k)− x̂∥ = ∥xk+1 − x̂∥2 ≤ ∥xk − x̂∥2 + αk∥v(xk)∥2

because 0 < αk < 1. Observe that T is convex, then {xk} is quase-Fèjer convergent
to T . Therefore, {xk} is bounded. Consider x∗, a accumulation point of {xk}. Since
{F (xk)} is monotone decreasing (see Lemma 3.4), x∗ ∈ T . Then,

lim
k→∞

xk = x∗.

Theorem 3.7. Assume T ̸= ∅. The sequence generated by Algorithm 3.3, {xk}, is
convergent to a weak-K-minimum.

Proof. The last two lemmas hold. Then, {xk} is convergent. Consequently,

αk∥v(xk)∥ → 0 as k → ∞. Assume that x∗ = limk→∞ xk. We have two cases to

analyze because {αk} ⊂ (0 , ρ].
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� First, assume that limk→∞ αk = 0. In this case, given k, there exists α̃k ∈
[αk , ω

−1αk) such that

f(xk + α̃kv(x
k) , v(xk)) = δf(xk, v(xk)).

Considering the limit as k → ∞, we get f(x∗, v(x∗)) = δf(x∗, v(x∗)). Then,

f(x∗, v(x∗)) = 0 because δ ̸= 1.

� Now, assume that lim inf αk = 2α > 0. Then, for all given ε > 0, there exists

κ such that k > κ implies

ε > αk∥v(xk)∥ > α∥v(xk)∥.

Hence, v(x∗) = 0.

In both cases, x∗ is K-critical. Then, by the K-convexity of F , x∗ is a weak-K-
minimum for function F .

3.2.1 Rate of convergence

In this section we will derive a convergence rate for Algorithm 3.3. Let it

be limk→∞ xk = x∗. We assume that L is the Lipschitz constant of the Jacobian JF

and that the parameters of the algorithm are such that ρ
1−δ

< 1
2L
.

Lemma 3.8. Assume that
ρ

1− δ
<

1

2L
.

Then, the following statement is true for any ω ∈ (0, 1):

αk = ωρ, k = 0, 1, 2, . . . ,

and, consequently αk <
1
2L
, k = 0, 1, 2, . . . .

Proof. Assume that there exists k such that αk < ωρ. Then,

f(xk + w−1αkv(x
k), v(xk)) > δf(xk, v(xk)).

Then, by Lemma 1.11 and the above inequality,

Lω−1αk∥v(xk)∥2 ≥ f(xk + w−1αkv(x
k), v(xk))− f(xk, v(xk))

> (δ − 1)f(xk, v(xk)).
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But, by Lemma 1.10 (b),
f(xk, v(xk))

∥v(xk)∥2
< −1

2
,

implying
ω(1− δ)

2L
<

ω(δ − 1)

L

f(xk, v(xk))

∥v(xk)∥2
< αk < ωρ,

contradicting the hypothesis. Therefore αk = ωρ, for all k.

Hence,

αk = ωρ < ρ <
1− δ

2L
<

1

2L
.

Set f ∗
n = min0≤k≤n |f(xk, v(xk))|. Following the ideas from Section 1.2.3 in

[43], we get

(n+ 1)δαkf
∗
n ≤ δαk

n∑
k=0

|f(xk, v(xk))| = −δ
n∑

k=0

αkf(x
k, v(xk)).

Take e ∈ int(K) such that max{⟨e, w⟩ : w ∈ C} = 1. Substituting in (3-6), we get

⟨F (x0)− F (x∗) , w⟩ ≥ −δ[
n∑

k=0

αkf(x
k, v(xk))]⟨e, w⟩ ≥ (n+ 1)δρωf ∗

n⟨e, w⟩

for all w ∈ C. Remember that ∥ω∥ = 1. Therefore, using the Cauchy-Schwarz

Inequality, we obtain the inequality

f ∗
n ≤

1

n+ 1

1

δρω
∥F (x0)− F (x∗)∥,

which describes the convergence rate of {f ∗
n} to zero.

3.3 Lipschitz case

In this section, we will show some properties the line-search has when the

Jacobian is Lipschitz continuous. We start with the following auxiliary lemma.

Lemma 3.9. Let d be K-descent direction for F at x, L > 0 Lipschitz constant of

the Jacobian JF, δ ∈ (0, 1) and ρ > 0.

If L <
(δ − 1)f(x, d)

ρ∥d∥2
, then f(x+ αd, d) ≤ δf(x, d) for all 0 ≤ α ≤ ρ.

Proof. The thesis is true at α = 0 because f(x, d) < 0. Assume that there exists

0 < α̃ ≤ ρ such that f(x+ α̃d, d) > δf(x, d). Then, taking in account Lemma 1.11,
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we get

(δ − 1)f(x, d) < f(x+ α̃d, d)− f(x, d) ≤ Lα̃∥d∥2 ≤ Lρ∥d∥2,

in contradiction with our hypothese.

Corollary 3.10. Assume that the hypothesis of Lemma 3.9 holds and let it be

x′ = x+ αd, where α ∈ (0, ρ). Then,

F (x′) ⪯K F (x) + δαf(x, d)e,

for any e ∈ int(K).

Proof. By the Fundamental Theorem of Calculus,

F (x′) = F (x) +

∫ α

0

JF (x+ td)d dt.

Then, taking any w ∈ C, it holds

⟨F (x′) , w⟩ = ⟨F (x) , w⟩+ ⟨
∫ α

0

JF (x+ td)d dt , w⟩

= ⟨F (x) , w⟩+
∫ α

0

⟨JF (x+ td)d , w⟩dt

≤ ⟨F (x) , w⟩+
∫ α

0

f(x+ td, d)dt

≤ ⟨F (x) , w⟩+ δ

∫ α

0

f(x, d)dt

= ⟨F (x) , w⟩+ αδf(x, d).

The �rst inequality above is validated by f 's de�nition, the second is a consequence

of Lemma 3.9 because α < ρ. Hence,

F (x′) ⪯K F (x) + δαf(x, d)e. (3-7)

Observe that (3-7) implies in F (x′) ≺K F (x) because f(x, d) < 0.

For the sake of simpli�cation, we introduce function LS : Rn × Rn \ {0} ×
(0, 1)× (0,∞)× (0, 1)→ Rn, which is de�ned as follows:

LS(x, d, δ, ρ, ω) = x+ ρωı(x,d,ν(x,d,δ,ρ),δ,ρ,ω)d, (3-8)

where functions ν and ı were de�ned by expressions (3-1) and (3-2), respectively.

The steepest descent algorithm with the line-search LS is the following.
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Algorithm 3.11. Let it be δ, ω ∈ (0, 1), ρ > 0 and x0 ∈ Rn.

0. Initialization: Compute v(x0), and initialize k ← 0.

1. Stopping criterium: If v(xk) = 0, then STOP, else go to Step 2.

2. Iteration step: Compute xk+1 = LS(xk, v(xk), δ, ρ, ω) and v(xk+1). Set k ←
k + 1, and go to Step 1.

If v(xk) ̸= 0, then v(xk) is a descent direction for F at xk and, therefore, Step

2 will return a new iterate xk+1 - see Lemma 3.1. Algorithm 3.11 stops at iteration k

only if v(xk) = 0. In such a case, {xk} is �nite and the last iterate is K-critical. Let

us consider the case when {xk} is in�nite, i.e., v(xk) ̸= 0 for all k. In what follows,

numbers νk and αk will denote ν(xk, v(xk), δ, ρ) and ρωi(xk,v(xk),ν(xk,v(xk),δ,ρ),δ,ρ,ω),

respectively.

As observed before,
f(x, v(x))

∥v(x)∥2
< −1

2

when x is not K-critical point for F . Then, in such a case,

δ − 1

ρ

f(x, v(x))

∥v(x)∥2
> −δ − 1

2ρ
=

1− δ

2ρ
> L.

In other words, if the parameters of Algorithm 3.11 are such that ρ
1−δ

< 1
2L
,

Lemma 3.9 and Corollary 3.10 hold. Hence, {F (xk)} is K-monotone decreasing.

Theorem 3.12. Assume that L is Lipschitz constant of the Jacobian; that L < 1−δ
2ρ

,

and that there exists F ⪯K F (xk). Then, every accumulation point of {xk}, if any,
is K-critical.

Proof. Observe that

F ⪯K F (xk+1) ⪯K F (xk) + αkδf(x
k, v(xk))e (3-9)

⪯K F (x0) + δ[
k∑

s=0

αsf(x
s, v(xs))]e, for all k.

