UNIVERSIDADE FEDERAL DE GOIAS
INSTITUTO DE MATEMATICA E ESTATISTICA
PROGRAMA DE POS-GRADUACAO EM MATEMATICA

FLAVIO PINTO VIEIRA

Computing inexact K-steepest
descent directions and a new line
search procedure for Vector
Optimization

Goiania
2022

UFG

UNIVERSIDADE FEDERAL DE GOIAS
INSTITUTO DE MATEMATICA E ESTATISTICA

TERMO DE CIENCIA E DE AUTORIZAGCAO (TECA) PARA DISPONIBILIZAR VERSOES ELETRONICAS DE
TESES

E DISSERTAGCOES NA BIBLIOTECA DIGITAL DA UFG

Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goias
(UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertacdes (BDTD/UFG),
regulamentada pela Resolugdo CEPEC n2 832/2007, sem ressarcimento dos direitos autorais, de acordo
com a Lei 9.610/98, o documento conforme permissGes assinaladas abaixo, para fins de leitura, impressao
e/ou download, a titulo de divulgacdo da producdo cientifica brasileira, a partir desta data.

O conteudo das Teses e Dissertacdes disponibilizado na BDTD/UFG é de responsabilidade
exclusiva do autor. Ao encaminhar o produto final, o autor(a) e o(a) orientador(a) firmam o compromisso
de que o trabalho ndo contém nenhuma violacdo de quaisquer direitos autorais ou outro direito de
terceiros.

1. Identificagdo do material bibliografico

[] Dissertacao [X] Tese

2. Nome completo do autor

Flavio Pinto Vieira

3. Titulo do trabalho

Computing inexact K-steepest descent directions and a new line search procedure for Vector Optimization
4. Informagdes de acesso ao documento (este campo deve ser preenchido pelo orientador)

Concorda com a liberagao total do documento [X] SIM []NAO

[1] Neste caso o documento sera embargado por até um ano a partir da data de defesa. Apds esse periodo,
a possivel disponibilizacdo ocorrerd apenas mediante:

a) consulta ao(a) autor(a) e ao(a) orientador(a);

b) novo Termo de Ciéncia e de Autorizacdo (TECA) assinado e inserido no arquivo da tese ou dissertacao.

O documento ndo serd disponibilizado durante o periodo de embargo.

Casos de embargo:

- Solicitacdo de registro de patente;

- Submissdo de artigo em revista cientifica;

- Publicacdo como capitulo de livro;

- Publicacdo da dissertacdo/tese em livro.

Obs. Este termo devera ser assinado no SEI pelo orientador e pelo autor.

eil _ Documento assinado eletronicamente por Orizon Pereira Ferreira, Professora do Magistério
;?mm"a Lﬁ Superior, em 24/03/2022, as 14:35, conforme horario oficial de Brasilia, com fundamento no § 32 do
art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

eletrénica

1 of2 29/04/2022 11:14

Seil Documento assinado eletronicamente por FLAVIO PINTO VIEIRA, Discente, em 25/03/2022, as 11:16,
AP SwSo @ conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n? 10.543, de 13
eletrdnica de novembro de 2020.

R E
Al

r=;

Referéncia: Processo n? 23070.009185/2022-11 SEI n2 2783520

2 of 2 29/04/2022 11:14

FLAVIO PINTO VIEIRA

Computing inexact K-steepest
descent directions and a new line
search procedure for Vector
Optimization

Tese apresentada ao Programa de Pos-Graduacao do
Instituto de Matematica e Estatistica da Universidade
Federal de Goiés, como requisito parcial para obtencao
do titulo de Doutor em Matematica.

Area de concentracao: Otimizacao.
Orientador: Prof. Dr. Orizon Pereira Ferreira

Co-Orientador: Prof. Dr. Luis Roman Lucambio Pérez

Goiania
2022

Ficha de identificacdo da obra elaborada pelo autor, através do
Programa de Geracdo Automéatica do Sistema de Bibliotecas da UFG.

Vieira, Flavio Pinto

Computing inexact K-steepest descent directions and a new line
search procedure for Vector Optimization [manuscrito] / Flavio Pinto
Vieira. - 2022.

cxxxii, 132 f.: il.

Orientador: Prof. Dr. Orizon Pereira Ferreira; co-orientador Dr. Luis
Romén Lucambio Pérez.

Tese (Doutorado) - Universidade Federal de Goiés, Instituto de
Matematica e Estatistica (IME), Programa de Pds-Graduagao em
Matematica, Goiania, 2022.

Bibliografia. Apéndice.

Inclui simbolos, grafico, tabelas, algoritmos.

1. Otimizagao vetorial. 2. pareto 6timo. 3. otimizac&o irrestrita. 4. busca
linear ndo monotona. I. Ferreira, Orizon Pereira, orient. Il. Titulo.

CDU 517

UNIVERSIDADE FEDERAL DE GOIAS
INSTITUTO DE MATEMATICA E ESTATISTICA

ATA DE DEFESA DE TESE

Ata n° 02 da sessdo de Defesa de Tese de Flavio Pinto Vieira, que confere o titulo de Doutor em
Matematica, na area de concentracao de Otimizacao.

Ao vigésimo quarto dia do més de marco do ano de dois mil e vinte e dois, a partir das
dez horas, através de web-video-conferéncia, realizou-se a sessdo publica de Defesa de
Tese intitulada “Computing inexact K-steepest descent directions and a new line search procedure for
Vector Optimization.” Os trabalhos foram instalados pelo Orientador e presidente da banca,
Professor Doutor Orizon Pereira Ferreira - IME/UFG com a participagdo dos demais membros da Banca
Examinadora: Professor Doutor Luis Roman Lucambio Pérez - IME/UFG
Coorientador, Professor Doutor Leandro da Fonseca Prudente - IME/UFG membro titular interno,
Professor Doutor Max Leandro Nobre Gongalves - IME/UFG membro titular interno, Professora
Doutora Ellen Hidemi Fukuda - Graduate School of Informatics, membro titular externo e o Professor
Doutor Alfredo Noel lusem - IMPA membro titular externo. Durante a arguicao os membros da banca nao
fizeram sugestdo de alteracdo do titulo do trabalho. A Banca Examinadora reuniu-se em sessdo secreta a
fim de concluir o julgamento da Tese, tendo sido o candidato aprovado pelos seus membros. Proclamados
os resultados pelo Professor Doutor Orizon Pereira Ferreira - IME/UFG, Presidente da Banca
Examinadora, foram encerrados os trabalhos e, para constar, lavrou-se a presente ata que é assinada
pelos Membros da Banca Examinadora, Ao vigésimo quarto dia do més de margo do ano de dois mil e
vinte e dois.

TiTULO SUGERIDO PELA BANCA

Computing inexact K-steepest descent directions and a new line search procedure for Vector
Optimization

eil Documento assinado eletronicamente por Leandro Da Fonseca Prudente, Professor do Magistério
9 ° L‘ﬁ Superior, em 24/03/2022, as 12:27, conforme horario oficial de Brasilia, com fundamento no § 32 do

assinatura

| eletrdnica art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

—
eil Documento assinado eletronicamente por Orizon Pereira Ferreira, Professora do Magistério
2 ° f?_l| Superior, em 24/03/2022, as 12:28, conforme horario oficial de Brasilia, com fundamento no § 32 do

assinatura

| eletrdnica art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

1 of2 29/04/2022 11:13

r————
Seil Documento assinado eletronicamente por Luis Romdan Lucambio Pérez, Professor do Magistério
AP SwSo @ Superior, em 24/03/2022, as 13:03, conforme horario oficial de Brasilia, com fundamento no § 32 do
eletronica art. 42 do Decreto n? 10.543, de 13 de nhovembro de 2020.

r——
Seil Documento assinado eletronicamente por Ellen Hidemi Fukuda, Usuario Externo, em 24/03/2022, as
e @ 13:15, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n2 10.543,
eletrdnica de 13 de novembro de 2020.

r—
Seil Documento assinado eletronicamente por Max Leandro Nobre Gongalves, Professor do Magistério
o @ Superior, em 24/03/2022, as 14:37, conforme horario oficial de Brasilia, com fundamento no § 32 do
eletronica art. 42 do Decreto n2 10.543, de 13 de novembro de 2020.

RN
Seil Documento assinado eletronicamente por Alfredo Noel lusem, Usuario Externo, em 25/03/2022, as
el ﬁ 08:50, conforme horario oficial de Brasilia, com fundamento no § 32 do art. 42 do Decreto n? 10.543,
eletronica de 13 de novembro de 2020.

T

Referéncia: Processo n° 23070.009185/2022-11 SEIn® 2710780

2 of 2 29/04/2022 11:13

Dedico este trabalho a minha familia e a minha namorada.

Agradecimentos

Agradeco acima de tudo a Deus por ter me dado o dom da vida e permitido
com que eu chegasse até aqui. A Nossa mae Maria Santissima por ter guiado os
meus passos e sempre ouvido minhas preces.

A meus pais Alziro Camilo Vieira e Jovely Pinto de Faria por terem me
educado e sempre me ensina a importancia do conhecimento. A minha namorada
Natana Tuanny Pimenta dos Santos pelo amor, carinho e incentivo. Ao restante da
minha familia pelo exemplo de vida.

A meu coorientador Dr Luis Roman Lucambio Pérez pela confianca pacién-
cia e dedicagao em me orientar por todo o periodo em que desenvolvi este trabalho.
Ao professor Dr Orizon Pereira Ferreira pelo apoio durante todo esse trabalho.

Aos professores da banca, Professor Doutor Orizon Pereira Ferreira, Pro-
fessor Doutor Leandro da Fonseca Prudente, Professor Doutor Max Leandro Nobre
Gongalves, Professora Doutora Ellen Hidemi Fukuda, Professor Doutor Alfredo Noel
Iusem pelas valiosas contribuicoes a este trabalho. Aos demais professores da pds-
graduacao do IME-UFG, e em especial aos do grupo de Otimizacao, Glaudston
Bento, Jefferson Divino.

Aos grandes amigos que fiz no doutorado e que foram um pilar de sus-
tentacao para que eu conseguisse concluir esse curso, Ana Maria, Angie Tatiana,
Elismar Dias, Fernando Santana, Fernando Coltinho, Marcia do Socorro, Jeferson
Arley, Milton Javier, Raimundo Cavalcante, Yovani Adolfo.

Ao IF goiano pela licenca para a conclusao desse curso. Aos meus colegas

do IF goiano Campus Ipora pelo apoio.

“A matemaética é o alfabeto no qual Deus escreveu o universo.”

Galileu Galilei

Resumo

Vieira, Flavio Pinto. Computing inexact K-steepest descent direc-
tions and a new line search procedure for Vector Optimization.
Goiania, 2022. 135p. Tese de Doutorado Relatorio de Graduacao. Programa
de Pos-Graduagao em Matematica, Instituto de Matemética e Estatistica,
Universidade Federal de Goias.

Neste trabalho, propomos uma nova busca linear para otimizacao vetorial e uma
forma de calcular a dire¢do o—aproximada de maxima descida. Yunda Dong,
em 2010 e 2012, introduziu um procedimento de busca linear para o método de
Gradiente Conjugado usando apenas informacoes de primeira ordem, ou seja, sem
utilizar valores funcionais. Estenderemos seus trabalhos para Otimizacao Vetorial.
Estudaremos o método de gradiente conjugado, mostrando a convergéncia quando
sao utilizados os seguintes [;’s: Fletcher-Reeves, conjugate descent, Dai-Yuan,
Polak-Ribiére-Polyak e Hestenes-Stiefel. Também usamos essa mesma busca linear
para o método tipo-gradiente, mostrando sua convergéncia. Em 2004, Iusem e
Grana Drummond introduziram o conceito de o-aproximada KC-dierecao de maxima
descida. Eles mostraram que ao substituir a direcao de Cauchy por essas direcoes, o
resultado de convergéncia da sequéncia gerada é o mesmo: todo ponto de acumulagao
é critico. Apresentaremos um procedimento eficiente para calcular essas direcoes

quando o cone K for finitamente gerado.

Palavras—chave
Otimizacao vetorial, pareto 6timo, otimizagao irrestrita, busca linear nao

monotona, direcao o-aproximada.

Abstract

Vieira, Flavio Pinto. Computing inexact K-steepest descent direc-
tions and a new line search procedure for Vector Optimization.
Goiania, 2022. 135p. PhD. Thesis Relatorio de Graduagao. Programa de
Pos-Graduacao em Matematica, Instituto de Matematica e Estatistica, Uni-
versidade Federal de Goias.

In this work, we proposes a new linear search and a way for the computation
of o-approximate direction. Yunda Dong, in 2010 and 2012, introduced a new
linear search procedure for Conjugated Gradient methods using only first-order
information, i.e., without working with functional values. We extend his works to
Vector Optimization. We stud conjugate gradient methods, showing convergence
when the following (,’s are used: Fletcher-Reeves, conjugate descent, Dai-Yuan,
Polak-Ribiére-Polyak, and Hestenes-Stiefel. We also use this line search in the
gradient method, showing its convergence. In 2004, Tusem and Grana Drummond
introduced the concept of o-approximate K-steepest descent direction. They showed
that by replacing the Cauchy direction with these directions, the convergence result
of the generated sequence is the same: every accumulation point is critical. We will
present an efficient procedure for computing these directions when the cone K is

finitely generated.

Keywords
Vector optimization, Pareto-optimality, unconstrained optimization, non-

monotone line search, o-approximate direction.