Then, series
∑

αkf(x
k, v(xk)) is summable and limk→∞ αkf(x

k, v(xk)) =

limk→∞ αk∥v(xk)∥ = 0. Let it be {xkℓ}, subsequence of {xk}, convergent to x∗.

By continuity of v, limk→∞ v(xkℓ) = v(x∗). Our goal is to demonstrate that

f(x∗, v(x∗)) = 0. By de�nition of νk,

f(xkℓ + ρv(xkℓ), v(xkℓ)) +
νkℓρ∥v(xkℓ)∥2

2
≥ δf(xkℓ , v(xkℓ)).
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Since f(., v(xkℓ)) is continuous, there exists α̃kℓ ∈ (αkℓ , ω
−1αkℓ ], such that

f(xkℓ + α̃kℓv(x
kℓ), v(xkℓ)) +

νkℓα̃kℓ∥v(xkℓ)∥2

2
= δf(xkℓ , v(xkℓ)) (3-10)

because, by (3-2),

f(xkℓ + αkℓv(x
kℓ), v(xkℓ)) +

νkℓαkℓ∥v(xkℓ)∥2

2
< δf(xkℓ , v(xkℓ)).

Remember that {αkℓ} ⊂ [0, ρ). Then, we have the following two cases to consider.

� First, assume that liml→∞ αkl = 0. Observe that

0 ≤ νkℓ∥v(xkℓ)∥2 ≤ 2|δf(xkℓ , v(xkℓ))− f(xkℓ + ρkℓv(x
kℓ), v(xkℓ))|.

Since v and f are continuous functions, we have that

{|δf(xkℓ , v(xkℓ)− f(xkℓ + ρkℓv(x
kℓ), v(xkℓ))|}

is convergent and, henceforth,

{νkℓ∥v(xkℓ)∥2}

is bounded. Now, taking limit in (3-10), we get

f(x∗, v(x∗)) = lim
l→∞

[
f(xkl + α̃klv(x

kl), v(xkl)) +
νkα̃kl∥v(xkl)∥2

2

]
= δf(x∗, v(x∗)).

Hence, f(x∗, v(x∗)) = 0 because δ ̸= 1.

� Now, assume that there exists a subsequence {αkℓs
} of {αkℓ} such that

lims→∞ αkℓs
= 2α > 0. Then, for any given ε > 0, there exists κ such that

s > κ implies

ε > αkℓs
∥v(xkℓs )∥ > α∥v(xkℓs )∥.

Therefore, ∥v(x∗)∥ = 0, and consequently, f(x∗, v(x∗)) = 0.

3.3.1 Rate of convergence

In this subsection, L is Lipschitz constant of JF .
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We claim that zero is not an accumulation point of {αks}. Indeed, suppose
that {αks} is a subsequence of {αk} with lims→∞ αks = 0. Without loss of generality,

we can state that

f(xks + w−1αksv(x
ks), v(xks)) +

νksω
−1αks∥v(xk)∥2

2
> δf(xks , v(xks)) (3-11)

for all s. We have assumed that

2L <
1− δ

ρ
.

Therefore,

2L+
1− δ

ρ
< 2

1− δ

ρ
.

Hence,

ω−1αks∥v(xks)∥22
(
1− δ

ρ

)
≥ ω−1αks∥v(xks)∥2

(
2L+

1− δ

ρ

)
≥ ω−1αks∥v(xks)∥2(L+ νks/2)

= Lω−1αks∥v(xks)∥2 + νksω
−1αks∥v(xk)∥2

2

≥ (δ − 1)f(xks , v(xks)).

Where the second inequality holds by Lemma 3.2 and we get the last inequality

using (3-11) with the Lipschitz-continuity of JF . Therefore,

αks >
−f(xks , v(xks))ωρ

2∥v(xks)∥2
.

Noting that

f(xks , v(xks)) + ∥v(xks)∥2 = 0,

we get

αks >
ωρ

2
,

which gives a contradiction. Without loss of generality, we can assume that

αk > α > 0,

for all k. We denote f ∗
n = min0≤k≤n |f(xk, v(xk))|. Hence,

(n+1)δαf ∗
n ≤ δα

n∑
k=0

|f(xk, v(xk))| ≤ δ

n∑
k=0

αk|f(xk, v(xk))| = −δ
n∑

k=0

αkf(x
k, v(xk)).
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Consider any e ∈ int(K) such that max{⟨e, w⟩ : w ∈ C} = 1. Substituting in (3-9),

we get

⟨F (x0)− F (x∗) , w⟩ ≥ −δ[
n∑

k=0

αkf(x
k, v(xk))]⟨e, w⟩ ≥ (n+ 1)δαf ∗

n⟨e, w⟩

for all w ∈ C. Remember that ∥ω∥ = 1. Therefore, using the Cauchy-Schwarz

Inequality, we obtain the inequality

f ∗
n ≤

1

n+ 1

1

αδ
∥F (x0)− F (x∗)∥,

which describes the convergence rate of {f ∗
n} to zero.

3.4 General case

In this section we will present an algorithm for the general case, this is, we

will assume neither the convexity of F nor Lipschitz continuity of JF .

Algorithm 3.13. We need three exogenous constants: δ, ω ∈ (0, 1), and ρ > 0

0. Initialization: Let it be x0 ∈ Rn. Compute v(x0), and initialize k ← 0.

1. Stopping criterium: If v(xk) = 0, then STOP.

2. Line search: Compute

νk = max

{
0 , 2

δf(xk, v(xk))− f(xk + ρv(xk), v(xk))

ρ∥v(xk)∥2

}
(3-12)

and

ik = min

{
i ≥ 1 | f(xk + ρωiv(xk), v(xk)) +

νkρω
i∥v(xk)∥2

2
< δf(xk, v(xk))

}
.

(3-13)

3. Iteration step: De�ne

αk = ρωik (3-14)

and

xk+1 = xk + αkv(x
k). (3-15)

Compute v(xk+1), set k ← k + 1, and go to Step 1.

We will continue to present the convergence results for Algorithm 3.13.

Theorem 3.14. Let {xk} be the sequence generated by Algorithm 3.13. If {xk} is

convergent, then its limit point is K-critical.
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Proof. Let x∗ = limk→∞ xk. Then, by the continuity of v, limk→∞ v(xk) = v(x∗).

Our goal is to demonstrate that f(x∗, v(x∗)) = 0.

By (3-12),

f(xk + ρv(xk), v(xk)) +
νkρ∥v(xk)∥2

2
≥ δf(xk, v(xk)).

Because f(., v(xk)) is continuous, there exists α̃k ∈ (αk, ω
−1αk], such that

f(xk + α̃kv(x
k), v(xk)) +

νkα̃k∥v(xk)∥2

2
= δf(xk, v(xk)) (3-16)

because, by (3-13) and (3-14),

f(xk + αkv(x
k), v(xk)) +

νkαk∥v(xk)∥2

2
< δf(xk, v(xk)).

So, we have two cases to consider.

� First, assume that limk→∞ αk = 0. By assumption {xk} is convergent. There-
fore {νk∥v(xk)∥2} is bounded and limk→∞ αkv(x

k) = 0. Taking the limit in

(3-16), we get

f(x∗, v(x∗)) = lim
k→∞

[
f(xk + α̃kv(x

k), v(xk)) +
νkα̃k∥v(xk)∥2

2

]
= δf(x∗, v(x∗)).

Hence, f(x∗, v(x∗)) = 0 because δ ̸= 1.

� Now, assume that lim inf αk = 2α > 0. Then, for all given ε > 0 there exists κ

such that k > κ implies

ε > αk∥v(xk)∥ > α∥v(xk)∥, because lim
k→∞

αk∥v(xk)∥ = 0.

Therefore, ∥v(x∗)∥ = 0, and consequently, f(x∗, v(x∗)) = 0.

To conclude this section, we will make an important observation. If it turns

out that there exists e ∈ int(K) such that k = 0, 1, 2, . . . and

F (xk+1) ⪯K F (xk) + δαkf(x
k, v(xk))e, (3-17)

as showed by Lemma 3.4 then we can prove that every accumulation point of

the sequence {xk}, generated by Algorithm 3.13, if any, is K-critical. Note that
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Algorithm 3.3 is a modi�cation of Algorithm 3.13 for the convex case that guarantees

the condition (3-17), as showed by Lemma 3.4. Just like this, Algorithm 3.11 is also

a modi�cation of procedure 3.13 that ensures condition (3-17) when the parameters

satisfy ρ
1−δ

< 1
2L

where L is Lipschitz constant of the Jacobian, see Lemma 3.10.

3.5 Numerical experiments

This section presents the results of numerical experiments to evaluate

the e�ectiveness of the algorithm and their ability to generate Pareto curves. All

considered problems are multi-objective optimization-based. Thus, K = Rm
+ and G

is the canonical basis of Rm.