Contents

Introduction 13
0.1 Thesis outline 20

1 Preliminary 21
1.1 Basic Results 21

1.2 Vector Optimization 22

2 Conjugate gradient methods with a new line search 30
2.1 Convex case 30
2.2 Non-convex case 37
2.3 General Case 39
2.3.1 Convergence Analysis 40

2.4 Analysis of convergence for specific 5;'s 43
2.41 Fletcher-Reeves 45

2.42 Conjugate Descent 46

2.43 Dai-Yuan 47

2.4.4 Polak-Riviére-Polyak e Hestenes-Stiefel 50

2.5 Complexity 51
2.6 Computational experiments 53
2.6.1 Constants 54

2.6.2 Numerical Results 55

3 Steepest descent method with a new line search 73
3.1 Modifying the new line search 73
3.2 Convex case 74
3.2.1 Rate of convergence 7

3.3 Lipschitz case 78
3.3.1 Rate of convergence 81

3.4 General case 83
3.5 Numerical experiments 85
3.5.1 Finding Pareto points 85

3.5.2 Building Pareto fronts 87

3.6 A new group of testing problems 89
3.6.1 Non-monotone algorithms 96

3.6.2 Four new problems 97

3.7 Chapter conclusion 103

4 How to compute inexact K-steepest descent directions
4.1 o-Approximate K-steepest descent direction
4.2 How to compute a o-K-descent direction
4.3 Computational experiments
4.3.1 An algorithm using an Armijo-type line-search along c-approximate K-
steepest descent direction
432 Computational experiments
4.3.3 First group of problems
434 Second group of problems
435 Third group of problems
43.6 Chapter conclusion

Final remarks
Bibliography

A Metric
A.1 Purity metric
A.2 Spread metrics

104
104
106
109

109
111
114
119
122
127

128

129

134
134
134

Introduction

Given f: R™ — R, the (scalar or common) optimization problem, denoted
by
rnmf(x), (0_1)

consists in the searching of 2* € R™ such that f(z) > f(2*) for all x € R". A
point like z* is called optimal solution of (0-1). Now, consider F': R™ — R™ and f;,
1=1,2,...,m, its coordinate functions. Problem

r%iin F(z) (0-2)
consists in the searching of z* € R™ such that there is no z € R™ with F'(z) # F(z*)
and fi(z) < fi(z*) for all © € {1,2,...,m}, ie., if f;(z) < f;(z*), for some j €
{1,2,...,m}, then there exists [€ {1,2,...,m} such that fj(x) > fi(z*). Problem
(0-2) is called a multicriteria, multiobjective or Pareto optimization problem,
and any point like x* is called a Pareto point. The multicriteria problem is a

generalization of the scalar optimization problem. Indeed, by taking m = 1, in
Problem (0-2) we have it reduces to Problem (0-1). Observe that

RT:{y:(ylw"aym) ER"|y1>0,...,ym >0}
is a convex, closed, pointed and non-empty cone, and the relations
uXvev-—ucR! and u<ve&Sv—ucint(RY),

where

int(RY) ={y=(w1,...,ym) € R | y1 > 0,...,yn > 0},

define two partial orders in R'. So, for convex, closed, pointed and non-empty cone
K C R™, problem

rr}cin F(x) (0-3)

is called a vector optimization problem and consists in the searching of z* € R"
such that it does not exist x+ € R™ with F(z) # F(2*) and F(x) <x F(z*), where

15

=i is the partial order defined by K in R™ as
u=xvev—uek and u<gv if v—uc€int(K).

Points as x* is called I — Pareto minimizer or Pareto ef ficient point. The image
of x* by F is the Pareto front in R™. Sometimes, it is useful to consider weakly
efficient solutions of Problem (0-3). A point is called weakly efficient when there
is not y such that F(y) <k F(x). See 20, 21, 27, 28, 34, 39, 40, 42].

The history of Optimization Problem (0-1) blends together with that of
Mathematics itself and has developed over time. Euclid (300 be) already considered
the shortest distance between a point and a line and showed that a square have
the largest area between the rectangles of the same perimeter. In the centuries
17 and 19, Newton and Gauss had already proposed iterative methods to move
towards a minimum. In 1847 Cauchy presented the gradient method. The term
"linear programming"” was mentioned for some situations by George B. Dantzig,
although the theory was introduced by Leonid Kantorovich in 1939. In 1947 Dantzig
published the Simplex Algorithm and in the same year John von Neuman created
the theory of duality. Over the course of time, several other methods were created
and generalized to more general contexts.

Problem (0-2) emerged aiming to fill some gaps left by other sciences.
Francis Y. Edgeworth (1845-1926) and Vilfredo Pareto (1848-1923) were the first to
introduce the concept of “non-inferiority” in economics and since then multi-objective
optimization has been developing and highlighting in areas such as engineering and
design. In 1881 the concept of “optimum” for multicriteria economic decision making
was defined, initially introduced at King’s College (London) and later at Oxford, by
Economics professor F.Y. Edgeworth. For them, “optimum” means a point such that
in any direction that we take small steps, the objectives do not increase together,
but one decreases while some others increase. In 1906 Pareto introduced his theory
stating that “The optimum allocation of the resources of a society is not attained
so long as it is possible to make at least one individual better off in his own
estimation while keeping others as well off as before in their own estimation”. And
from there, the development of multi-objective methods in Applied Mathematics
and Engineering has flourished, highlighting the contributions of Stadler 1979 and
Steuer 1985.

According to [39], the vector optimization theory started with the studies
of Edgeworth (1881) and Pareto (1906) about economic equilibrium and welfare
theories and with mathematical backgrounds of ordered spaces of Cantor (1897)
and Hausdorff (1906). Later also collaborated with the development of Problem (0-

16

3) the game theory of Borel (1921) and von Neumann (1926) and production theory
of Koopmans (1951). But, only with the publication of Kuhn-Tucker’s paper (1951)
on the necessary and sufficient conditions for efficiency, and of Deubreu’s paper
(1954) on valuation equilibrium and Pareto optimum, that vector optimization had
its deserved recognition.

Let I of class C!, i.e., the first-order derivative of I at z, the Jacobian of
F at x, denoted by JF(x), is continuous. The image on R™ by JF'(x) is denoted by
Image(JF(x)). A necessary condition for the K-optimality of x* is

—int(K) N Image(JF(z*)) = 0.

A point x* of R™ is called KC-critical for F' when it satisfies this condition. Therefore,
if is not K-critical, there exists v € R” such that JF(z)v € —int(K).

In this thesis, we study two kinds of iterative methods for Vector Opti-
mization: the class of steepest-descent methods and the class of conjugate gradient
methods.

One of the oldest and simplest method for Problem 1 is the Cauchy Method
or Gradient Method - see [5]. Tt consists of generating a sequence {z*} given by
¥ + ad® where a4 is the step length and d” is the direction. This procedure has
been extended by Fliege and Svaiter for the multiobjective context in [21] and for
a more general context of vector optimization by Grana-Drummond and Svaiter in
|28].

In 1964 Fletcher and Reeves introduced in [18] the conjugate gradient

methods for Problem (0-1). It consists of generating a sequence given by
e = ob 4 qd®, k=0,1,2,...,

where o, > 0 is the step length, and d* € R" is the line search direction. The
direction is defined by

dk_ —Vf($k)> 1fk:0>
| =) + BedEt, itk >,

where fj is a scalar algorithmic parameter. When f is a nonquadratic function, the
algorithm is known as nonlinear conjugate gradient methods and we have several

formulas for SB;. Below we list some of them:

LL‘k iEk
Fletcher-Reeves (FR) [18] : g = Wgy&,&&:gﬁmﬁl»,

. — xk xk
Conjugate descent (CD) [19]: gy = <;Y_f1(7v}’(vgcﬁl)>)>,

17

(Vf (@), 7 f ("))
—1 -k

Dai-Yuan (DY) [9] Bk = 7 N @E) = @R)

dk

Polak-Ribicre-Polyak (PRP) [46, 47]: §, = (S Lglle gl)

Hestenes-Stiefel (HS) [30]: 5x = <7di(fi)§vf{:§f;fvvf{£fi;)>.

The nonlinear conjugate gradient methods, as well as the respective beta’s
listed above, were extended to vector context by Lucambio and Prudente, see [40].

Throughout history, iterative methods have been developed to solve Prob-
lem (0-1), where in each iteration z* a line search «y, is made along one direction d".
In addition to those already mentioned, second-order methods stand out for their
rapid convergence, as Newton’s method, which consists of generating a sequence
{2*} with the direction given by (—(/2f(2%))~1 v f(2*)). We also remember the
non-monotone line search methods, which produce a sequence for which not neces-
sarily all objectives are decreasing. Between then, we must highlight the max-type
and the average-type methods introduced in [29] e [54], respectively.

Such methods were generalized to the vector or multicriteria context as
well as their respective directions and line searches. The direction of the Gradient
(Steepest descent) has been extended together with the line search of the Armijo by
Fliege and Svaiter in [21] and Drummond and Svaiter in [28]. The direction of the
Newton in [20] by Fliege, Drummond and Svaiter. The direction of the conjugate
gradient, the standard Wolfe conditions and strong Wolfe conditions have been
extended in [40] by Lucambio and Prudente. In the same way, the max-type and the
average-type non-monotone line searches were generalized in [17, 42, 49].

The object of study in this thesis is the Problem (0-3). We will present a
practical way to calculate a c—approximate C-steepest descent direction, in addition
to generalizing a new way to calculate step length using gradient information only,
all this in the vector context.

In the first part of this work we will present a new way to calculate the
step length aj. Introduced initially in 2010 by Yunda Dong, for the conjugate
gradient method for the scalar problem - see [14]. In this paper, the author presented
general convergence results and in 2012 the same author, in [15], presents specific
convergence results for the Polak-Ribiére method, see |46, 47]. We will extend this
procedure for vector optimization problem. This new search is of great importance
because works only with gradient information, so the method is quite efficient for
functions that have a simpler gradient expression than itself.

The idea, for scalar problems, is the following. Assume that d is descent

18

direction for F' at z, i.e., there is an interval of step-sizes, (0, 7), such that 0 <t < 7
implies that F(z + td) < F(z). Take p > 0 and compute v > 0, such that

vld|l*
p

(F'(@ + pd) , d) > t(p) = ==

+0(F'(z), d),

where § € (0,1) is a given parameter. It is easy to find such v. Indeed, if
(F'(z + pd) , d)y > 6(F'(Z), d) then, any v > 0 will fulfill the condition, otherwise

(0F'(z) — F'(Z + pd), d)

v=2 (0-4)
plld]?
Satisfies the required condition. Now, given w € (0, 1), calculate
i=min{j € N: (F'(z +wpd), d) < {(wp)} (0-5)

and set the step length o = w'. Observe that (F'(Z + w/d), d) — (F'(z), d) and
l(wip) — £(0) = §(F'(z), d) as j — oo because w € (0,1) and F” is continuous.
Henceforth, since § € (0,1) and (F'(z), d) < 0, the existence of i is assured. The

following example shows that our line search procedure can be non-monotone.

Example 0.1. Toke p=w = 0.9, § = 0.001 and

5 sin(mmx).
m

flz) = +;Z [—3sin(mmn/5) + 5sin(4dmn /5)

At x =0, we have f'(0) = —1. Then, d = 1 is descent direction for f at 0. By (0-4)
v = 4.5414 and by (0-5) i = 1 because f'(0,81) < £(0,81). Therefore, the new iterate
would be 0,81 and f(0,81) = 0.081220 > f(0) =

In the multi-objective setting, define
f(Z+ad,d) =max {(F(Z +ad),d): r=1,2,...,m},

and the line search to consider is the following: compute v > 0, such that

vld|®
2

@+ pd, d) > o) = =20, 1 65z, 0),
where p > 0 is given. Then, using a fixed w € (0, 1), compute

i=min{j € N: f(Z+wipd, d) < {(wp)}.

Finally, set the step length o = w’. As we will see, function f is continuous. Then,

19

05—

(081,0,0812)

(0, -0.0009827)

(0.81, -1.8402)

(0.9, -2.0446)

Figure 1: The line search, case scalar.

all the indicated computations are possible. The following example illustrates the

behavior of our procedure.

Example 0.2. As in Ezample 1, take p = w = 0.9, § = 0.001. Consider the bi-
criteria optimization problem where the objective function F': R — R? is defined as

follows:

3 1 70 —3sin(mn/5)+5sin(dmn/5) | .
—5T T = D met - sin(mmx)

F(z) =

7725953 + 1022 — 3x

Atz =0, we have JF(0) = (—0.9827 —3)T, implying that d = 1 is descent direction
for both objective. Observe that f(0,1) = —0.9827 and f(0.81,1) = —2.0961. Then
v = 4.5414. Therefore, f(0.81,1) < ¢(0.81) and the new iterate would be x = 0.81.
Function-values F(0) = (0 0)T and F(0.81) = (0.0812 — 0.2976)" are non-

comparable according to the order defined by the Pareto cone.

We use this new line search in the vector context for the Conjugate Gradient
method where we reproduce the same results presented by Lucambio and Prudente
in [40]. In addition, we will replace the Armijo-type search in the steepest-descent
algorithm with the new line search that we are proposing. We show some convergence
results and present some numerical experiments testing the effectiveness of the
resultant algorithm.

In the multi-objective scenario, the steepest descent direction d is calculated

20

(081,-1,8402)
(081, -2,0061)

(09, -2,0446)

Figure 2: The line search, case bi-criterion.

solving the problem - see [21]

Minimize f(x,d) + [|d|]*.