The speci�cations of program, computer, stopping criteria and the maxi-

mum number of iterations are the same presented in Chapter 2 and therefore will

be omitted here.

3.5.1 Finding Pareto points

We have tested 37 nonconvex problems with parameters ρ = 2, ω = 0.9, and

δ = 10−3, while Algorithm 3.3 was tested using 19 convex problems with parameters

ρ = ω = 0.9 and δ = 10−3.

In the tables below, the column �Problem� indicates the names. �Source�

lists the source papers of the problems. Column n and m indicate the numbers of

variables and objectives, respectively. All the problems were solved 200 times using

starting points from a uniform random distribution inside a box speci�ed in x0. The

last four columns list the corresponding results. The �%� column lists the percentages

of runs that reached a critical point. �it� lists the average iterations per successful

runs, and �evalg� lists how many times the Jacobian was computed.

Algorithm ended at critical points for 100% of runs for 26 problems of runs.

Its performance was only unsatisfactory for Lov2 (35% success) and LTDZ (only

17% success). For the other 8 problems, it achieved critical points at least 69% of

the times.

Only the FDS problem was a challenge for Algorithm 3.3. It ended 69,5%

of the runs at a critical point. This problem is known to be di�cult � see [20].

Problem Source n m x0 % it evalg time

AP3 [1] 2 2 [−10, 10]n 95 2641.2 7965.9 4.871

DD1 [10] 5 2 [−20, 20]n 100 79.15 251.45 0.169

DGO1 [32] 1 2 [−10, 13]n 100 5.07 21.45 0.014

DTLZ2.2 [11] 3 3 [0, 1]n 86 15.91 69.34 0.039
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FA1 [32] 3 3 [0.1, 1]n 100 12.76 39.90 0.027

Far1 [32] 2 2 [−1, 1]n 100 90.22 293.77 0.179

FF1 [32] 2 2 [−1, 1]n 100 33.52 104.94 0.069

Hil1 [31] 2 2 [0, 1]n 100 22.70 97.52 0.050

KW2 [36] 2 2 [−3, 3]n 91.5 216.93 673.54 0.397

LE1 [32] 2 2 [−5, 10]n 100 80.11 272.28 0.151

Lov2 [38] 2 2 [−0.75, 0.75]n 35 26.29 90.77 0.053

Lov3 [38] 2 2 [−20, 20]n 100 7.33 36.01 0.018

Lov4 [38] 2 2 [−100, 100]n 100 9.56 44.84 0.022

Lov5 [38] 3 2 [−2, 2]n 100 47.41 146.13 0.097

LTDZ [37] 3 3 [0, 1]n 17 2578.3 7750.2 4.769

MGH7 [43] 3 3 [−2, 2]n 100 150.53 486.38 0.290

MGH26 [43] 4 4 [−1, 1]n 100 14.04 55.59 0.031

MLF1 [32] 1 2 [0, 20]n 100 4.96 20.61 0.015

MLF2 [32] 2 2 [−100, 100]n 100 2.02 9.79 0.006

MMR1 [41] 2 2 [0, 1]n 100 7.16 53.85 0.018

MMR3 [41] 2 2 [−1, 1]n 69 14.93 45.84 0.045

MMR5 [41] 50 2 [−50, 50]n 94 7923.9 23772.8 16.560

MOP2 [32] 2 2 [−1, 1]n 100 35.40 113.73 0.071

MOP3 [32] 2 2 [−π, π]n 100 16.72 73.00 0.035

MOP5 [32] 2 3 [−1, 1]n 100 15.45 47.94 0.035

QV1 [32] 10 2 [−5.12, 5.12]n 100 829.1 2497.4 1.611

SK1 [32] 1 2 [−100, 100]n 100 0.82 5.79 0.004

SK2 [32] 4 2 [−10, 10]n 100 41.51 135.41 0.080

SLC2 [50] 100 2 [−10, 10]n 100 460.39 949.41 1.411

SLCDT1 [51] 2 2 [−1.5, 1.5]n 100 2.77 20.32 0.009

SSFYY2 [32] 1 2 [−10, 10]n 100 3.15 21.59 0.010

TKLY1 [32] 4 2 [0.1, 1]× [0, 1]n 78 647.4 1995.7 1.219

Toi9 [53] 100 100 [−100, 100]n 100 32.17 122.75 0.678

Toi10 [53] 10 9 [−2, 2]n 80 4335.0 13072.3 9.630

VU1 [32] 2 2 [−3, 3]n 100 1361.61 4108.63 2.416

Table 3.1: Performance of nonconvex problems.

Problem Source n m x0 % it evalg time

AP1 [1] 2 3 [−10, 10]n 100 964.32 1939.56 1.8758

AP2 [1] 1 2 [−100, 100]n 100 4.43 14.87 0.0131

AP4 [1] 3 3 [−10, 10]n 100 853.39 1718.03 1.6716
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BK1 [32] 2 2 [−5, 10]n 100 3.76 13.52 0.0111

DGO2 [32] 1 2 [−9, 9]n 100 71.83 144.66 0.1502

FDS [20] 50 3 [−2, 2]n 69.5 1799.16 3614.50 4.1121

IKK1 [32] 2 3 [−50, 50]n 100 3.12 11.15 0.0095

JOS1 [35] 10 2 [−104, 104]n 100 91.17 183.34 0.1700

Lov1 [38] 2 2 [−100, 100]n 100 4.64 15.29 0.0139

MGH33 [43] 10 10 [−1, 1]n 100 2.19 35.61 0.0122

MHHM2 [32] 2 3 [0, 1]n 100 2.81 11.56 0.0093

MOP1 [32] 1 2 [−5, 5]n 100 2.71 10.49 0.0091

MOP7 [32] 2 3 [−400, 400]n 100 159.37 319.73 0.3117

PNR [48] 2 2 [−2, 2]n 100 12.37 41.13 0.0301

SLCDT2 [51] 10 3 [−1, 1]n 100 20.49 56.05 0.0433

SP1 [32] 2 2 [−100, 100]n 100 41.94 97.79 0.0815

Toi4 [53] 4 2 [−100, 100]n 100 4.99 15.98 0.0133

Toi8 [53] 3 3 [−1, 1]n 100 3.92 30.93 0.0127

ZLT1 [32] 10 5 [−1000, 1000]n 100 5.96 18.80 0.0161

Table 3.2: Performance of Algorithm 3.3.

3.5.2 Building Pareto fronts

We tested the ability of our methods to generate Pareto frontiers appro-

priately. We considered four non-convex examples from Table 3.1 and four convex

problems from Table 3.2, which are all bicriteria problems. The results are shown

in Figures 3.1 and 3.3. For each problem, there are three graphics. The �rst ones

were obtained by discretizing the corresponding boxes by a �ne grid and plotting

all the image points. These provide good representations of the image of F and

a geometric notion of the Pareto frontiers. The second graphics were obtained by

running Algorithm for each non-convex and Algorithm 3.3 for each convex problem,

300 times, using randomly generated starting points belonging to the corresponding

boxes. The third graphics were obtained in a similar manner, but by running the

algorithms only 20 times. In these graphics, the image of a starting point is repre-

sented by a start, while black and blue points represent images of the �nal iterate

and intermediately computed iterates, respectively. Straight segments link images

of consecutive iterates.

Figure 3.1 shows that for the chosen set of test problems, considering a

reasonable number of starting points, our algorithms were able to satisfactorily

estimate the Pareto frontiers. We emphasize that the non-monotonous behavior of

the sequences generated by Algorithm A, where it begins from some of the initial
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points, is observable in the third graphics, especially for FAR1, Hil1 and KW2.

TKLY1 FAR1 Hil1 KW2

Figure 3.1: Non-convex problems

BK1 Lov1 PNR SD

Figure 3.3: Convex problems
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3.6 A new group of testing problems

Since our algorithm makes use of gradient values of the objective function

only, unlike most of the algorithms from the literature, we will propose a set of test

problems in which the computation of a gradient value requires less computational

e�ort than that required for calculating an objective function value.

Given b ∈ Rn and A, symmetric positive de�nite n× n matrix, we de�ne

q(x) =
1

2
xTAx+ bTx.

Moreover, let ζ, Υ and Γ: Rn → R de�ned as

ζ(x) =
∑n

i=1 x
2
i + arctan(xi)

Figure 3.4: Graphic of ζ(x) for n = 1

Γ(x) = 1√
2π

∑n
i=1

∫ xi

−∞ e−s2/2ds

Figure 3.5: Graphic of Γ(x) for n = 1

and

Υ(x) =
∑n

i=1 ln(x
2
i + e)

Figure 3.6: Graphic of Υ(x) for n = 1

A simple computation shows that

∇q(x) = Ax+ b, ∇ζ(x)i = 2xi +
1

1 + x2
i

, ∇Γ(x)i =
e−x2

i /2

√
2π

and



3.6 A new group of testing problems 91

∇Υ(x)i =
2xi

x2
i + e

.