. (0-6)
subject to d e R"

Fliege and Svaiter, in this same article, suggested an approximate way to calculate
the direction: d is a approximate solution of (0-6) with tolerance o € (0,1] if
f(z,d) + i||d||* < 00(z), where f(z,v) = maz;(JF(z)d); and 6(x) is the optimal
value of Problem (0-6). Drummond and Tusem presented the same definition in
[27] and showed that every accumulation point of the sequence generated by the
projected gradient method is a stationary point, and when F' is convex the generated
sequence converges to a weakly efficient solution, in addition to presenting results of
limitation of direction o—approximate. For Drummond and Svaiter, [28], d is a o-
approximate K-steepest descent direction at z € R™ if f(xz,d) + 3[|d[|* < (1—0)6(x)
with ¢ € [0.1), now in the vector context. Moreover, they introduced a succinct
theory that served as the basis for us to present a practical way of calculating
an approximate direction. Fukuda and Drummond in [24] presented an inexact
projected Gradient Method for Vector Optimization Problems, in such work defining
a direction o—approximated in the same way as in [28|, they also presented some
properties for direction, obtaining convergence results similar to those in [27].

In the second part of this, we will present a practical way to calculate
a o-approximate KC-steepest descent direction for F at x, for vector Optimization
problem. Some numerical experiments were carried out to verify the efficiency of

this way of calculating direction.

0.1 Thesis outline 21

0.1 Thesis outline

This work is basically divided into two parts, the first one introduces
a manner to calculate the step length using only informations of first order,
whereas the second part introduces a practical form of calculating a c—approximate
KC—steepest descent direction for F at .

In Chapter 1 are present some concepts and results which will used through-
out this work.

In Chapter 2 we present a new way to calculate the step length using
gradient information only. This is composed of six sections where the first three
are dedicated to demonstrating the convergence of the method using the convexity
hypothesis of the function, Jacobian JF' is Lipschitz continuos and for the general
case, respectively. In the fourth section we discuss the convergence analysis for the
specific (’s of Fletcher-Reeves, Conjugate Descent, Dai-Yuan, Polak-Riviére-Polyak
and Hestenes-Stiefel. In the fifth section we present some results exploring the idea
of complexity and finally in the last section we describe the numerical experiments.

In Chapter 3 we present a Gradient-type Algorithm with the new line
search. Initially we present the search and then three algorithms, one using the
convexity of the function, another that use the value of the Lipschitz constant.
And finally, last one is for the general case, i.e., the objective are not convex and
the Lipschitz constant is unknown. The last section of this chapter is dedicated to
present numerical experiences with our algorithm for the convex case and for the
general case.

In Chapter 4 we present a practical way to calculate a o—approximate
IC—steepest descent direction. In the first section, we present some results that
will be used later. In the second section we explain how to calculate the direction
o—approximate. We show convergence results of a Gradient-type algorithm using the
o—approximate direction. Several experiments showing efficiency and robustness of

our propose were performed and are presented at the closing section of the chapter.

CHAPTER 1

Preliminary

In this chapter presents definitions and results known in the literature that

will be used later as well as present the notation used throughout this work.

1.1 Basic Results

We denoted by R” the n-dimensional Euclidean space. A vector x € R™ has

coordinates x!',... 2" that is z = (z',...,2™")7, it will be considered as a column
vector. Now, (-, -) stands for the usual inner product in R™ and || - || is the Euclidean
norm.

Henceforth, we will follow with the definitions of convex sets and functions.

The following results can be found in [6].

Definition 1.1. A subset C of R" is called conver if
ar+ (1 —a)y €C, V z,yeC, Vaell].

We will denoted an arbitrary set in R” by X and if it is convex by C.

Definition 1.2. Let C be a conver subset of R™. A function g : C — R is called

convex if
glaz + (1 —a)y) < ag(z) + (1 - a)g(y).

We will denote by conv(X) the conver hull of a set X, which is the
intersection of all convex sets containing &X', and it is a convex set. The conic hull
of a set X denoted by cone(X) is the intersection of all convex cone containing X.

Next, we will present the definition of the Lipschitz continuous gradient,

which will help us in further results.

Definition 1.3. (/5]/) A condition of the form

Ivy(x) =9 IS Lle—yl, vV zyeR",

1.2 Vector Optimization 23

15 called a Lipschitz continuity condition on \/g, with constant L > 0.

Now, we introduce the well-known concept of quasi-Fejér convergent in
Euclidean spaces. This definition was initially presented in [16], and it can be found

in a more elaborate way in [7, 33|.

Definition 1.4. A sequence {y*} € R" is said to be quasi-Fejér convergent to
V CR™, V #0, if for each v € V there exists a sequence of real numbers g, > 0
such that Y ;- ex < 00 and

|9 = v Pl o = | +er,

Theorem 1.5. (/33], Theorem 4.1) If {y*} is quasi-Fejér convergent to a nonempty
set V, then {y*} is bounded. If V contains a limit point of {y*} then {y*} converges.

We close this section with the result extracted from [40], which will con-
tribute to the results of Chapter 3.

Lemma 1.6. For any scalar a, b, and o # 0, we have

(a) ab < % + %

(b) 2ab < 202> + 2

(c) (a+0b)? < 2a%+20°

(d) (a+b)* < (1+2a%)a®+ (1+1/2a%)b?

Proof. See [40, Lemma 2.3| O

1.2 Vector Optimization

In this section we will present results and formalize the notation about
vector optimization problem. Further discussion on the subject can be found in
[34, 39]. Let L C R™ be a closed, convex and pointed cone with non-empty interior.
The pointed cone means that (K N (—K) = {0}), where K defines a partial order in
R™, <x. We say that u <g v if, and only if, v —u € K. Other partial order relations
in R™ are defined by KC analogously, for example, u <x v says that v — u lays in the
interior of K, (v —u € int(K)).

The positive polar cone of K is the set £* = {w € R™ | (w,y) >0, Vye K}.
Since K is closed and convex, K = K™, —K = {y e R™ | (y,w) <0, Y w e KL*}
and —int(K) = {y e R" | (y,w) <0, Ywe K*—{0}}. Let G € K* — {0} be
compact set such that

K* = cone(conv(G)),

1.2 Vector Optimization 24

i.e., I is the conic hull of the convex hull of G. For a generic K, the set
G ={we k| |uw]|=1},

has the desired property. In classical optimization L = R, , then £* = R, and we
can take G = {1}. For multiobjective optimization IC = R7, then £* = K and
we may take G as the canonical basis of R™. If K is a polyhedral cone, K* is also
polyhedral and G can be taken as the finite set of extremal rays of K*.

Let F: R® — R™, the first-order derivative of I’ at x, the Jacobian of F' at
x, will be denoted by JF(z), and the image on R™ by JF(z) will be denoted by
Im(JF(z)). F is of the classes C! if, the Jacobian of F is continuous.

Function F is called K-convex when
Flar+ (1 - a)y) =k aF(z) + (1 — a)F(y)

for all & € [0,1]. In the multi-criteria setting we have that R’’-convexity of F is
equivalent to the convexity of all coordinate functions of F'. When F' is convex and

continuously differentiable,
F(y) = F(z) + JF(z)(y —),

which is an extension of the classical gradient inequality for convex differential
functions. When F' is KC-convex and m > 1, optimal solution’s set may be non-

convex, unlike what occurs in the scalar optimization case.

Definition 1.7. A point x* € R" is an efficient or KC—optimal solution for problem
(0-3) if does not exist x € R™ with F(z) # F(2*) and F(x) < F(x*). The images
of x* by F' are called Pareto front in R™.

When K is the Pareto cone, ie., K = R7, (0-3) is known a multicriteria
optimization problem. In this case, optimal solutions are known as Pareto points.
Observe that, if x is Pareto, then it is impossible to improve one objective without
another becoming worse.

Let us geometrically illustrate the definitions above. We want to minimize
the functions fi(x) = 2? and fy(x) = (x — a)?, where a > 0, simultaneously, that
is, to minimize the bi-function F(x) = (fi1(x), fa(z)) considering the partial order
induced by R%. As we can see in figure 1.1, the minimum of fi(z) is # = 0 whereas
the minimum of fy(z) is = a. Observe that for values of = greater than “a” the two
objectives increase, if we move to the right, so any values belonging to this interval
would not be optimal or efficient solutions, the same is true for values of x less than

“0”. On the other hand, for values of z between “0” and “a”, as we move from left

1.2 Vector Optimization 25

to right, the values of function f; increases while those of f, decrease, the opposite
occurring when we walk from right to left. Therefore, any value of x between “0”

and “a” is an efficient or optimal point.

fi(z) = 2?

a

fa(z) = (z — a)?
M

Figure 1.1: Bi-criterion function.

The graphic of the image of F(x), Figure 1.2, shows that the functional
values for = greater than a or less than 0 do not belong to the Pareto front, because

in these intervals, the functional values increase or decrease simultaneously.

fo(z)

P

fi(z)

Figure 1.2: Image of F(x).

Figure 1.3 illustrates the Pareto front of F'(z). Note that if we choose a value
of F(zx) that does not belong in this range, there will always be a point belonging
that is better in at least one of the objectives, and it is not worse on the other.

We need to present optimality conditions for Problem (0-3). So, a necessary

condition for K-optimality of z* is
—int(KC) N Image(JF(z*)) = 0.

A point z* of R" is called K-critical for F' when it satisfies this condition. Therefore,
if = is not KC-critical, there exists v € R™ such that JF(z)v € —int(K). Every such

1.2 Vector Optimization 26

fa()

e ()

Figure 1.3: Pareto front.

vector v is a K-descent direction for F' at x, i.e., there exists T' > 0 such that
0 <t < T implies that F(z + tv) < F(z), see [27].

The following definitions and results can be found in [28|. Define the function
p:R™ — R
y — oy) =sw{({y,w)|weG}.

In view of the compactness of GG, ¢ is well-defined. Function ¢ has some

useful properties.

Lemma 1.8. Let y and vy € R™. Then:

(a) oy +y) < ¢y) +e(y) and o(y) —¢(y) < ey —y);
(b) Ify 2k y, then o(y) < o(y); if y <c ¢/, then o(y) < o(y);
(¢) ¢ is Lipschitz continuous with constant 1.

Proof. See |28, Lemma 3.1]. O

Function ¢ gives characterizations of —/KC and —int(K):
—K={yeR" [py) <0} and —nt(K)={ycR"|p(y) <0}.

Note that ¢(z) > 0 does not imply that = € K, but € K implies that ¢(z) > 0
and z € int(K) implies that ¢(z) > 0.
Now define the function f: R® x R" — R by

flz,d) = p(JF(z)d) = sup {(JF(x)d,w) | w € G}.

The function f gives a characterization of K-descent directions and of K-critical

points:
Lemma 1.9. Let x € R", then

(a) d is K-descent direction for F' at x if f(x,d) < 0;

1.2 Vector Optimization 27

(b) x is K-critical if and only if f(x,d) >0 for all d.
Proof. See |28]. O

The next function allows us to extend the notion of steepest descent
direction to the vector case.
Define v: R™ — R™ by

v(x) = arg min {f(x,d) + @ | d e R”} , (1-1)

and 0: R" — R by 0(x) = f(z,v(x))+||v(z)|*/2. Since f(z,-) is a real closed convex
function, v(x) exists and is unique. Observe that in the scalar minimization case,
where F': R" — R and K = R, taking G = {1}, we obtain f(z,d) = (VF(z),d),
v(z) = —=VF(z) and 0(z) = —||VF(x)||*/2. The following lemma shows that v(z)
can be considered the vector extension of the steepest descent direction of the scalar

case.

Lemma 1.10. (a) If x is K-critical, then v(x) =0 and 6(z) = 0.
(b) If x is not K-critical f(z,v(z)) < —M < 0, and v(x) is a K-descent
direction for F at x.

(¢c) The mappings v and 6 are continuous.
Proof. See |28, Lemma 3.3]. O

Since f(x,.) is positive homogeneous, it is easy to verify that

(@, v(x)) = —[lv()]*. (1-2)

For multiobjective optimization, where K = R, with G given by the

+
canonical basis of R™, v(x) can be computed by solving

Minimize o+ ||d|?

. . (1-3)
subject to [JF(x)d); <a, i=1,...,m.

see |21]. The following result displays the Lipschitz constant for f(x,d) and later we

will show that this same function is monotone non-decreasing.

Lemma 1.11. Function f(x,-) is continuous. If F is differentiable, then f is
continuous. If L is the Lipschitz constant of JF, then L||d|| is the Lipschitz constant

0ff('7 d)

Proof. Immediate consequence of Lemma 1.8(c). O

1.2 Vector Optimization 28

Recall that £': R" — R™ is called K-convex when
F((1=XNz+ Xy) =x (1 =N F(x)+ \F(y)
for all z, y € R™ and all A € [0, 1] -see |34, 39]. In other words, A € [0, 1] implies that
F(z)+ MF(y) — F(z)] — F(z + XNy — z)) € K. (1-4)

Lemma 1.12. If F € C' is convex then JF(x) is a subgradient of F at x.
Proof. Since F'is continuously differentiable, by (1-4) we get

i F(@) = Fla+ My —)
A—=0t A

+ F(y) — F(z) € K.

Hence,
F(y) zx F(z) + JF(2)(y — 2).

]

Above results can be fond at [34], Theorem 2.20. The last expression is the
K-vector version of the well known Jensen Inequality. Hence, analogous to the scalar

case, JF' is K-monotone operator, i.e.,
[JF(z) = JF(y)l(z —y) =k 0.

In the following lemma, we summarize two important facts, which we will use later
on.
Observe that

f(z,d) = max{(JF(z)d, w)|w € G} = maz{(JF(z)d, w)|w € conv(G)}.
Then,
0(x) = min {max {{JF(x)d,w)|w € conv(G)} + @| de R”} .
The dual of this problem above is

max {mim {JF(x)d,w)| d € R"} + @ lw e conv(G)}

max {mim {(JF(x)d, w) + @| deR" } lw e com}(G)}

1.2 Vector Optimization 29

maz {—wm € conv(G)} .

So, we achieve the following results.
Theorem 1.13. The following two statements are true

(a) For all w € conv(G),

o) > WIE@TOI?
(b) If w € argmin{||JF(z) w| |w € conv(G)} then, v(z) = JF(z)"w and

0(z) = — IIJF($2)TwII2'

Proof. Ttem (a) is true becuase the Weak Duality Theorem. Item (b) is true because

the Strong Duality Theorem since there is not duality’s gap between

I]I* _E () "w]?

2

min {f(:z:, d) + | d e R"} and max{ lw e conU(G)} .

Definition 1.14. We say that D € L(R™,R™) is a subgradient of F at x if

F(y) =x F(z) + D(y — z), for any y € R".

Lemma 1.15. Let F': R" — R™ be convexr and continuously differentiable.

(a) If F(y) =x F(x), then
(v(z), z—y) <0.

(b) Fiz x and d € R™. Function v: R — R, defined as
y(t) = fx +td, d),

15 monolone non-decreasing.

Proof. By Definition 1.14 and Lemma 1.12, we have that
0=x JEF(z)(y —x)

Take w € conv(G) such that v(z) = —JF(z)"w. Theorem 1.13 says that such w
exists. By Caratheodory’s Theorem - see Proposition B.6 in |5]- there are m + 1

elements of G wq, wy, ..., w,, and m + 1 non-negative scalars, A\g, A1, ..., A, such

1.2 Vector Optimization 30

that @ = > " Aw; and Y " ; A; = 1. Then

m

(v(),y —x) = (~JF(x) 0,y —x) = — Z N(JF () "wi,y —) (1-5)
=— Z N(JF(2) " (y — x),w;) > 0. (1-6)

To show item (b) take ¢t € R and w € G such that f(z +td,d) = (w, JF(x + td)d).
Then, ¢ > t implies

flx+td,d) = (w, JF(z +td)d) < (w, JF(x + td)d) < f(z + td,d)

where in the first inequality we use that JF' is -monotone, and in the second one,
we use the definition of f. O

CHAPTER 2

Conjugate gradient methods with a new

line search

In this chapter we will generalize to the vector context the line search
introduced in 2010 by Yunda Dong for the scalar conjugate gradient method, see
[14, 15]. It line search is characterizes by does not use of functional values, so, it
excels in problems where evaluating its gradients is simpler than the function itself.
This does not make use of functional values, so it has great advantages for problems
where evaluating its gradients is more simpler than the function itself. By extending
the Nonlinear conjugate gradient methods for vector optimization, in [40], Lucambio
and Prudente used as line search the standard Wolfe and strong Wolfe conditions.
We will rewrite the algorithm presented in [40] with the new line search proposed
here for vector optimization, we will call this method Nonlinear Conjugate Gradient
Methods with New Line search. We will show the well definition of the search and
convergence results, initially using the convexity hypotheses of the functional values
and after the Lipschitz gradient, and ultimately in the general case. We show too
convergence results for the specific beta’s of Fletcher-Reeves, conjugate descent,
Dai-Yuan, Polak-Ribiére-Polyak and Hestenes-Stiefel. Numerical experiments will
also be presented showing the efficiency of the new search in the conjugate gradient

algorithms to solve vector problems.

2.1 Convex case

We start this chapter by introducing the Nonlinear conjugate gradient
methods for vector optimization with a new line search for cases in which the
objective F'is convex. Initially two basic hypotheses are needed.

Under the hypothesis of K-convexity of F', we have the algorithm.

Algorithm 2.1. Given constants p > 0, w, 6 € (0,1), v > 1 and e € Int(K) such

that 0 < (e,w), for all w € G. Conjugate gradient algorithm for conver case is

defined as follows.

2.1 Convex case 32

0. Initialization: Take 2° € R™. Compute v(z°) and initialize k < 0.
1. Stopping criterium: If v(2*) =0, then STOP.
2. Direction: Define

N I C if k=0]
d‘_{v@ﬁ+ﬁm“2 ifk>1, (1)

where By s an algorithmic parameter.

3. Line search: Compute

VI pw||d ||
| Pl

o= min {52 1] et pad) >t} e

and

k zdk dk Vkﬂ"-’i||dk||2 < 6 k dk
ik:mm{izn flat b putd, d) g = < af) |

JF(a* + puid)db 4 w2 < 6 7R (k)b

4. Tteration step: Define
Qp = pwik7 (2_4)

and
oM = 2F 4 apd” (2-5)

Compute v(x**1), set k < k + 1, and go to Step 1.

The choice of updating [, remains deliberately open. In later sections we
will consider several choices of 85 that result in globally convergent methods.

The following Lemma assures us that if there is a ¢ such that

vit]|d*]

JF (2" + td*)d" + e =k 6JF(2F)d* forall k=0,1,...,

then the above inequality holds for all ¢ € [0,].

Lemma 2.2. Assume that I is KC-conver, e € Int(K) and there exists t > 0 such

that
b e, vetlldt]? ky 7k _ :
JF (2" 4+ td")d" + 5 e 2 0JF(z")d® forall k=0,1,.... (2-6)
Then, t € [0,1] implies
k ke, Uit]|d| ky 7k _ :
JF (2" 4+ td")d" + e 2 0JF(z¥)d® forall k=0,1,.... (2-7)

2.1 Convex case 33

Proof. Take t € [0,1]. Since JF is K-monotone and Me ~x 0, we get

(£ = B)lla*]”

[JF(a* + #d") — JF(z* + td*))d* + 2 e =x 0.

Then,

vt d"|? vit|d*|?

JF(z* +td*)d* + e =k JF(2F +td")d" + e =k 0JF(aF)d".

]

Since p > 0, w € (0,1) and v > 1, ji will be the smallest positive integer
that fulfills (2-2). If i) is computable, then Algorithm 2.1 is well-defined. Remember
that f is continuous with respect to its first argument because F' is continuously

differentiable - see Lemma 1.11. Next, we prove that i, is computable.
Lemma 2.3. For any k > 0 there exists integer iy, > 1 fulfilling (2-3).

Proof. Fori1=1

dk 2
by the definition of v,. Assume that
) % dk 2
f(a:k _‘_pwzdk:’dk) + Vi pw H H > 6f($k,dk),

for all positive integer 7. Then, taking limits as ¢ goes to oo, we obtain
fla,d®) = 6f(a*,d")

because f(-,d*) is continuous and w € (0,1). That is a contradiction because
f(a* d*) <0 and 6 € (0,1). O

The following result is of extreme importance in the demonstration of several

others.

Lemma 2.4. For k=0,1,... it holds

fla®, d"=1) < §f (a1 db). (2-8)

2.1 Convex case 34

Proof. Observe that, by (2-5) and (2-3),

f(xk,dk_l) — f(.Tk_l + Oék_ldk_l,dk_l)
) dkfl 2
S (5.](?(:6]6717 dk*l) _ Vk_lpwlk,I || 2 ||

<O f (M dE).

Let us now show that d* is descent direction for F at z*.

Lemma 2.5. For k=0,1,..., By > 0 and Take any c € (0,1), it holds

-l

(0) oty < <O,
(b) f(z*,d*) < cf(a* v(ah)).
Proof. (a) This proof is given by induction. For k& = 0, we have d° = wv(z?),
then, by Lemma 1.10(b), f(2°,d°) < —||v(z°)||*/2. For some k > 1, assume
that f(zF~1 d* 1) < —|jv(2F71)||?/2 < 0. Then, using definitions of d* and f,

Lemma 1.8(a), non-negativeness of S, (2-8) and Lemma 1.10(b), we get

fla,d) = f(2*, 0(a) + Brd™™") < f(a¥,v(2%)) + Bif (¥, d")

. kY12

S ||’U(2$)H +6k(5f(l‘k_1,dk_1)
o kY12

PRI

because, by assumption, f(z*~! d*1) < —||v(2*1)|?/2 < 0.
(b) When k = 0, d° = v(2°). Then, f(2° d°) = f(2° v(z?)) < cf (2, v(z)) , by
Lemma 1.10 (b). For k£ > 1, we have

f(z® v + Brd)
F@® v(a®) + Bef(*, d")

f(a*,d")

IN

by definition of d* and positiviness of (. By (2-8) and Lemma 1.9,
f(x® d*1) < 0. Lemma 1.10 (b) states that f(z*,v(z*)) < 0. Then,

flat,d¥) < f(a¥,0(a") < cf (", v(ah)).

]

Actually a stronger result holds: d* satisfies the sufficient descent condition,
that is, f(2%,d*) < cf(z*,v(2¥)) forall k=0,1,... and c€ (0,1).

2.1 Convex case

35

Next, we prove that if F'is convex, then Algorithm 2.1 generates a monotone

K-decreasing sequence {F(x*)}.

Lemma 2.6. Assume that F' is convex. Then,
F(z™) 2 F(a*) + day f (2", d")e,

for all k > 0.
Proof. Observe that, for k =0,1,2,...,

ag
F(2F) = F(2) +/ JF(zy, + td")d*dt
0
Then, by (2-3) and Lemma 2.2

(0973 1
F(2") < F(2) + / (6JF(x’“)dk - 5z/,€t||d’<||2@) dt
0

1
= F(z") + apd JF (z},)d" — ZLVkaink“%

For all w € G, it is true that

(w, f(z* d*e — JF(2*)d") = (w, f(a*, d¥)e) — (w, JF(2*)d")
(:L‘k, dk)(w, e) — (w, JF(:Ek)dk>

=f
because 0 < (e, w) < 1. By the definition of f,
f® d*) — (w, JFE(z®)d*) > 0.

Then,
f(z® d¥e = JF(2*)d".

Hence, by (2-10), we have

F(ka) <K F(xk) + ozk5f(:17k, dk)e.

(2-10)

]

Corollary 2.7. If F is convex, then {F(x")}x>o is strictly monotone K-decreasing,

ie., F(zF) < F(a®), k=0,1,....

Proof. Immediately.

]

2.1 Convex case 36

Assumptions:

A1. Function F is bounded below on £ = {x € R": F(x) <x F(2°)}, i.e., for any
sequence {y*} C L with F(y*) = F(y*™!), for all k, there exists F € R™
such that F(y*) =x F, for all k. There exists an open N such that £L C N
and JF is Lipschitz-continuous with constant L on N.

A2. Sequence {v;}, generated by Algorithm A, is bounded, i.e., there exists © such
that 0 <y <wvforall k=0,1,....

The following results are the basis for proving the convergence theorem.
Lemma 2.8. If A1 holds and F is convez, then Y, ayf(x®, d¥) is convergent.

Proof. Observe that under these hypothesis and by (2-9) we get that there exists F

such that i

F(2%) — F =k F(2°) — F(2") = Z —abf(zf, dYe
=0
because A1 holds also. Then,

for all w € G. n
The Zoutendijk condition for vector optimization problems,

>

2 TaE <

was introduced in [40]. With the next lemma, we show that a Zoutendijk’s like
condition is fulfilled by Algorithm 2.1
Assumptions A1 are minimal, i.e., every results on this work need both to

hold. Such hypotheses were already necessary for the algorithm in the scalar case.

Lemma 2.9. Assume that A1 holds and F is convex. Then,

1 f(a*,d")
> — e <o (2-11)
>0 L+ DY

2.1 Convex case 37

Proof. Observe that

v veagw | dF||?
(L—i—?k) Ozkw—1||dk”2 Loyw™ 1Hdkl|2 ann
-1 dk 2

- LHdkHka + apwtdF — :I:kH + M

2
-1 gk |2
2Lﬂﬁ+aw*fdﬁ—fuﬁﬁﬂ+ﬂ£ﬁfﬂﬁl
-1 dk2
Zuﬂ$k+fww%ﬁ#ﬁ)—nﬂmﬂdﬂ-%zﬁﬁg§lLJL

Taking in account (2-3), we get,

veoapw Y| d||?
2
> (6 —1)f(z",d") > 0. (2-12)

(L+%

2)mwﬂwmﬁzf@#+awrmh¢q—f@hﬂv+

From these last inequalities we get that

1 f2(ak, db) 1

0< <
L+%Z|WW2 w(0—1)

Oékf(l'k7 dk)

Since, by Lemma 2.8, >, ayf(x*,d*) is convergent, we conclude that

1 2(gk, dF
2: [z, d")

SieZ e T
O
Corollary 2.10. Assume that A1, A2 hold and F' is convex. Then,
F2(a*, d¥)
%; !WW
Proof. Tmmediately. O

Theorem 2.11. Assume that A1 and A2 hold and F is convex. If

2 T A = (219)

then,
liminf ||v(2¥)|| = 0.

Proof. Let us assume that there is v > 0 such that ||v(z*)|| > ~ for all k > 0. Then,

2.2 Non-convex case 38

using Lemma 2.5, we have

Hence,

2 kY12
0< L < [CCols < —f(a* d").
2 2
v lo(®)|I* 1 f2(a*,d")

< <
4(L+%>Hdk||2 4(L+%>Hdk\|2 L+% ¥ (|2

for all k£ > 0. Since (2-11) holds,

4 k jk\2

v 1 1 f(z",d")

- < < 00,
77 2 T < 2 L+ % T

in contradiction to our hypothesis, concluding that

liminf ||v(2¥)|| = 0.

]

Therefore, using the function convexity hypothesis we were able to demon-

strate the standard convergence result of the conjugate gradient method.

2.2 Non-convex case

In this section we consider non-convex [with JF' Lipschitz continuous.

This, we can present a new Algorithm of the Conjugate Gradient with a new line

search.

Algorithm 2.12. Let constants: p >0, w,d € (0,1) and v > 1.

0.
1.
2.

Initialization: Take 2° € R™. Compute v(z°) and initialize k < 0.
Stopping criterium: If v(z*) = 0, then STOP.
Direction: Define
k f k=20
v(xF) + Brd*L, if k> 1,

where By s an algorithmic parameter.