Function q is strongly convex with module ∥A∥. ζ is separable and convex with only

one minimizer. The other two functions are separable and non-convex. Γ has not

minimizer and (0, n) is its image. Υ achieves its minimum at the origin.

In order to build a set of test problems, we combine functions q, ζ, Υ and Γ

forming di�erent objectives. Altogether there are 11 problems, which are presented

in the following table. Columns # show the number that will identify each problem

from now on.

# F (x) # F (x) # F (x)

1 (q(x) , ζ(x))T 7 (q(x) , ζ(x) , Γ(x))T 11 (q(x) , ζ(x) , Γ(x) , Υ(x))T

2 (q(x) , Γ(x))T 8 (q(x) , ζ(x) , Υ(x))T

3 (q(x) , Υ(x))T 9 (q(x) , Γ(x) , Υ(x))T

4 (ζ(x) , Γ(x))T 10 (ζ(x) , Γ(x) , Υ(x))T

5 (ζ(x) , Υ(x))T

6 (Γ(x) , Υ(x))T

Table 3.3: New problems.

The following �gures illustrate the image, Pareto fronts and optimal solu-

tions sets of the �rst six problems when n = 2 and

A =

(
1 −1
−1 5

)
.

For Problems 1 and 2, b is the zero vector of R2 and for Problem 3, b = (0, 4)T . The

starting point was taken in the box [−1, 1]. For each of the six problems we have

three graphs. The �rst ones were obtained by discretizing the box [−1, 1] by a �ne

grid and plotting the image points. The second graphics were constructed compiling

the algorithm for each problem 300 times, thus obtaining a critical point and then

plotting its image. The third graphics were obtained plotting the 300 critical points.

The performance of the algorithm for this situation is shown in Table 3.4.
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Problem x0 % it

1 [−1, 1]n 100.00 7.13

2 [−1, 1]n 100.00 19.56

3 [−1, 1]n 100.00 6.26

4 [−1, 1]n 100.00 19.50

5 [−1, 1]n 100.00 6.05

6 [−1, 1]n 100.00 7.15

7 [−1, 1]n 100.00 13.20

8 [−1, 1]n 100.00 5.10

9 [−1, 1]n 100.00 7.40

10 [−1, 1]n 100.00 6.91

11 [−1, 1]n 100.00 7.52

Table 3.4: Performance of new problems.

F1(x) = (q(x) , ζ(x))T

F2(x) = (q(x) , Γ(x))T

F3(x) = (q(x) , Υ(x))T
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F4(x) = (ζ(x) , Γ(x))T

F5(x) = (ζ(x) , Υ(x))T

F6(x) = (Γ(x) , Υ(x))T

Figure 3.9: Graphics of Image, Pareto Front and problem
solving with two objective functions, two vari-
ables and the starting point taken in the range
[-1,1].

We compare the steepest descent algorithm with the two di�erent line

searches, the Armijo's one and ours, using as criterium the average number of

iterations needed to �nd a critical point, and the average employed CPU time.
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n=2

n=10

n=20
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n=50

n=100

Figure 3.12: Performance Pro�les comparing iteration and
time for the group of 11 new problems.

With the same data obtained to generate the Performance Pro�le above, we

decided, to check the quality of the Pareto front using the metrics: Purity metric,

Spread Metric-Delta and Spread Metric-Gamma-see [8, 22] or Appendix A. So we

can compare which Pareto curve has the least dominated points (Purity metric)

and which ones have less holes (Spread Metric-Delta e Spread Metric-Gamma). The

results obtained are shown in Figure 3.14.

We can observe that when the Gradiente algorithm is compared with the

two searches (Armijo and the new search), there exists a highlight for the new search,

both in terms of time and iteration. And when we look at the quality of the points

that belong to the Pareto curve, we see that the new search does not lose in quality

respect to the Armijo search. Therefore, the new search has signi�cant contributions
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Purity metric ∆-Spread Metric Γ-Spread Metric
n=2

n=10

n=20

n=50

n=100

Figure 3.14: Purity metric, Spread Metric-Delta, Spread
Metric-Gamma for the group of 11 new prob-
lems.
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when is used in this new group of problems.

3.6.1 Non-monotone algorithms

Since in general our algorithm is non-monotone, we decided to compare it

with others that have this same characteristic. We make the Performance Pro�le

confronting iteration and time of the gradient algorithms with the linear search of

Armijo, average-type and max-type, with the parameters suggested by the authors,

see [42]. For this, we changed the number of variables and the interval where the

starting point is taken, this information can be found in Table 3.5.

Problem n x0

1 100 [−103, 103]
2 5 [−5, 5]
3 10 [−102, 102]
4 50 [−5, 5]
5 200 [−102, 102]
6 500 [−5, 5]
7 2 [−5, 5]
8 10 [−102, 102]
9 10 [−5, 5]
10 100 [−5, 5]
11 10 [−5, 5]

Table 3.5: New problems, variable numbers and starting point
range.

Time Iteration

Purity Metric Γ−Spread Metri
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∆−Spread Metric

We can see a very signi�cant performance of the new linear search, both

in terms of e�ectiveness and robustness of the Algorithm 3.13, when it is compared

with itself using Armijo's search and with the Averagr-type and Max- type. In the

graphs that compare Iteration and Time, we see that the new search is the one

that stands out the most. And in the graphs that compare the quality of the Pareto

Front (Purity Metric, Γ−Spread Metric and ∆−Spread Metric) we observe that

the algorithm with the new search generates a better Pareto curve than the other

algorithms. So here we see a more signi�cant highlight of the new search using this

new group of problems.

3.6.2 Four new problems

We created a new set of test problems with four bi-objective optimization

problems, that is, m = 2. Functions ζ, Γ, Υ, and q were combined with the following

one, θ : Rn → R, see [12, 41],
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θ(x) =
n∑

i=0

2− 0.8e
−

xi − 0.6

0.4

2

− e
−

xi − 0.2

0.004

2
 .

As it was pointed before, Γ, Υ, and q have just one critical point which is the

respective global minimizer. On the other hand, function θ has one local minimum at

0, 6 and one global minimum at 0, 2. Observe that the attraction valley of the local

minimizer is much larger than the attraction valley of the global minimizer. That

situation should challenge any procedure which intends to �nd global minimizers.

Figure 3.16: Graphic of θ(x) for n = 1 :

We created a new group of problems involving function θ(x) to check the

e�ciency of our algorithm:

# F (x)

12 (q(x) , θ(x))T

13 (ζ(x) , θ(x))T

14 (Γ(x)) , θ(x))T

15 (Υ(x) , θ(x))T

We will continue to describe our new set of problems. We will present the

�Image� of the problems together with the �Pareto Front� and the Pareto Points of

the problem from 12 to 15.

The graph of �Image� was constructed by discretizing the interval Pareto

Points and plotting the image of the respective values.

The Pareto Front was constructed plotting the image of solution of each

problem obtained compiling our Algorithm 300 times, taking the starting point in

the interval [0, 1].

For the Pareto Points of the problem, we generated 300 starting points

randomly in the interval [0, 1]n and the number of variables n = 2. The solutions

were plotted and the results are as follows:
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F12(x) = (q(x) , θ(x))T

F13(x) = (ζ(x) , θ(x))T

F14(x) = (Γ(x) , θ(x))T

F15(x) = (Υ(x) , θ(x))T

Now, it follows the numerical experiments involving the new set of problems.

We will compare our algorithms with Gradiente and Average-Type [42], using

di�erent metrics, Iteration, Computational Time, the Purity Metric, ∆−Spread
Metric and Γ−Spread Metric, see [8, 22]. Figure 3.20 shows us the results of these

experiments, which are presented in blocks by the number of variables, with six

graphics in each. We did the experiments for n = 2, 10, 20, 50 and 100, with the

range of the starting point taken in [0, 1]. The �rst and second graphs of the block

present the Performance Pro�le in relation to time and iteration, respectively. The
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third and fourth graphs compare our algorithm with the gradient and the Average-

type, respectively, this is, check which of the algorithms has the Pareto front with

less dominated points. The �fth and sixth ones compare the three algorithms in

relation to the ∆−Spread Metric and Γ−Spread Metric, respectively, this is, check

which Pareto curve is more continuous, that is, which one has less holes.

n=2

Time Iteration Purity Metric

Purity Metric ∆−Spread Metric Γ−Spread Metric

n=10

Time Iteration Purity Metric

Purity Metric ∆−Spread Metric Γ−Spread Metric

n=20
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Time Iteration Purity Metric

Purity Metric ∆−Spread Metric Γ−Spread Metric

n=50

Time Iteration Purity Metric

Purity Metric ∆−Spread Metric Γ−Spread Metric
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n=100

Time Iteration Purity Metric

Purity Metric ∆−Spread Metric Γ−Spread Metric

Figure 3.20: Performance Pro�le in relation to time, iter-
ation, Purity Metric, ∆−Spread Metric and
Γ−Spread Metric with di�erent values of vari-
ables.