Line search: Compute positive integers

v pwl|d*||?

jkzmm{jzl | f(a® 4 pwd”,d") + 26f<x’2d’“>} (2-15)

2.2 Non-convex case

39

and

. y : 0—-1) ko gk
iy =ming ¢ > 1|pw’ < — f(z®,d")
{ T+ 5) 1T

where vy, = vk,
4. Tteration step: Define

ap = pw'*

and

o = oF 4 agdh.

Compute v(x**1), set k < k + 1, and go to Step 1.

(2-16)

(2-17)

(2-18)

The following Lemma shows that if JF'is L—Lipschitz continuous, then we

can bound the step length.

Lemma 2.13. Suppose that JF is L—Lipschitz continuous and t > 0 is such that

vit|d*|?

JF (2" + td*)d* + ek 0JF(z®)d* forall k=0,1,....

Then,
. (6—1)

t> o
(£+5) llas)?

f(z® d").

(2-19)

Proof. Define I(t) = ([JF(a* + td*) — 6JF(2*)]d*, w) + w(e,w). Note that,

1(0) = (1 — 6)(JF(2*)d*, w) and, by (2-19), I({) > 0.

(1) — 1(0) = ([JF (2 + td") — §JF(2M)]d", w) + w(e, w)
— (1 = 8§)(JF(z")d", w)
= ([JF (2" 4 td") — JF(2"))d*, w) + %W(e,w).

By hypothesis, JF' is L—Lipschitz continuous, so

([JF(a" 4 td*) — JF(z")]d", w) < |[JF(a* 4 td*) — JF(z")]d"|||lw]|
< Lt||d*|>.

2.3 General Case 40

Since l(f) > 0, we have

k|2
-1(0) < 1) ~ 100) < Ll + AL

(=) #lld-

L0 DIFEE w)
(L +%) |4

(e, w)

Implying

kodb).
(L) P Fe

]

Lemma 2.3 and Lemma 2.13 guarantee us the well definition of Algo-
rithm 2.12.
Condition (2-16) of Algorithm 2.12 guarantees that «ap <

d—1 .
@ —|(— oy H)dkHzf(xk,dk) and therefore by Lemma 2.13, we have JF(a* + td*)d* +
%’%”26 =x 0JF(2*)d* forall k =0,1,.... So we can rewrite Lemma 2.6 and

Corollary 2.7, whose respective proofs are identical, showing that function F(z%)

will be monotonous descending.

Lemma 2.14. Assume JF L— Lipschitz continuous. Then,
F(z™) 2 F(a*) + day f (2", d")e, (2-20)

for all k> 0.

Corollary 2.15. If JF L—Lipschitz continuous, then {F(x*)}yso is strictly mono-
tone K-decreasing, i.e., F(x*1) <x F(2%), k=0,1,....

Following the same idea of replacing the convexity hypothesis of function
F with that of JF L—Lipschitz continuous, the results, Lemma 2.8, Lemma 2.9,
Corollary 2.10, and Theorem 2.11 can be reproduced and demonstrated in the same

way. Thus, convergence is assured for this case.

2.3 General Case

In this section, we present an algorithm applicable to any continuously
differentiable function F. This procedure does not require knowledge about the

Lipschitz constant for the Jacobian of F'.

2.3 General Case 41

Algorithm 2.16. Let be four erogeneous positive constants: 6 and w < 1, v > 1
and p.

0. Initialization: Take 2° € R". Compute v(z°) and initialize k < 0.
1. Stopping criterium: If v(2*) = 0, then STOP.

2. Direction: Define
k A
g — v(z"), if k=0 (2:21)
(@) + Bpd" ik > 1,

where By 1s an algorithmic parameter.

3. Line search: Compute positive integers

J dk 2
ji = min {j S 1| f(ah 4 pwd,dhy 4 22T 6f(iv"“,d’“)} (2-22)
and
) 7 dk 2
iy = min {z >1 | fa* + pwid®, d) + M < 5f(xk,dk)} (2-23)
where v, = vk,
4. Tteration step: Define
oy = pcui’c (2-24)
and
2H = 2k agdb (2-25)

Compute v(z*1), set k < k+ 1, and go to Step 1.

The choice of updating [, remains deliberately open. In the next section,
we will consider several choices of (3, that result in globally convergent methods.
Well definiteness of Algorithm 2.16 follows from Lemma 2.3.

2.3.1 Convergence Analysis

Algorithm 2.16 successfully stops if a KC-critical point of F' is found. Hence,
from now on, let us consider that v(z¥) # 0 for all k > 0.

From now on, we will need some additional hypotheses on the problem
and/or Algorithm 2.16.

Assumptions

A3. Suppose that 0 < v <|| v(z¥) ||[< 7, and there exist constants b > 1 and A > 0
such that, for all k,

Br <b

2.3 General Case 42

and .
<\ =
|+ A= 18 < 5
where s~ = ¥ — gk=1,

Gilbert and Nocedal introduced in [25] a property to show the convergence
of the Conjugated Gradient Algorithm in the scalar context for the betas of PRP and
HS, this property has been extended to vector minimization in [40] and is reproduced
in this work as hypothesis A3. The following results assure us that changes in line

search directions are not too sudden.

Lemma 2.17. Consider Algorithm 2.16 with 8, > 0 and d* is a K-descent direction
of F at x*. Assume that assumptions A1l and A2 hold. Then,

o) II* _
W) rEp <%
ll
(ii) Z | u* — P ||?< oo, where uF = d¥/ || d* ||.
E>1

Proof. Once we have item (i), the proof of item (ii) would be quite similar to the

(
(i)

Since d* is a descent direction of F' at 2%, it implies that d* # 0. Hence,
| v(@®) ||* /|| d* ||* and u* are well defined. For (2-21) —Byd*~1 = —d* + v(z*), so

proof of Lemma 5.8(ii) in [40]. Let us proof item

I =Bed* " [P=] —d* +v(a®) |*.
By Lemma 1.6 (c)
Bill ™M P [d™ | + 1l o(=®) 1P < 21 P +2 [o(=®) [

R eaT
| B R ICACUH | 2-96
[#TFZ2 " [a]: (220

On the other hand, using (2-21) and (2-8)

0< _f<xk7 U(xk)) < _f(xk7 dk) + ﬁkf(xk7 dkil) < _f(xk> dk) + 5ka<xk717 dkil)‘

From the previous inequality and Lemma 1.6 (b) with @ = 1, we obtain

(—f(a,d*) + 6B f (" d" 1))

P2 (a*,d") + B (M a7 — 2f 2k, d)oBf (e d

At d’“)+5262f(LA 22 (@ dN)0 + B A /2
= (L+20°)(f*(=*, d) + B f* (", d") /2).

FA " v(a") <

IN

2.3 General Case 43

Since d* is a descent direction for F at z%, f(z* v(z*)) < — || v(z¥) ||* /2, then

F2(x% v(2k)) > v(z¥) ||* /4. Hence,

2 1
PO @)+ E P) 2 s PR) 2 s) I
(2-27)
Note that, by (2-26),
f2 k,dk f2 kfl’dkfl 1 H dk ||2 B B
e e = T [P e)
1 2 k 2
> |+ (5 -) e
2 k 2
_] di E |:f2(Ik,dk:) i %f?(ajkz—l’dk—l) _ ’}’7;?1)‘;‘2 fQ(xk—17dk—1):|

Using (2-27),

Pahd) | PELEY) 1 @) @) P o e
T a2 T L~ e e
EC Y (T St
- L i~ D)

The Zoutendijk condition holds under the hypotheses, and it implies that

f2(xF,d*)/ || d* ||* tends to zero, so we have

Pt | d) e |
Id* |2 =] 8(14-26%) [d* ||?
for all sufficiently large k. Using Zoutendijk the proof is complete. O

For A > 0 and a positive integer A, define
Mpa={ieNEk<i<k+A—1,]s"|>A}

and denote by |[M; 5| the number of elements of M, ».

Now we will show that the step size can not be too short.

Lemma 2.18. Consider Algorithm 2.16. Assume that A1, A2 and A3 hold. d* is
descent direction of F at x*. If there exists v > 0 such that || v(z*) ||> v, for all
k > 0, then there exists X\ > 0 such that, for any A € N and any index ko, there is
a greater index k > ko such that

A
|M2,A| > o

2.4 Analysis of convergence for specific 5;’s 44

Proof. See Lemma 5.9 of [40]. O

Theorem 2.19. Assume that level set L = {z|F(x) < F(xq)} is bounded, A1 and
A3 hold. Consider Algorithm 2.16 where B, > 0, d* is a descent direction of F at
x*. Then,

lim inf [|o(z)|| = 0.

Proof. See Theorem 5.10 of [40]. O

2.4 Analysis of convergence for specific (;’s

In this section we will present the convergence analysis using the line search
introduced above, for the f;’s specifics of the Fletcher-Reeves (FR), Conjugate
Descent (CD), Dai-Yuan (DY), Polak-Ribiére-Polyak (PRP) and Hestenes-Stiefel
(HS). These Bi’s, as well as their convergence analysis were taken to the vector
context in [40], using as line search the standard Wolfe conditions or the strong
Wolfe conditions.

The parameter, originally proposed by Fletcher and Reeves in [18], was

modified as
rr_ fa* v(b)
b))

The called conjugate descent parameter, proposed by Fletcher in [19], was modified

(2-28)

as
)
CT Ly

Dai and Yuan in [9] proposed this parameter modified as

(2-29)

2DY _ _f(xkav(mk))
E f(xk’dkfl) _f(xkq,qu)‘

Lemma 1.9 guarantees positiveness of 5/ and 7. In [40] the positiveness of 3P
is a consequence of the Wolfe-like line search. In our case, Algorithm 2.16 does not
guarantee that f(z* d*1) > f(a*"1 d*71). Therefore, we redefine the Dai-Yuan

parameter as

by _ { YL i S d) = ftd) > 0 (2:30)

k 0, it f(ak, dFY) — faRl d) <0

Gilbert and Nocedal in [25] proved that global convergence can be obtained
for By = mar{BLE 0} and B, = max{BHE 0}, for scalar minimization case. In

vector optimization context the PRP and HS parameters are given by

2.4 Analysis of convergence for specific 5;’s 45

sprp _ (2 0(@) + F@ 1 0(at)
k —F@ o)

. where BERP = maz{0, BFECY, (2-31)

and

. —f(xF v(zF oh v (ak 3
]?S N ?Exk, di—li)j—f{(mk—l ;lk(_l)))’ where ﬁfs = ma:c{(),ﬁ,fs}. (2-32)

Before we begin the analysis for specific f;’s, let us do an important

observation.

Lemma 2.20. Consider Algorithm 2.16, if Al hold and and ¥ = {k > 0: f; = 0}
is infinite, then,

limkinf |o(z®)|| = 0.

Proof. We claim that
lim _[jv(z")| = 0.

k—oo, keX
Observe that Lemma 2.8 implies klim o f(2" v(2h)) = klim ag|lv(2¥)|| = 0. Then,
— 00 —00
: N NN kY[—
Clim ot e = lim ()] =0

Now, we have two cases to analyse.

e Case 1: liminf o, > 0. In this case lim _|jv(z")| = 0.
k—oo, kEX

e Case 2: liminf oy, = 0. In this case, there exists infinite ¥y C X such that
lim o =0. By (2-23) and (2-24) ,

k—o0, k€Y

(0%
o w2
P+ Lo (ah), o)) + —E > (¥, o), forall k€ %,

Then, for all & > 0 there exists k(¢) such that

0<(0—1)f(a" v(z"))

< |F* + () fo, (o) — £l o) |+ 2D

for all k € Xy and k > k(e), because f(-,v(z¥)) is continuos. In other words,

0= lim f(a* v@") = lim _ |ju(a®)].

k—o0, k€Y k—o0, k€X)

2.4 Analysis of convergence for specific 5;’s 46

]

The next paragraphs are dedicated to the convergence studies when the ;s

are specified as one between the presented before.

2.4.1 Fletcher-Reeves

The following theorem shows us that under some hypotheses Algorithm 2.16,
using B converges. This result will serve as a basis for demonstrating the same

convergence’s results for some of the ;s already mentioned.

Theorem 2.21. Consider Algorithm 2.16 with 0 < By < nBERE, where 0 < n < 1
and assume that A1 hold. Then,

limir]if |o(z®)|| = 0.

Proof. know that, d* satisfies the sufficient descent condition. Assume, by contra-
diction, that there exists v such that 0 < v < [Jv(2*)]| for all ¥ > 0. By Lemma 1.10
(b), remember that

lo(z")]* < —2f(*, v(a")).
Then,

o _ 4

Sk v(@h)) (b))

Observe that for any a and b € R, taking a = n/+/2(1 — n?), using Lemma 1.6 (d),

IN

4
—. (2-33)
gl

1 a? b?
b)? < (14 202)a? 1+ —)2 = —
(a+b)* < (1+2a%)a +<+2a2) 1—n2+772

is true. Then, using (2-21), the Triangle Inequality and equation above we get

_ _ 2
[d*|1* = [|v(®) + Bed* 1> < (Jlo(®)|| + Billd*)
kY112 2 dkfl 2
< [v(z)ll A : I
L—n n

Now, dividing by f2(z*,v(2*)) and using hypothesis,

[O S [0 1 Y S
fAak o(@h) = 1 =P f2ak0(@h) on? 22k, o)
L Il +(BFRY? (G
Tl Ak u@h) T 2t e(ah)
S S CIC0) S
L= f2(a%,0(ak)) — f2 (et u(ahh)

2.4 Analysis of convergence for specific 5;’s 47

Therefore, by (2-33),

la*]? 4 lleTP
fAak o) = (L=n?)y? - L2t e(@h)

A\

4 |d°|)?
2 k+ 2(0 0
(I —=n?)y fHa0 v(x0))
< 4 k + 1
T A=

Concluding
Pt o) o -t) 1
|| d¥]|? “Ak+1-—n?) — 4 k+1

Henceforth, by sufficient descent condition and inequality above,

f2(a*, d) L F2R (b)) A=) L
> =
Z TR S T ;m >

k

in contradiction with Zoutendijk’s condition. Thus, theorem is demonstrated. O]

2.4.2 Conjugate Descent
Now we will show the convergence of Algorithm 2.16 using the B¢P.
Convergence is guaranteed by showing that C'D is less than a multiple of F'R.

Lemma 2.22. Consider Algorithm 2.16 with 0 < By < cBSP. Then, d* satisfies the

sufficient descent condition, with constant c =1 — 4.

Proof. By (2-21) , (2-8), definition 8¢P

flah,d) = f(a*,0(z") + Brd" ™)
< fla", v(@h)) + Bef(a*, d"T)
< fla", v(@h)) + Beof (2" d")
< fa®,v(z®) + BPof (e a")
< fa*, (@) + 0 f (2", v(a"))
< (1+0)f (2", v(a"))
< (1—8)f(a", v(a"))

2.4 Analysis of convergence for specific 5;’s 48

The following Lemma compares 32 and S, So we can use Theorem 2.21

to demonstrate the convergence of Algorithm 2.16 using the S'P.

Lemma 2.23. Consider Algorithm 2.16, BE2 defined in (2-28) and BEP defined in
(2-29). Then,

B° < "

Proof. By Lemma 2.22 d* satisfies the sufficient descent condition, then
cD f($k7"0($k)) . 1—-90 f(fkav(flka
T @) T 1= f(ab L, d)

1 f(ah (b)) 1
= 1 —0 f(zk1 v(ak—1)) = 1-9 -

]

Theorem 2.24. Consider Algorithm 2.16 where 0 < B, = nB85P and 0 < n < 1-74.
Assume that A1 holds. Then,

liminf ||v(2¥)|] = 0.
k— 00

Proof. Tt follows from Lemma 2.22 that d* satisfies the sufficient descent condition,
with ¢ = 1 — 0 for all k. Therefore,

n
0< B < < 5"

Ui

AsO < T
SUSTS

< 1, this proof follows as the one of Theorem 2.21. m

2.4.3 Dai-Yuan

In the same way as in CD, the convergence of Algorithm 2.16 using the 37

will be shown using Theorem 2.21, of the convergence of FR.

Lemma 2.25. Consider Algorithm 2.16, with 0 < By < BPY. Then d* satisfies the
condition of sufficient descent with ¢ = 1/(1 + 0), that is,

f(a*, d¥) < cf (2", v(a")).
Proof. Tf f(a*, d*=1) — f(2*1 d*1) <0, then for (2-21),

P, d¥) < F(t,0) + B (Fd) < Fat u(eh) + 6P b d)
= f

z* v
(«*, 0(2")) < ef (a*,v(a")).

2.4 Analysis of convergence for specific 5;’s 49

If f(a* d*=1) — f(aF=1 d*=1) > 0, for (2-21),

f(@® 0(z?) + Bif (b, d*)

F@® o(@®) + B0V f(2, a7
k k —f(fk)v(xk))

f(@% v(a")) + Flak, dF=1) = f(zh=1, dF 1)

f(a*,d")

IN

IN

f(.%‘k, dk—l)

. _ xkfljdkfl

= f(z 7U(xk>) <f(mk, dki() — f(xkz—l)’ dk—l))
B N N f(l‘kil,dkfl)

= f(x ,U(x)) <f(xk_1,dk_1) _ f(xk,dk_l)) .

Using (2-8) we have, — f(z*,d*1) > = f (281, d*1), so

f'(a:k:—l7 dk—l)
f(xkfl’ dk:fl) _ (5f(£l’)k71, dkl))

= f(aF v(2")) (%) .

As1—§ <144 and f(2F v(z¥)) <0,

ﬂﬁ@%sf@ﬂuﬁ»(

1 k

flat,) < st o))

]

Let the set K = {k € N| 8PY > 0}. Assume that K is infinite and k € K.

Theorem 2.26. Let assumption in Al hold. Consider Algorithm 2.16 with B, =
1 —
nBEY where 0 < n < 1—%-—0' If K is infinite, then
o

liminf ||v(z*)|| = 0.
k—>00

Proof. Using (2-8) and Lemma 2.25,

f(l‘k_l,dk_l) o f(il}k,dk_l) > f(l'k_l,dk_l) o 5f(l’k_1,dk_l)
= (1=0)f(a""1,d")
= (5 I Y

> (5—1) (1_—+15> F@* o)

2.4 Analysis of convergence for specific 5;’s

50
Then,
149 S f(aP=t v(zk1)) N —f(z* 1 v(ah) < 149
L—6 = f(ab=t,dbt) — fak,@=1) f(ah,dFt) — fah=t,dét) = 16
1406
Define 0 = 7](1 _+5) By definition of Sy, we have
Br = nﬁDY
—f(@*, v(@")) —f@* T u(@*)
1 L 5 @ d) = f@h L d)) ZFah o))
—f(@*, v(@h)) —fa* " u(@*h)
1+5 TG o)) NG T = L)
<0 f(a® v(z?)) 149
- 1—|—5 fq:klvxk DY) 1-94§
- f(x’“ 1,v($’“ 1))
= o
As 0 < o < 1, by Theorem 2.21, the result follows.]
Following the same idea presented in [40], we can modify the 3PY and get

the convergence of Algorithm 2.16. The modified parameter of the Dai-Yuan will be
defined by

ZmDY _ _f(ka(xk))
k - f(xk,dkfl) _ Tf(xkfl,dk71>

and

amDY if ko qk=1y _ k=1 gk—1
mDY _ {"f A fER) = f@) 20 - s 1

g 0, it f(af, dFY) — rf(2F L d Yy <0

(2-34)
Similarly to Lemma 2.25, we show that d* satisfies the sufficient descent
condition, with ¢ = 7/(7 + 9).

Lemma 2.27. Consider Algorithm 2.16, with 0 < By < BPY. Then d* satisfies
the condition of sufficient descent with ¢ = 7/(T 4 0), this is,

f(z® d¥) < cf (2%, v(2")).

2.4 Analysis of convergence for specific 5;’s 51

Proof. If f(ak, d*1) — 7 f(2*1,d*1) <0, then for (2-21),

Pt) < Fab, o) + Gef (2,050 < FF o) + 5pPY fat,)
I

z*, U(l‘k)) < cf(xk, v(xk))

If f(zk, d*=1) — 7 f(2"1, d*1) > 0, for (2-21),

=
8

“F
SH
NG
IA

Fa® 0(@®)) + By f (a*, d")
< f(a® u(@®)) + gPY fa*,d*)

F —f(a*, v(z"))
f(l‘k, dk—l) _ Tf(l‘k_l, dk—l)
=7 f(aF v(a” _f<$k_1’dk_l>
= f(’ ()) (f(:l?k,dkl) _ Tf(xkfl, dkl))

k(o k fat ', d)
= Tf(x ,U(ZE)) (Tf(xk_l,dk_l) — f(xk’dk—l)) .

(", v(a)) + fla*,d")

Using (2-8), we have —f (2%, d*1) > - f (281, d*~1), soon

f(l'kadk) < Tf<$kav(xk)) (Tf(xk_1,£k(—x1)__7 (;f_(zk—17dk—1>>

= F(z*, v(z")) (T : 5) .

AsT—§<71+§and f(zF v(z")) <0,

fat,d") < —=flat v(ah))
S
< st ()
O
Theorem 2.28. Let it be as assumed in Al. Consider Algorithm 2.16 with £, =
BPY | Then,
lim inf ||v(z")|| = 0.
k—>o0
Proof. See proof of Theorem 5.7 in [40]. O
2.4.4 Polak-Riviére-Polyak e Hestenes-Stiefel
PRP

Lastly, we will demonstrate now the convergence of Algorithm 2.16 for 3,

and BHS.

Theorem 2.29. Assume that the level set L = {x|F(z) < F(xo)} is bounded, there
exists an open set N such that L = {z|F(z) < F(xo)} C N and the Jacobian JF

2.5 Complexity 52

is Lipschitz continuos on N with constant L > 0. Consider Algorithm 2.16 with

Br = maz{BFEL} or By = maz{BH5,0}, d* is a descent direction of F at 2*. Then,
liminf ||v(2¥)|] = 0.

Proof. See proof of Theorem 5.11 in [40]. O

2.5 Complexity

In this section we will extend the results presented in [14, 15] to the vector

context. These are about the complexity of Algorithm 2.16.

Lemma 2.30. Consider Algorithm 2.16. Assume that 0 < ag < p|lv(z®)]|?/||d*||?,
(A1) and (A2). If v(z*) # 0 for all k. Then,

(a) ap > 7| v(@k)||? /|| d* ||? for some T > 0.

(b) Consider B, || d* ||< (14 Lp) || v(z*) |

Proof. First, we will prove (a). By Lemma 2.3, i) is computed and for (3 — 14) oy
can be found after a finite number of trials. Then, w™'a; does not satisfy (3-13).

This is,
vew ™ Loy d¥]|?

fa® 4+ wtagd”, d¥) + 5

> Sf (", db).
Adding — f(z*, d*) to both sides it yields

v oy | d¥|?

f¥ +wtagd®, d¥) — f(a*,d") + 5 > —(1—0)f(aF, d").
From Lemma 1.11,
-1 dk 2
pogest | |2 4 2O) it)

<L n %) o V|| dF |2 > —(1 = 8)f(*,).

for Lemma 2.5 and (A2),

ky (12
<L_|_ ﬁ) Oékw_l H dk H2 > (1 _ 5)” 7)(37) H

2 2
(1= 8 || w(at) P
Lrv [d]
k 2
o G

[e

2.5 Complexity 53

(1—-90)w

L+v
To prove part (b), if £ =0, then || d° [|[< (1+ Lp) || v(z°) ||.

When k > 1, it follows from (2-21), (2-31) and Lemma 1.11 that

where 7 = . Ttem (a) is shown.

1" = Nlo(a™) + B d |

k—s—l’v(xk—f—l)) —i—f(xk,v(:vkﬂ))
| = f(@*, v(@h))]

Loy |d*|*)

1f (=, ()N)

< o) + =1 Lyt

~ ot (14
Using Lemma 2.5 and hypothesis,

2 Loy, ||d*||?
i < ot (14 2 Al

[[o(*)]J?

< [l(=** D1+ 2Lp).

O

Theorem 2.31. Consider Algorithm 2.16 with SR, Assume that 0 < a <
pllo(@®)||2/1|d*||?, (A1) and (A2). If v(x*) # 0 for all k, there exist positive numbers
a, B, v such that the following holds

(a) i, > a0 > 0;

(b) 3o lw(@)|* < B(F(2°) — F*);

(¢) Yoo 51> < y(f(2%) — F*), where F* is the limit of the decreasing and lower
bounded sequence {F(z*)}.

Proof.

(a) Follow from Lemma 2.30,

o(a*))? T
> = =a > 0.
ETER T e

(b) From Lemma 2.14

F(a") = F(a" + apd®) =i F(2%) + . f (2", d¥)e
ar(=f(z*, d")e) =k 07 (F(2*) — F(z*).

2.6 Computational experiments 54

By Lemma 2.5 and summing,

k

Zai(_f(ﬂfi’di)e) =i (5_1(F(330) B F(xk:+1))
k

> ailloa)|® < 267N (F(2%) — F(2).

1=0

Using (a)
ZHU WP < 2(kad) ™ (F(2") — F(a™))

lev)P < BF@E) — F7).

(¢) Combining the item (b) with (b) of Lemma 2.30,

LAY
(o) < et

T LI < S @) < B -)
Sl < B+ L) (F () - F)

oI < A(F) - F).

2.6 Computational experiments

We will now present some numerical experiments to verify the applicability
of the proposed conjugate gradient with the new line search. Check effectiveness
of the method developed with all the betas presented in section 2.4, in addition
to testing the constants that present best performance of the method. The sets of
examples are divided in two groups, a convex and a non-convex group. All problems
presented in this section are multiobjective, this is, K = R

The experiences were done using MATLAB R2020 on a computer with CPU
Intel Core i7 2GHz and 8GB of memory. We stopped the execution at 2 declaring
convergence if 6(z*) > —5 x eps'/2, where eps denotes the machine precision, in our

case, eps = 27°2 &~ 2.22 x 10716, This is the convergence criterion considered in the

2.6 Computational experiments 55

numerical tests of [20]. Since, by Lemma 1.10, v(z) = 0 if and only if §(z) = 0, this
is a reasonable stopping criterion. The maximum number of allowed iterations was
set to 10000. If iteration 10000 is achieved, the algorithms stop and declare failure.

To calculate the steepest descent direction v(z*), we solved problem 1-3
using the function "quadprog", a Matlab subroutine that solves quadratic problems

with linear constraints.

2.6.1 Constants

Let us start the numerical experiments by verifying the influence that
constants 17 and 7 have in the performance of NCGMNL. A similar study was done
in [40]. Remember that in the section 2.4 the convergence of the Algorithm 2.16
was shown with 8, < B where 0 < n < 1 see Theorem 2.21 , 8, < nBcP where
0 <71 < 1-4see Theorem 2.24, B, = nBPY where 0 < n < (1 —§)/(1 + 9) see
Theorem 2.26, 8, = B*PY see Theorem 2.28.

To verify the influence of these constants, let us consider the problem SLC?2,
see [50]. This example is convex and not much complicated to solve, given by
F:R" — R?