We can observe that for n = 2, the algorithm Average-Type has better

performances both in time and iteration, and on Purity Metric our algorithm

performs better, same in the ∆−Spread Metric, but in the Γ−Spread Metric the

gradient stands out.

For n = 10, our algorithm has better robustness and e�ciency in relation

to time and iteration, but it loses when we use it to Purity Metric, it performs well

in ∆−Spread Metric, but does not stand out in Γ−Spread Metric.

For n = 20, our algorithm performs well with both time and iteration,

stands out in Purity Metric when compared to Gradient but loses to Average-Type.

In ∆−Spread Metric and Γ−Spread Metric the Average-type, performs better than

the other algorithms.

With n = 50, when we look at the Performance Pro�le in relation to time,

we observe that the Average-Type is more e�cient, but our algorithm is more robust

and in relation to iteration, ours has better performance. When we look at Purity

Metric charts, we lose in e�ciency and gain in robustness when we compare it with

the gradient, and we have better performance if we compare it with the Average-

Type. For the ∆−Spread, Metric our algorithm is more e�cient but Average-Type is
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more robust, while in Γ−Spread Metric we see better performance for Average-type.

If n = 100, we see that Average-type is more e�cient but our algorithm is

more robust when comparing time. In relation to iteration, ours has better perfor-

mance as well as when we use Purity Metric, we also have signi�cant performance

for the ∆−Spread Metric and Γ−Spread Metric.

3.7 Chapter conclusion

As we look at everything that has been presented in this chapter, both

in theory and in numerical experiments, we emphasize that our algorithm has a

satisfactory performance when we compare it with others using problems that have

the characteristic cited by Yunda Dong, [14, 15] �problems that are easier to evaluate

the gradient than functional values�. However, when evaluating the performance of

the non-monotonicity characteristic of line search, we see that our algorithm does

not have a great advantage over others, such as the Average-Type. So this further

underscores the importance of this work, that is, we present a new line search that

does not make use of functional values and which has a signi�cant performance

in examples whose evaluation of gradients demands less computational e�ort than

evaluating their respective functional values.



CHAPTER 4

How to compute inexact K-steepest descent
directions

In this chapter we will present a practical way to calculate the inexact K-
steepest descent direction, this is, we will calculate some direction that is descending

but not necessarily the steepest. Moreover, we will display numerical experiments

that show the e�ciency, the robustness and the quality of such procedure. This

chapter was based on the work of Fliege and Svaiter [21], Drummond and Iusem

[27], Drummond and Svaiter [28], and Fukuda and Drummond in [24].

4.1 σ-Approximate K-steepest descent direction

We begin this section with two propositions known from the literature that

can be found in [28], and which will be used in later results.

Proposition 4.1. Let d a K-descent direction for F at x and β ∈ (0, 1). Then there

exists t̂ such that

F (x+ tv) ≺K F (x) + βtJF (x)d

for all t ∈ (0, t̂).

Proof. See Proposition 2.1 in [28].

Proposition 4.2. Let β ∈ (0, 1) and d a K-descent direction for F at x. There exist

t̂, δ and δ′ > 0 such that t < t̂, ∥x′ − x∥ < δ and ∥d′ − d∥ < δ′ imply that d′ is

K-descent direction for F at x′ and

F (x′ + tv′) ≺K F (x′) + βtJF (x′)v′.

Proof. See Proposition 3.6 in [28].

Next we will de�ne a σ-Approximate K-steepest descent direction, as well
as the problem to calculate the direction and its dual, together with results that will
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be the basis for the conclusion of this chapter. Also note that we can de�ne f(x, d)

about convex hull of G.

Remark 4.3. Let G̃ = conv(G). Then,

f(x, d) = max{⟨JF (x)d , w⟩ | w ∈ G̃}.

Proof. It is clear that f(x, d) ≤ max{⟨JF (x)d , w⟩ | w ∈ G̃} because G ⊂ G̃. We

have to proof that f(x, d) ≥ max{⟨JF (x)d , w⟩ | w ∈ G̃}. Take w̄ ∈ G̃ such that

max{⟨JF (x)d , w⟩ | w ∈ G̃} = ⟨JF (x)d , w̄⟩.

For each w ∈ G, there exists λ(w) ≥ 0 such that w̄ =
∑

w∈G λ(w)w and∑
w∈G λ(w) = 1. Therefore,

⟨JF (x)d , w̄⟩ =
∑
w∈G

λ(w)⟨JF (x)d , w⟩ ≤ f(x, d).

An equivalent formulation for Problem (1-1) is

min

{
max

{
∥d∥2

2
+ ⟨JF (x)d , w⟩ | w ∈ G̃

}
| d ∈ Rn

}
. (4-1)

Indeed, �rst, observe that v(x) is optimal solution of (4-1) because, taking

in account Remark 4.3 and the de�nition of v(x), for all d ∈ Rn it holds that

max

{
∥d∥2

2
+ ⟨JF (x)d , w⟩ | w ∈ G̃

}
=
∥d∥2

2
+ f(x, d)

≥ ∥v(x)∥
2

2
+ f(x, v(x))

= max

{
∥v(x)∥2

2
+ ⟨JF (x)v(x), w⟩ | w ∈ G

}
= max

{
∥v(x)∥2

2
+ ⟨JF (x)v(x), w⟩ | w ∈ G̃

}
.

Second, if d is optimal solution of (4-1), then d̂ = v(x). Taking in account
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Remark 4.3 again, we get, for all d ∈ Rn, that

∥d̂∥2

2
+ f(x, d̂) = max

{
∥d̂∥2

2
+ ⟨JF (x)d̂ , w⟩ | w ∈ G

}

= max

{
∥d̂∥2

2
+ ⟨JF (x)d̂ , w⟩ | w ∈ G̃

}

≤ max

{
∥d∥2

2
+ ⟨JF (x)d , w⟩ | w ∈ G̃

}
=
∥d∥2

2
+ f(x, d).

Then, d̂ = v(x) because Problem (1-1) has only one optimal solution.

The dual problem of (4-1) is

max

{
min

{
∥d∥2

2
+ ⟨JF (x)d , w⟩ | d ∈ Rn

}
| w ∈ G̃

}
. (4-2)

Problems (4-1) and (4-2) are convex and Problem (4-1) has optimal solution.

Then, it does not exist a duality gap. Moreover, since

min

{
∥d∥2

2
+ ⟨JF (x)d , w⟩ | d ∈ Rn

}
= −∥JF (x)⊤w∥2

2

for x ∈ Rn and w ∈ G̃ given, (4-2) is equivalent to

max

{
−∥JF (x)⊤w∥2

2
| w ∈ G̃

}
. (4-3)

De�nition 4.4. Given σ ∈ [0, 1), we say that d is a σ-approximate K-steepest
descent direction for F at x if

∥d∥2

2
+ f(x, d) ≤ (1− σ)θ(x). (4-4)

Observe that v(x) is the 0-approximate K-steepest descent direction for F

at x. Another immediate consequence of the de�nition is that every σ-approximate

K-steepest descent direction for F at x is also K-descent direction for F at x.

4.2 How to compute a σ-K-descent direction

In this section will be present a practical way of how to compute a σ-

Approximate K-steepest descent direction. Thus, it becomes possible to perform

numerical experimentation.
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From now on, we assume that

G = {w1, . . . , wℓ},

i.e., K∗ and (consequently) K are �nitely generated cones.

We need to introduce some additional notations. In the corresponding linear

space, e identi�es the vector which has all its components equal to 1, and ek identi�es

the vector with all components equal to zero except the k-th, which is equal to 1.

For y ∈ Rℓ × R given, ỹ is the projection of y onto Rℓ. Matrix

W = [w1 . . . . . . wℓ]

is m× ℓ and B = W⊤JF (x)JF (x)⊤W is ℓ× ℓ, then

A =

(
B 0

0 0

)
and M =

(
−B −e

)
are (ℓ+ 1)× (ℓ+ 1) and ℓ× (ℓ+ 1), respectively. The simplex in Rℓ will be denoted

by S, i.e.,

S =

{
y ∈ Rℓ |

ℓ∑
i=1

yi = 1, y1 ≥ 0, . . . , yℓ ≥ 0

}
and, �nally, for a given σ ∈ [0, 1),

D =

y ∈ Rℓ × R |
(1− σ/2)y⊤Ay + ⟨eℓ+1 , y⟩ ≤ 0

My ≤ 0

ỹ ∈ S

 .