Fi(z) = (z, — 1)* + Z(ml —1)?,

n

Fy(z) = (z2—)*+ Y (z+ 1)~

i=1,i#2

We vary the values of constants n and 7 to verify the improvement in method
performance. The problem was compiled 200 times with a number of variables
equal to 100 and the starting point randomly taken in the range of [—50, 50]. The
percentage of times the problem was successfully resolved was recorded, that is, the
algorithm stopped at a critical point. This information is presented in the tables

bellow.

DY

= P Ui % DYm
n % n % - y
1 | 68.00 1 | 98.00 1| 80.00 - | % :
0.99 | 98.00 || 0.99 | 100.00 || 99| 100.00 :

0.98 | 100.00 || 1— 6 | 100.00 —;g 100,00 | L1 1 100-00

Table 2.1: Constants for betas

The first one of tables 2.1 provides us with information about beta F'R
and tells us that 68,00% of the problems stopped at a critical point when n = 1,

2.6 Computational experiments 56

98,00% the times the problem was compiled with n = 0.99 ended successfully and
all problems were resolved with n = 0.98. About C'D, we reached 100% of success
with n = 0.99 and n = 1 — § = 0.999, similar results were obtained for DY with
100% from success ton = 0.99 and n = (1—0)/(1+9) = 0,998. In turn mDY solved
82% of the problems with 7 = 1 and 100% with 7 = 1.01.

Using the results presented in Tables 2.1 along with the Convergence
Theorems, the numerical experiments were performed with the respective betas
presented in the following way, 8, = 0.988L % for the beta of FR, 8, = 0.983¢P
for the beta CD, B;, = 0.983PY for the beta of DY. For PRP+ and HS+ we took
the betas B, = max{Si ™* 0} B, = max{BI", 0} respectively.

2.6.2 Numerical Results

The tables below transcribe the information about the problems and their
performance against the respective betas. The examples in Table 2.2 are all convex
and the ones in Table 2.3 are non-convex. All problems were compiled 300 times, with
the starting point taken randomly inside the specified range. The tables are presented
in blocks with four lines each. The first column gives us problem information, an
acronym to identify it, the bibliographic reference where the problem was found,
number of variables, number of objective functions and interval where the starting
point was taken randomly. The second column refers to the performance of the
problem during numerical tests, the first line informs the percentage of solved
problems (%), the second the average of iterations necessary for the algorithm to
find a critical point (it), the third presents the average gradient evaluation of the
problems where the algorithm reached a critical point (evalg) and the fourth line
shows the average time needed for each problem to be solved (time). From the
third to the ninth column are presented the performance results in relation to the

respective betas presented in section 2.4.

FR CD DY mDY | PRP+ | HS+

AP1 | 1] % 72.33 95.33 64.00 79.67 95.00 95.00
n=2 it | 1241.29 | 1324.12 | 1801.33 | 1492.69 | 669.11 | 669.11
m — 3 evalg | 3829.96 | 5533.63 | 7400.43 | 6079.48 | 2682.72 | 2682.72

2% € [-10,10] | time | 2.49 2.70 3.72 3.03 1.37 1.38
AP2 | |1] % 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n=1 it 15.88 18.96 15.03 15.66 12.90 12.90

m — 2 evalg | 50.63 77.82 62.12 64.64 53.61 53.61

x% € [-100,100] | time | 0.04 0.04 0.03 0.04 0.03 0.03
AP4 | 1] % 69.67 92.00 99.33 76.33 95.33 95.33

2.6 Computational experiments 57
n—3 it 1574.85 | 1488.65 | 3073.84 | 1661.93 | 891.77 | 891.77
m =3 evalg | 4885.39 | 6234.23 | 12343.30 | 6698.33 | 3574.15 | 3574.15
20 € [—10,10] | time 3.11 2.98 6.12 3.35 1.81 1.81
BK1 , [32] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n =2 it 12.83 15.29 12.20 12.60 10.46 10.46
m = 2 evalg | 41.49 63.17 50.80 52.41 43.85 43.85
20 e [—5, 10] time 0.03 0.04 0.03 0.03 0.03 0.03
DGO2 , [32] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n—1 it 60.21 97.81 69.21 70.32 93.36 93.36
m = 2 evalg | 182.73 | 392.32 279.41 283.80 | 374.58 | 374.58
2% e [—9,9] time 0.12 0.19 0.14 0.14 0.18 0.18
FDS | [20] % 100.00 99.67 85.67 100.00 | 100.00 | 100.00
n=>3 it 1877.92 | 382.17 | 5314.93 | 1285.97 | 156.41 | 156.41
m =3 evalg | 5999.97 | 1618.18 | 21264.70 | 5148.43 | 628.38 | 628.38
20 € [—2,2] time 4.02 0.82 11.55 2.81 0.34 0.35
IKK1 , [32] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n—=2 it 11.43 13.57 10.89 11.34 9.57 9.57
m=3 evalg | 36.87 56.07 45.35 47.14 40.07 40.07
20 e [—50,50] | time 0.03 0.03 0.03 0.03 0.03 0.03
JOS1 , [35] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n = 100 it 467.90 | 416.07 508.19 459.64 | 406.87 | 406.87
m — 2 evalg | 1404.71 | 1664.27 | 2037.77 | 1842.55 | 1627.49 | 1627.49
20 € [—100, 100] | time 1.75 1.56 1.94 1.76 1.56 1.58
Lovl , [38] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n =2 it 13.53 16.04 12.84 13.23 10.93 10.93
m = 2 evalg | 43.60 66.15 53.37 54.93 45.71 45.71
20 € [—10,10] | time 0.03 0.04 0.03 0.03 0.03 0.03
MGHS33 , |43] % 46.67 46.33 45.33 47.33 46.33 46.33
n =10 it 5.52 5.50 8.27 5.51 6.12 6.12
m = 10 evalg | 28.09 32.33 44.06 33.16 34.80 34.80
2’ € [—1,1] time 0.02 0.02 0.03 0.02 0.02 0.02
MHHM?2 | [32] % 100.00 | 100.00 100.00 100.00 | 100.00 | 100.00
n =2 it 10.06 11.79 9.44 9.79 8.19 8.19
m =3 evalg | 33.18 49.15 39.74 41.15 34.777 34.777
20 e 0,1] time 0.03 0.03 0.02 0.02 0.02 0.02
MOPT , [32] % 94.00 94.33 92.67 90.67 95.33 95.33
n—=2 it 195.62 | 173.87 195.72 232.67 | 160.28 | 160.28
m =3 evalg | 589.23 | 697.14 796.46 938.81 | 642.79 | 642.79

2.6 Computational experiments

o8

2¥ € [—400,400] | time | 0.41 0.36 0.41 0.49 0.33 0.34
PNR , [48] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

n =2 it | 158.43 | 47.23 | 433.59 | 99.13 | 22.25 | 22.25

m = 2 evalg | 516.05 | 199.09 | 1738.16 | 400.11 | 92.15 | 92.15

2° € [-2,2] | time | 0.32 0.10 0.86 0.20 0.05 0.05
SD | [52] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

n =4 it | 68.56 | 37.11 | 159.38 | 72.24 | 32.84 | 32.84
m = 2 evalg | 212.13 | 150.37 | 639.62 | 290.96 | 133.12 | 133.12

2% € 1,3 time | 0.14 0.08 0.33 0.15 0.07 0.07
SLC2 , [50] % | 100.00 | 100.00 | 98.00 | 100.00 | 100.00 | 100.00

n = 100 it | 625.33 | 80.28 | 814.27 | 564.13 | 55.34 | 54.80
m = 2 evalg | 2070.22 | 352.46 | 3282.35 | 2281.43 | 242.53 | 239.55

2% € [-50,50] | time | 2.47 0.45 3.20 2.29 0.36 0.36
SLCDT?2, [51] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n = 10 it | 3573 | 19.48 | 70.59 | 33.32 | 13.85 | 13.85

m = 3 evalg | 114.37 | 82.83 | 286.51 | 137.46 | 60.81 | 60.81
%€ [~1,1] | time | 0.08 0.04 0.15 0.07 0.03 0.03
SP1, [32] % | 98.00 | 97.67 | 98.00 | 98.00 | 98.67 | 98.67

n — 2 it | 29.83 | 25.81 29.01 27.73 | 27.44 | 25.68
m = 2 evalg | 94.55 | 108.07 | 122.13 | 115.86 | 116.38 | 110.29

2% € [~100,100] | time | 0.06 0.06 0.06 0.06 0.06 0.06
Toi4 , [53] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

n =4 it 16.74 | 19.89 16.34 | 16.64 | 13.65 | 13.65

m = 2 evalg | 53.23 | 81.57 | 67.38 | 68.56 | 56.60 | 56.60

2% € [~100,100] | time | 0.04 0.05 0.04 0.04 0.03 0.03
Toi8 , [53] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

n =2 it 9.80 9.96 12.53 12.80 | 10.93 | 10.93

m = 2 evalg | 34.30 | 43.74 | 54.20 | 55.23 | 47.59 | 47.59

2% € [-10,10] | time | 0.03 0.03 0.03 0.03 0.03 0.03
ZLT1 , [32] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n = 10 it | 20.87 | 24.95 19.76 | 20.65 | 16.95 | 16.95

m — 5 evalg | 65.61 | 101.80 | 81.03 | 84.59 | 69.81 | 69.81

2% € [~10%,10%] | time | 0.06 0.06 0.05 0.05 0.04 0.05

Table 2.2: Convez Problem.

FR CD DY mDY | PRP+ | HS+
AP3, [1] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

2.6 Computational experiments

59

n =2 it | 184.55 | 79.75 | 734.03 | 175.07 | 68.36 | 68.78
m =2 evalg | 2148.46 | 607.70 |12893.24 | 2112.16 | 405.76 | 416.84
20 € [~10,10] | time | 0.39 0.16 1.65 0.37 0.14 0.14
DD1 , [10] % | 100.00 | 100.00 | 76.33 | 100.00 | 100.00 | 100.00
n=>5 it | 1444.38 | 285.87 | 3680.58 | 1040.55 | 122.37 | 122.62
m = 2 evalg | 4522.28 | 1208.89 |14727.48 | 4167.16 | 492.45 | 493.13
20 € [-20,20] | time | 3.03 0.60 7.90 2.20 0.26 0.27
DGOL, [32] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n=1 it | 11.85 | 11.50 | 13.08 | 13.27 | 16.38 | 16.32
m =2 evalg| 7052 | 7152 | 92.77 | 92.64 | 97.89 | 97.06
20 € [~10,13] | time | 0.03 0.03 0.03 0.03 0.04 0.04
Farl , [32] % | 100.00 | 100.00 | 90.33 | 100.00 | 100.00 | 100.00
n =2 it | 1048.74 | 259.65 | 1909.40 | 760.25 | 131.93 | 139.65
m = 2 evalg | 14235.73 | 2558.03 |35520.68 | 10127.15 | 935.19 | 1010.09
20 e [-1,1] |time| 2.27 0.54 4.36 1.63 0.27 0.29
FF1 , [32] % | 100.00 | 100.00 | 99.33 | 100.00 | 100.00 | 100.00
n =2 it | 496.03 | 112.89 | 1764.70 | 414.83 | 73.80 | 74.09
m = 2 evalg | 5927.49 | 871.91 |30065.74 | 5089.50 | 416.62 | 419.68
20 €[-1,1] |time| 1.04 0.23 3.92 0.87 0.15 0.15
Hill , [31] % | 100.00 | 100.00 | 99.33 | 100.00 | 100.00 | 100.00
n =2 it | 290.03 | 71.24 | 697.88 | 166.55 | 33.60 | 41.10
m = 2 evalg | 4213.39 | 785.99 |12781.50 | 2290.19 | 287.30 | 359.35
22 €0,1] |time| 0.63 0.15 1.56 0.36 0.07 0.09
KW2,[36] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 269.41 | 111.22 | 604.98 | 186.61 | 88.70 | 93.23
m = 2 evalg | 3335.39 | 895.17 |10861.19 | 2298.04 | 512.92 | 557.53
20 € [-3,3] |time| 0.57 0.23 1.36 0.40 0.18 0.19
LE1, [32] % | 94.00 | 100.00 | 98.33 | 100.00 | 100.00 | 100.00
n =2 it | 980.38 | 182.02 | 958.36 | 329.74 | 106.00 | 98.37
m = 2 evalg | 20652.71 | 2463.15 [19781.84 | 5597.37 | 953.98 | 771.77
2 € [~5,10] |time | 2.24 0.39 2.20 0.74 0.22 0.20
Lov3,[38] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 1831 | 1948 | 22.64 | 17.65 | 13.24 | 13.30
m = 2 evalg| 121.36 | 135.96 | 220.88 | 130.50 | 79.52 | 80.09
20 € [~102,10?] | time | 0.04 0.04 0.05 0.04 0.03 0.03
Lovd , [38] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 19.92 | 19.05 | 25.27 | 19.35 | 13.67 | 13.69
m =2 evalg| 139.14 | 134.16 | 247.84 | 150.52 | 83.15 | 83.35