As the most important consequence of our assumption, there exists

ỹ ∈ S such that v(x) = −JF (x)⊤Wỹ. Then, for any given σ ∈ [0, 1), ŷ =

(ỹ , f(x, v(x)))⊤ ∈ D because

Mŷ = −Bỹ − f(x, v(x))e = W⊤JF (x)v(x)− f(x, v(x))e ≤ 0

and

(1−σ/2)ŷ⊤Aŷ+⟨eℓ+1 , ŷ⟩ =
∥v(x)∥2

2
+f(x, v(x))+

1− σ

2
∥v(x)∥2 = −σ∥v(x)∥2/2 ≤ 0.

Obviously, D is closed and convex. We claim that D is compact. Indeed, compactness

of S implies that B(S) = {Bz | z ∈ S} is compact. Observe that y⊤Ay =
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∥JF (x)⊤Wỹ∥2 ≥ 0. Then, for any y ∈ D it holds that −a ≤ yl+1 ≤ 0, where

a = max {max{yi | y ∈ B(S)} | i = 1, . . . , ℓ} .

Hence,

D ⊂ S × [−a, 0].

The next lemma shows how to calculate the K-steepest descent direction
for F at x when K is �nitely generated.

Lemma 4.5. Consider problem

(AP ) min
1

2
y⊤Ay + ⟨eℓ+1 , y⟩ s.t. My ≤ 0, ỹ ∈ S.

(a) Take y∗ ∈ Rℓ+1 such that ỹ∗ ∈ S, v(x) = −JF (x)⊤Wỹ∗, and yℓ+1 = f(x, v(x)).

Then, y∗ is optimal solution of (AP).

(b) If y∗ is optimal solution of (AP), then v(x) = −JF (x)⊤Wỹ∗, and yℓ+1 =

f(x, v(x)).

Proof. For item (a), observe that

My∗ = −f(x, v(x))e+W⊤JF (x)[−JF (x)⊤Wỹ∗] (4-5)

= −f(x, v(x))e+


⟨w1 , JF (x)v(x)⟩

...

⟨wℓ , JF (x)v(x)⟩

 (4-6)

≤ 0. (4-7)

Then, y∗ is solution of (AP) and, since

1

2
(y∗)⊤Ay∗ + ⟨eℓ+1 , y

∗⟩ = ∥v(x)∥
2

2
+ f(x, v(x)),

y∗ is optimal solution of (AP). For item (b), denote d∗ = −JF (x)⊤Wỹ∗. Observe

that y∗ℓ+1 = f(x, d∗). Then,

1

2
(y∗)⊤Ay∗ + y∗ℓ+1 =

1

2
∥d∗∥2 + f(x, d∗) ≤ 1

2
∥v(x)∥2 + f(x, v(x)).

Since v(x) is the only one K-steepest descent direction for F at x, we get d∗ =

v(x).

Lemma 4.6. Take σ ∈ [0, 1) and y ∈ D such that yℓ+1 = f(x, d), where

d = −JF (x)⊤Wỹ. Then, d is a σ- approximate K-steepest descent direction for

F at x.



4.3 Computational experiments 110

Proof. First, observe that Wỹ ∈ G̃ and therefore,

−∥JF (x)⊤Wỹ∥2

2
= −∥d∥

2

2
≤ θ(x)

because (4-3) is the dual problem of (1-1). Then,

−(1− σ)

2
∥d∥2 ≤ (1− σ)θ(x).

Second, it holds that

(1− σ/2)y⊤Ay + ⟨eℓ+1 , y⟩ =
∥d∥2

2
+ f(x, d) +

1− σ

2
∥d∥2 ≤ 0.

Consequently,
∥d∥2

2
+ f(x, d) ≤ −1− σ

2
∥d∥2 ≤ (1− σ)θ(x),

i.e., d is σ�approximate K-steepest descent direction for F at x.

Now, we present our main contribution: a practical way to compute σ�

approximate K-steepest descent directions for F at x.

Take y∗ ∈ S such that (1 − σ/2)∥JF (x)⊤Wλ∥2 + f(x,−JF (x)⊤Wλ) ≤ 0.

Then d = −JF (x)⊤Wλ is σ−approximate K-steepest descent direction for F at x.

4.3 Computational experiments

In this section we will present the well-known Armijo line search along

σ-approximate K-steepest descent direction for F at x, the Algorithm and its

Convergence Results. Moreover, present the numerical experiments that show the

e�ciency and robustness of an σ�approximate K-steepest descent direction for F at

x.

4.3.1 An algorithm using an Armijo-type line-search along

σ-approximate K�steepest descent direction

In this section we will recall an algorithm proposed by Graña Drummond

and Svaiter, in [28], and the corresponding convergence analyses.

Let ik be de�ned as

ik = min{i ∈ N | F (x+ 2−id) ⪯K F (x) + 2−iβJF (x)d}. (4-8)



4.3 Computational experiments 111

Function ik de�nes a line-search of Armijo-type. Proposition 4.1 assures that if d is

a K-descent direction for F at x then there exists ik. So the following algorithm is

well-de�ned.

Algorithm 4.7. Consider two exogenous constants: σ and β ∈ (0, 1).

0. Initialization: Choose x0 ∈ Rn. Compute d(x0) and initialize k ← 0.

1. Stopping criterium: If d(xk) = 0, then STOP.

2. Direction: Compute dk, a σ-K-descent direction for F at xk.

3. Line search: Compute ik as in (4-8) and de�ne the steplength tk = 2−ik .

4. Iteration step: Set

xk+1 = xk + tkd
k

and k ← k + 1. GOTO Step 1.

In what follows, {xk}, {dk} and {tk} are the sequences generated by

Algorithm 4.7. If it stops at some iteration k, then xk is K-critical for F and it

was successful. Let us assume then, that the algorithm does not stop, i.e. {xk}, {dk}
and {tk} are in�nite sequences. Regarding convergence we have the following results.

Lemma 4.8. If x̄ is an accumulation point of {xk} then F (x̄) ⪯K F (xk) for all k

and limk→∞ F (xk) = F (x̄). In particular, F is constant in the set of accumulation

points of {xk}.

Proof. See Proposition 2.2 in [28].

Lemma 4.9. If there exists F ≺K F (xk) for all k then∑
tk|θ(xk)| <∞ and

∑
tk∥dk∥2 <∞.

Proof. By assumption, {xk} is in�nite sequence, then

∥dk∥2

2
+ f(xk, dk) ≤ (1− σ)θ(xk) < 0

and

F (xk+1) ⪯K F (xk) + βtkJF (xk)dk ⪯K F (xk)

for any k. Take some k ≥ 0. Using the properties of φ and the de�nition of f , we

get

φ(F) ≤ φ(F (xk+1)) ≤ φ(F (xk)) + βtkφ(JF (xk)dk) ≤ φ(F (xk)) + βtkf(x
k, dk)

= φ(F (xk)) + βtk

[
f(xk, dk) + ∥dk∥2

2
− ∥dk∥2

2

]
≤ φ(F (xk)) + βtk

[
(1− σ)θ(xk)− ∥dk∥2

2

]
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because dk is σ-K-approximate steepest descent direction for F at xk. Then,

φ(F) ≤ φ(F (x0)) + β

k∑
s=0

ts

[
(1− σ)θ(xs)− ∥d

s∥2

2

]

= φ(F (x0))− β

k∑
s=0

ts

[
(1− σ)|θ(xs)|+ ∥d

s∥2

2

]
.

In other words,

k∑
s=0

ts

[
(1− σ)|θ(xs)|+ ∥d

s∥2

2

]
= (1− σ)

k∑
s=0

ts|θ(xs)|+ 1

2

k∑
s=0

ts∥ds∥2

≤ φ(F (x0))− φ(F)
β

,

for all k, and the conclusion follows.

Theorem 4.10. If there exists F ≺K F (xk) for all, k then any accumulation point

of {xk} is K-critical.

Proof. See Theorem 4.2 in [28].

The results below there are for case in that F is K-convex.

Theorem 4.11. Suppose that F is K-convex and that dk is σ−approximate

K−steepest descent direction for F at x. If F (x̂) ≼K F (xk) then

∥x̂− xk+1∥2 ≤ ∥x̂− xk∥2 + ∥xk+1 − xk∥2.

Proof. See Lemma 6.1 in [28].

Theorem 4.12. Suppose that F is K-convex and there exists F ≺K F (xk) for all

k. Then, {xk} converges to a K-critical point x∗.

Proof. See Theorem 6.3 in [28].

4.3.2 Computational experiments

We will now present the numerical experiments that show the e�ciency

and robustness of a σ�approximate K-steepest descent direction for F at x. The

implementation was divided into three groups of problems. The �rst formed by

simple convex examples, the second formed by more elaborate convex examples and

a third group formed by nonconvex examples. This way we could see the behavior

of the algorithm in several examples with di�erent structures.
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The speci�cations of program, computer, stopping criteria and the maxi-

mum number of iterations are the same presented in Chapter 2 and therefore will

be omitted here.

To calculate the σ�approximate K-steepest descent direction, described in a

practical way in the previous section, we created a subroutine using the Conditional

Gradient Method-CGM. So the subroutine stops when we �nd a y satisfying (4-4)

or when it satis�es inequality S(xk) = 0. We will continue presenting this algorithm

which can be found in [3].

We created the diagram 4.1 to illustrate how Algorithm 4.7 was implemented

with the search σ�approximate. Note that rectangles are part of the routine of

Algorithm 4.7 and the circles refer to the subroutine referring to algorithm 4.13.

Algorithm 4.13. Start with x0 ∈ S ⊂ Rn. Generate the sequence {xk}, ∀k =

1, 2, . . . via the following steps:

1. Compute

pk = argmin{⟨p− xk,▽f(xk)⟩ : p ∈ S}. (4-9)

2. Stopping Criteria: Let

S(x) := min
p∈S
⟨p− x,▽f(x)⟩. (4-10)

If S(xk) = ⟨pk − xk,▽f(xk)⟩ = 0, STOP. Else, goto Step 3.

3. Line search: Compute

λk−1 = argmin f(xk + λ(pk − xk)). (4-11)

Update xk+1 = xk + λk(pk − xk).

4. Set k ← k + 1. Goto Step 1.

All problems were solved 300 times. Tables 4.1, 4.2 and 4.3 were mounted

in blocks of four lines. The four lines are dedicated to the corresponding results.

In the �rst line, �%� are the percentages of runs that reached a critical point.

In the second line, �it�, for the successful runs, displays the average of iteration's

numbers. In the third line, �Itint� is the average of the internal interactions, this is,

the subroutine that calculates the σ�approximate. Finally, in the fourth line of the

�Time� block, we have the average time taken for the algorithm to �nd a critical

point. The �rst columns of the tables are dedicated to the identi�cation of the

problems, the paper where we found it, “n” and “m” give the number of variables

and objectives respectively and “x0” represents the starting points from a uniform
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choose x0 ∈ Rn;
k ←− 0; y ∈ D;

y is σ−
approximate

K−steepest descent
directions?

(Does y satisfy
(4-4))?

no

compute p,
as in (4-9);
compute s,
as in (4-10);

s = 0?

yes

no

do,
λ satisfy (4-11);

yk+1 = y + λ(p− y)
k ← k + 1,

yes d = −JF ′Wỹ
f(x, d) = yl+1

θ(x) = f(x, d) + ∥d∥2
2

θ(x) = 0?

no

compute tk for

a line-search
of Armijo-type.

yes
STOP

do,
xk+1 = xk + tkd

k;
k ← k + 1;

Figure 4.1: Fluxogram of Algorithm 4.7.
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random distribution inside a box speci�ed. The last ten columns are dedicated to

the corresponding results with the variation of σ between 0.0 and 0.9.

We did the performance pro�le over time to compare the exact search

(σ = 0) with the search σ�approximate varying the σ the same way as in the

tables. For more details on performance pro�le, see [13].

We need to answer a question: The quality of Pareto points when using a

σ�approximate direction is as good as when we use the exact direction? To answer

this question let us present the purity metric and spread metrics graphs, which show

the pareto curve quality. See [8, 22].

Furthermore, the direction σ�approximate gives us a θ(x) also approximate,

thus, it is necessary to verify the quality of the critical points obtained by the

algorithm. So, based on articles [8, 22] or Appendix A, we present the performance

pro�le for the Purity metric, which compares the non-dominated points belonging

to the Pareto front generated by each σ, compared two by two. In this way, the

algorithm that presents less dominated points has a better performance. Graphs

were generated comparing the exact direction �σ = 0� with the best performance in

terms of time, that being σ = 0.8.

In order to evaluate the quality of pareto points, we will also present the

�Γ�Spread metrics� and the �∆�Spread metrics�. The �Γ�Spread metrics� compare

the size of �holes� of pareto front, thus, the best pareto front is the one that presents

minors �holes�. The �∆�Spread metrics� measure how well the points are distributed

over a pareto front.

4.3.3 First group of problems

Twelve simple convex examples form the �rst group of problems. So, it was

relatively easy for the algorithm to �nd critical points. The numerical results appear

in Table 4.1.

Figure 4.2 presents a performance pro�le, using time as criterion, comparing

the results, obtained by the algorithm for di�erent values of σ: from σ = 0, which

corresponds to the use of exact K-steepest descent direction, to σ = 0.9, which

corresponds to values close to the maximum allowed for σ. This graphic suggests

that, regarding computational time and considering only these ten values, the best

option for σ is 0.8.

In Figures 4.3, 4.4 and 4.5, we show a comparison of quality of the Pareto

fronts computed by the algorithm when σ = 0 and when σ = 0, 8. We did these

comparisons by three di�erent criteria: the purity metric in Figure 4.3, the Γ-spread

metric in Figure 4.4 and the ∆-spread metric in Figure 4.5.
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Figure 4.2: Performance pro�le-Time Figure 4.3: Purity metric-G1

Figure 4.4: Γ�Spread metric Figure 4.5: ∆�Spread metric

Looking at Table 4.1 we see that in general directions σ�approximate have

a more satisfying performance than exact direction (σ = 0), moreover, we also

conclude that as �σ� increases, the results improve, showing that the values 0.8 and

0.9 are the best results. In this group of examples, almost all the problems were

solved, this is, in almost 100% of the 300 times, each problem was compiled until

the algorithm stopped at a critical point. Iterations �It� of the algorithm decrease as

the σ increases, and the same happens to internal iterations �Itint� of the routine,

which give the direction σ�approximate, and the time �Time�, that represents the

time spent for the algorithm to �nd a critical point."Time", that represents the time

spent for the algorithm to �nd a critical point.

We can also see in the graph of performance pro�le (Figure 4.2) comparing

time, that both robustness and e�ectiveness of the search σ�approximate are better,

also having a better prominence for the σ with higher values.

Figure 4.3 shows that the 0.8-approximate direction is better than the exact

K-steepest descent direction in the sense that it generated fewer dominated points.

On the contrary, Figure 4.4 shows that the exact direction is better than
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the approximate direction because the computed Pareto set has, in this case, fewer

"holes".

Figure 4.5 shows us that, according to the ∆−Sprenad metric criterion, the

generation of the Pareto set, when using the exact direction, is more robust than

when using the 0.8-approximate direction. On the other hand, the generation of the

Pareto set, when using the 0.8-approximate direction, is more e�cient than when

using the exact direction.

4.3.4 Second group of problems

The second group of problems is formed by six convex problems more

elaborate. Table 4.2 presents information of this group of problems.

Figure 4.6: Time Figure 4.7: Purity metric

Figure 4.8: Γ�Spread metric Figure 4.9: ∆�Spread metric



4.3 Computational experiments 121

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

A
P
4,

[1
]

%
99
.0
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

3
It

39
7.
32

35
4.
68

31
6.
00

38
6.
89

32
2.
27

25
3.
82

22
2.
02

21
7.
02

20
9.
02

14
5.
53

m
=

3
It
in
t

1.
13

0.
87

0.
88

0.
88

0.
87

0.
81

0.
80

0.
74

0.
73

0.
77

x
0
∈
[−

10
,1
0]

n
T
im

e
3.
96
11

1.
12
99

0.
71
04

1.
46
28

0.
84
69

0.
73
14

0.
44
91

0.
35
07

0.
40
05

0.
51
94

B
K
1,

[3
2]

%
10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

2
It

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

m
=

2
It
in
t

0.
50

0.
47

0.
44

0.
41

0.
37

0.
35

0.
31

0.
31

0.
28

0.
20

x
0
∈
[−

5,
10
]n

T
im

e
0.
00
84

0.
00
89

0.
00
69

0.
00
66

0.
00
59

0.
00
61

0.
00
52

0.
00
50

0.
00
46

0.
00
33

F
D
S
,
[2
0]

%
98
.0
0

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

5
It

88
.1
0

88
.6
9

86
.1
8

87
.2
7

82
.6
1

79
.8
3

75
.1
6

88
.6
6

80
.7
0

78
.9
2

m
=

3
It
in
t

1.
03

0.
99

0.
97

0.
95

0.
94

0.
92

0.
91

0.
89

0.
88

0.
85

x
0
∈
[−

2,
2]

n
T
im

e
1.
06
38

0.
94
37

0.
89
86

0.
89
42

0.
81
47

0.
78
97

0.
73
76

0.
86
96

0.
77
50

0.
74
52

M
G
H
33
,
[4
3]

%
10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

10
It

2.
92

2.
80

2.
87

2.
89

2.
85

2.
90

2.
88

2.
91

2.
83

2.
96

m
=

10
It
in
t

0.
82

0.
81

0.
79

0.
79

0.
80

0.
79

0.
76

0.
74

0.
76

0.
71

x
0
∈
[−

1,
1]

n
T
im

e
0.
02
44

0.
02
24

0.
02
28

0.
02
26

0.
02
26

0.
02
37

0.
02
15

0.
02
20

0.
02
10

0.
02
09

T
oi
8,

[5
3]

%
10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

2
It

3.
01

2.
78

2.
95

3.
77

3.
98

4.
50

4.
21

4.
26

4.
41

3.
16

m
=

2
It
in
t

0.
69

0.
66

0.
67

0.
73

0.
74

0.
77

0.
74

0.
74

0.
73

0.
61

x
0
∈
[−

10
,1
0]

n
T
im

e
0.
03
79

0.
03
29

0.
03
11

0.
04
40

0.
04
60

0.
05
12

0.
04
78

0.
04
73

0.
04
68

0.
02
48

Z
L
T
1,

[3
2]

%
10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

10
0.
00

n
=

10
It

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00



4.3 Computational experiments 122

m
=

5
It
in
t

0.
50

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

x
0
∈
[−

10
00
,1
00
0]

n
T
im

e
0.
00
93

0.
00
04

0.
00
04

0.
00
04

0.
00
04

0.
00
04

0.
00
04

0.
00
04

0.
00
04

0.
00
05

T
a
b
le

4
.2
:
C
o
n
ve
x
P
ro
bl
em

;
G
ro
u
p
II



4.3 Computational experiments 123

Looking at Table 4.2, we see the same characteristics of group 1 of problems,

this is, almost all examples are resolved 100% of the 300 times they have been

compiled, and as σ increases, iterations �It�, internal iterations �itint�, and time

�Time� are decreasing, respectively.

Figure 4.6 shows that the biggest σ, �0.8� and �0.9�, are the ones with

the best performances. Figure 4.7 shows that the exact search (σ = 0) has fewer

dominated points than the search σ�approximate. Figures 4.8 and 4.9 show that

both in Γ�Spread metric and ∆�Spread metric, the σ�approximate has better

performance.

4.3.5 Third group of problems

The third group of problems is formed by twenty two non-convex problems.

Tables 4.3 presents information of this group of problems.

Figure 4.10: Performace Pro�le-Time Figure 4.11: Purity metric-NC

Figure 4.12: Γ-Spread metric Figure 4.13: ∆-Spread metric
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Table 4.3 shows us that with the exception of problem LTDZ, practically

all the examples were 100% solved and the standard observed in the other two

groups of problems remains, that is, as σ increases, the performance of the algorithm

improves, so much in iteration, internal iteration as in time. Problem LTDZ does

not perform well, the percentage of problems solved ranges from 11 to 20 percent,

not having a standard in the other criteria. Figure 4.10, referring to Performance

Pro�le and comparing the time we observe that the pattern of the two previous

groups is maintained, this is, the σ's largest value has the best performance in both

e�ciency and robustness. In Figure 4.11 the result is inconclusive, that is, we can

not decide which algorithm has the least dominated points. The same is observed in

the ∆�Spread metric, having a slight tendency to say that in the Γ�spread metric

the exact direction tends to perform better, that is, has �fewer holes�.

4.3.6 Chapter conclusion

In summary, we observe that the performance of a σ�approximate K-
steepest descent direction is better than the exact direction for both convex and

non-convex examples. And when we look at the quality of the critical points, it does

not get worse when comparing a σ�approximate K-steepest descent direction to an

exact direction. Therefore we conclude that the way to calculate a σ�approximate

K-steepest descent direction presented in this chapter gives satisfactory results when

compared to the exact direction.

The procedure presented in this chapter is not directly related to the linear

search used, then it becomes very suggestive to use the way we calculated the σ�

approximate K-steepest descent direction with the new linear search introduced in

Chapters 2 and 3. We intend to present these results in future works.



Final remarks

This work was divided into basically two parts. In the �rst, a new way of

computing the step length αk was presented. This search is relevant because it uses

only gradient information i.e., it does not work with functional values. Our numerical

experiments suggest that it has better performance than other algorithms when

evaluating the gradient is easier that evaluating the function itself. In Chapter 2,

the new line-search procedure was used replacing the Wolf conditions in conjugate

gradients algorithm and, in Chapter 3, the same procedure replaced Armijo-type

search in the steepest descent algorithm. Numerical experiments were performed to

test the e�ciency and performance of our approach.

In the second part of the thesis - Chapter 4, we discussed a practical way of

computing σ � approximate K � steepest descent directions. We compared, also, the

performance of descent algorithm when σ assumes di�erent values. Our numerical

experiments suggest that σ = 0.8 has best performance without lost of quality of

the generated Pareto front.

We can foresee three di�erent continuations for our work.

First, we intend to study the behavior of the line-search proposed by us

when applied over σ-approximate steepest descent direction, instead of the exact

one, and when σ-approximate steepest descent direction replaces the steepest descent

direction in the computation of conjugate gradient directions.

Secondly, it is worth studying the behavior of other classes of algorithms,

for instance, Newton and projected gradient, when the line-search is performed

according to our proposal.

Finally, it seems to be possible to apply our framework to vectorial varia-

tional inequality problems, since the line-search use only information of �rst order.
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APPENDIX A

Metric

The information in this appendix was taken from [8, 22].

A.1 Purity metric

�Let Fp,s be the approximation to the Pareto front computed by solver s for

problem p. Let Fp be the approximation to the Pareto front obtained by the union

of all individual Pareto approximation, ∪s∈SFp,s, where all dominated points are

removed. Since the true Pareto front is not known for all problems in our problems

database, we consider Fp in place of the true Pareto front. We de�ne the purity

metric as the number of points in Fp divided by the number of points solver s is

able to compute that are not dominated by any other point computed, i.e.,

tp,s =
|Fp|

|Fp,s ∩ Fp|

The purity metric measures the inverse of how many nondominated points a solver is

able to compute from the set of all nondominated points computed. In our version of

the metric, small values are better, as necessitated when using performance pro�les.

In case |Fp,s ∩Fp| = 0 we set tp,s :=∞, meaning that solver s was unable to provide

even a single nondominated point for problem p.�

A.2 Spread metrics

�While the purity metric measures how well a solver is able to compute

nondominated points, the purity metric is unable to provide any information about

how points are spread over the Pareto front. In order to understand whether a given

solver is able to provide an approximation to the Pareto front whose points are

�well distributed,� we consider two additional metrics for our performance pro�les.

Let the approximated Pareto front computed by solver s for problem p be formed

of N points x1, . . . , xN , and let these points be sorted by objective function j, i.e.,
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fj(xi) ≤ fj(xi+1) (i = 1, . . . , N). Furthermore, let x0 and xN+1 be the extreme values

for objective j; i.e., x0 is the best known approximation to a global minimum of fj,

and xN+1 is the best known approximation to a global maximum of fj, computed

over all Pareto front approximations obtained. De�ne δi,j = |fj(xi+1)− fj(xi)|, and
let δ̄j (j = 1, . . . ,m) be the average of the distances δi,j. The Γ > 0 and ∆ > 0

metrics are then de�ned as

Γp,s = max
j∈1,...,m

max
i∈0,...,N

δi,j,

and

∆p,s = max
j∈1,...,m

(
δ0,j+δN,j+

∑N
i=1 |δi,j−δ̄j |

δ0,j+δN,j+(N−1)δ̄j

)
.

Including x0 and xN+1 in the above is important, as f(x1) and f(xN) may be close to

each other but far away from the true Pareto front extremes. This inclusion ensures

that the metric Γ is always well de�ned, while ∆ is not de�ned in the case N = 1,

x0 = x1 = xN+1. While the Γ metric measures the largest gap in the Pareto front,

the ∆ metric measures the scaled deviation from the average gap in the Pareto

front.�
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