2.6 Computational experiments

60

29 € [-20,20] |time | 0.05 0.04 0.06 0.04 0.03 0.03
Lovs , [38] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =3 it | 113.04 | 82.42 | 10745 | 11525 | 107.16 | 106.88
m = 2 evalg| 826.89 | 444.94 | 1020.82 | 1024.04 | 524.48 | 521.05
2 € [-2,2] |time| 0.25 0.17 0.25 0.26 0.23 0.23
MGH16 , [43] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =4 it | 100.64 | 67.97 | 152.46 | 111.81 | 89.42 | 83.34
m =5 evalg| 730.66 | 378.16 | 2130.58 | 1082.20 | 455.81 | 422.40
2% € [-10,10] | time | 0.24 0.15 0.41 0.27 0.20 0.19
MGH26 , [43] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =4 it | 2674 | 17.48 | 57.34 | 24.56 | 17.52 | 17.52
m = 4 evalg| 232.31 | 114.31 | 836.59 | 221.97 | 101.23 | 101.26
2% € [-1,1] |time| 0.07 0.04 0.15 0.06 0.04 0.04
MGH33 , [43] | % | 4533 | 44.33 | 43.67 | 44.67 | 4500 | 45.00
n =10 it 5.74 5.52 7.79 5.24 6.24 6.24
m = 10 evalg| 94.19 | 93.81 | 127.02 | 88.67 | 101.84 | 101.84
2 € [-1,1] |time | 0.03 0.03 0.04 0.03 0.03 0.03
MHHM?2 , [32] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n — 2 it 9.96 11.66 9.32 9.72 8.10 8.10
m =3 evalg| 59.74 | 80.65 | 64.25 | 67.02 | 48.62 | 48.62
29 €10,1] |time| 0.03 0.03 0.03 0.03 0.02 0.02
MLF1 , [32] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =1 it 7.13 8.28 6.94 7.20 7.01 7.03
m = 2 evalg| 47.62 | 5862 | 50.71 | 52.95 | 43.88 | 43.45
2 €[0,20] | time| 0.02 0.02 0.02 0.02 0.02 0.02
MMR1, [41] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 54.65 | 23.43 | 10248 | 39.16 | 14.81 14.78
m = 2 evalg| 668.62 | 234.42 | 1619.62 | 471.45 | 120.65 | 120.55
2% €0,1] |time| 0.12 0.05 0.23 0.09 0.04 0.04
MMR3, [41] | % | 86.00 | 87.67 | 62.67 | 71.00 | 87.67 | 87.67
n =2 it | 267.06 | 160.43 | 127.70 | 207.81 | 72.32 | 176.71
m — 2 evalg | 3257.10 | 1531.05 | 1845.95 | 2967.39 | 403.60 | 1545.29
2 € [-1,1] |time | 0.57 0.33 0.28 0.45 0.15 0.37
MOP2, [32] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 76.48 | 30.61 | 146.16 | 56.79 | 26.93 | 27.62
m = 2 evalg| 797.44 | 181.07 | 2106.53 | 576.62 | 122.69 | 126.32
2% € [—4,4] |time| 0.16 0.06 0.31 0.12 0.06 0.06
MOP3 ,[32] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00

2.6 Computational experiments

61

n =2 it | 4458 | 23.85 | 81.95 | 36.80 | 19.44 | 20.04
m = 2 evalg| 457.07 | 199.32 | 1124.60 | 376.75 | 149.67 | 155.63
20 € [—m,m] | time| 0.11 0.06 0.20 0.09 0.05 0.05
MOP5 ,[32] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 35.92 | 36.11 | 4751 | 3521 | 33.14 | 33.16
m = 3 evalg| 233.99 | 21547 | 459.28 | 271.94 | 165.55 | 165.92
20 e[-1,1] |time| 0.08 0.08 0.11 0.08 0.07 0.07
SK2 , [1] % | 100.00 | 100.00 | 99.33 | 100.00 | 100.00 | 100.00
n =4 it | 490.05 | 111.26 | 1727.52 | 374.82 | 55.77 | 56.66
m = 2 evalg | 6029.86 | 919.33 |30039.56 | 4654.78 | 321.27 | 328.56
20 € [-10,10] | time | 1.06 0.23 3.93 0.81 0.12 0.12
SLC1,[50] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 1472 | 1626 | 14.71 | 13.83 | 1297 | 13.00
m = 2 evalg| 91.86 | 110.09 | 112.50 | 102.02 | 75.33 | 75.30
20 € [-5,5] |time| 0.04 0.05 0.04 0.04 0.04 0.04
SLC2,[50] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n = 100 it | 207.85 | 77.02 | 433.88 | 141.81 | 57.22 | 55.16
m = 2 evalg | 2442.78 | 605.24 | 7101.08 | 1630.58 | 339.87 | 327.89
29 € [=50,50] | time | 0.98 0.42 2.02 0.71 0.35 0.35
SLCDT1, [51] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =2 it | 1476 | 16.32 | 14.15 | 13.88 | 13.10 | 13.12
m = 2 evalg| 91.80 | 110.24 | 107.49 | 102.69 | 76.00 | 75.96
20 € [-5,5] |time| 0.04 0.04 0.04 0.03 0.03 0.03
SLCDT2, [51] | % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n = 10 it | 37.98 | 20.01 | 78.27 | 3513 | 1412 | 14.12
m - 3 evalg| 349.90 | 156.31 | 1016.48 | 340.23 | 93.29 | 93.29
29 e [-1,1] |time| 0.10 0.05 0.21 0.09 0.04 0.04
Toi9 , [53] % | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
n =4 it | 179.62 | 54.54 | 431.79 | 118.67 | 29.49 | 29.25
m — 4 evalg | 2484.20 | 567.32 | 7850.90 | 1557.57 | 229.34 | 228.15
20 e[-1,1] |time| 0.44 0.13 1.10 0.29 0.07 0.07
Toil0, [53] | % | 57.33 | 93.00 | 46.67 | 69.00 | 100.00 | 99.67
n =4 it | 1617.16 | 2447.99 | 939.89 | 1887.43 | 1028.16 | 1051.93
m = 3 evalg | 28641.15 | 37622.29 | 18628.08 | 33336.35 | 12923.74 | 13206.96
29 € [-2,2] |time| 3.71 5.42 2.20 4.31 2.23 2.30
VU1, [32] % | 42.33 | 81.67 | 18.00 | 61.00 | 100.00 | 100.00
n =2 it | 4606.58 | 2804.37 | 5065.57 | 4139.88 | 2096.12 | 2099.95
m = 2 evalg | 15537.09 | 11870.94 | 20267.76 | 16598.69 | 8393.74 | 8405.55

2.6 Computational experiments 62

| 2%€[-3,3] [time| 917 | 560 | 1020 | 834 | 423 | 428 |

Table 2.3: Non-Conver Problem.

We built the Performance Profile [13]| in relation to time and iteration.
Compared the NCGMNL for each beta for both the convex examples, figure 2.1, as

for the non-convex, figure 2.2.

o
&
ﬁ
AN
\
%
N
\‘
-
1
i
1
i
1
H
1
i
I
H
]
i
1
i
1
1
i
1
H
1
H
1
H

2
1
5

=
Iy

Solved problems (%)
»,
Solved problems (%)

FR

co

DY
e 1))
PRP
= = 'HS

cD
DY

]

1

1

i, FR
]

1
1

2
Y

i
1 PRP
H

I e

[

10° 10" 102 10" 102 10*
Performance ratio: Iteration Performance ratio: Time

Figure 2.1: Performance Profile-Convex problem

Solved problems (%)
Solved problems (%)

10° 10 10 102 10°
Performance ratio: Iteration Performance ratio: Time

Figure 2.2: Performance Profile-Non-Convex problem

The graphics of Figures 2.1 and 2.2 show that the Method performs better
with PRP and HS betas, both in terms of iteration and time, for both sets of convex
and non-convex problems.

From the examples presented in Tables 2.2 and 2.3, we have selected five
convex and five non-convex problems to graphically display their respective Pareto
Frontier for each beta studied in section 2.4. In Figures 2.3 up to 2.7 the convex
examples are shown: BK1, Lovl, PNR, SD and Toi8. From 2.8 to 2.12 we have the
non-convex: Farl, Hill, KW2, Lov4, MOP3.

Each figure presents information about a problem, specified above or in

their respective caption, being composed of nine graphics each. The first ones were

2.6 Computational experiments 63

obtained by discretizing the boxes where the starting point is taken, corresponding
through a fine grid and plotting all the points of the image. This figure gives us
the representation of the image of F and, in turn, a geometric idea of the Pareto
frontiers.

Second graphics were obtained by running Algorithm 2.16 for each problem
300 times, using randomly generated starting points belonging to the corresponding
boxes. The starting point image is represented by the blue dot on this graph and the
respective image of the critical point obtained by the algorithm is the black point,
the gray line connects these two points.

The third graph was obtained similarly to the second, however running the
problem only 20 times. The starting point image is represented by a blue asterisk,
and the image of each iteration is represented by a blue dot, with each iteration
being linked to the next by a gray line segment. The solution image is represented
by a black dot.

The last six graphs are images of the critical points obtained by NCGMNL
using the respective betas FR, CD, DY, DYm, PRP and HS. That is, the respective

Pareto Fronts.

2.6 Computational experiments

64

Fi(x)
\\\
W m w6 % w
Fi(a
\\\
0 DT w

200

180

BK1

0 20
200
140 160 180 200
% @
60
50
ol
H
=
=
0 D
0 10 2 E) P E) 60
Fi(2)

PRP

Figure 2.3: Convex problem-BK1

40

20

80 100 120 140 160 180 200
Fi(x)
%
50
wb
\
\
30 E
20
0
o
o £
i
\
|
\-
.\
\\
N,
.
0 10 2 E) P 50 E)
Fy(x)

2.6 Computational experiments

Lovl

350

350 T T T T

Iy(x)

0 50 100 150 200
250

b(w)

By

0 20 40 60 80 100 120 140 160 180 200

Fi(x)
2 2 2
s 18 18
® 1 16
14 14 “
wf 2 12,
Sof ' Sof
Foh \ AU Y
s af -
6 6 9 6
4 4 4 .
2 b 2 2 =
0 e 0 —— 0 =
o 2 4 6 & 1 12 u 1 18 20 o 2 4 6 8 10 12 1 1 18 2 o 2 4 6 8 10 1
Fi() i) Fi(x)
20 20
2
18 18
®
1 1
®
" 14 14
2t . 12
Ew S0
RN \ AR
L1 8 8f .
6 . 6 - 8 S
4 4 . 4
2 R
B g, 2 - 2 o
B TR L TP : - <
o 2 4 6 8 1 1 e 20 0 < 0
Fi(x) 0 2 4 6 & 10 12 14 1 18 20 0o 2 4 8 10 12
Fi(x) Fi(x)

PRP HS
Figure 2.4: Conver problem-Lovl

2.6 Computational experiments

66

PNR

9
g ,
7
6
B
-
5]
Ry
3
2
1
0 80 9 100
0
8
7]
5]
5 * 4
T
B}
=4 1
K,
Jo§ -y |
/4
2]
1]
0
10 40 50 60 70 80 90 100
Fi(z)
s . o . . . 8 . .
7 1 7
5 3
5 : 1 5
Ea - . .
! i '
S v 1 3o
2 3 3 2 A
\
1 \ 1 1
Ul) 10 20 30 40 50 80 70 80 9% 100 10 20 £ 50 60 70 80 9% 100 DD 10 20 30 40 50 60 70 80 o 100
Fi(x) Fi(z) Fi(x)
8
8
b
7
6 6
ST, i o
i \ 3 \
2 A i 2 S
1
1
B S S S
0 10 2 H 4 0 6 7 8 % 10 0
Fy(x) 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 60 70 20 100

Fi(x)

PRP

Figure 2.5: Convex problem-PNR

2.6 Computational experiments

67

SD

8
8 T
75
7.5
7 7
6.5 8.5 &)
6 6
) Bl
5:1 55 ;:1 55
5 5
45 45
4 4
35
3.5
3
3 6 8
[18
8
7.5 1
7 o
6.5 q
6 * 1
= #
E4s % .
=
5 5
A
5 D F .
X A
(/s
45 i’-/- 4
Tp
4 o
36 ¥ —
3
6 8 10 12 14 16 18
Fi(z)
8 8
75 75
7 7
65 65 .
5 \ e \
4 \\\ 4 \\.\
35 b 35 S
3 3
o 8 0 12 18 © 18 6 s 0 12 4 6 8
Fi() Fi(z)
8
8
75
75
) 7
65 6.5 &
) AN
, .
\. \.
3 \
3 \
s AN
45 45 \
~. N
4 . 4 N
- ~. M
35 =
5 :
s 8 0 12 18 © 18 3
Fy(x) 6 8 10 12 14 16 18

2.6:

Fi(z)

PRP
Conwvex problem-SD

™,
: \
~
4 .
s ~
3
3 10 2 14 18 s
Fi(z)
8
75
7
65 .
£
\,
\
N
: \
4 .
~
o ~.
3
6 8 10 1 14 16 18

2.6 Computational experiments

68

Toi8

1800
1800 . . : :
1600 - g
1600
1400 7
1200 d
1000 - 1000 < 2
&) / - >
B = , 2
e)) 74 = =
«
- : - 350 400 450
0 50 100 150 200 250 300 350 400 450
filz)
1800
1600 1
1400]
1200 #* * N
- 1000 * 4
B
=
= 8o ,
* #*
*
600 ol 4
400 .]
/ *
200 ¥ #,]
i} e . T
0 50 100 150 200 250 300 350 400 450
Fi(z)
300 . — 300 . . . 30— — .
250 20 1 250
20 20 1 20
150
100 100 1 100
0 50 1 0
OD 20 40 60 80 100 120 140 160 180 200 Dﬂ 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Fi(x) Fy(z) Fi(x)
300 300
300
250 250
20
200 200 200
o =z L
=150 = 150 = 150
£ S
09 100 100
)
50 50
o e
R 140 160 180 200 o o
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Fy(x) Fy(x)

PRP

Figure 2.7: Convex problem-Toi8

HS

2.6 Computational experiments

69

Farl

2 T T T T
/
15 .
1 ,
, gl .
. N
E:j 0.5 .
o
-05 -
-
4
2 15 1 0.5 0 0.5 1
Fi(x)
2
%*
1.5 q
1 / + " 1
+ / /
—
/A
~ 05 / * q
& / & *
0 # e]
e
Tk
-
-05 ot i
*
-1
-2 15 1 0.5 0 0.5 1
Fi(z)
2 2 2
15 5 15
1 1 1
Eos
z L A
e,
- e
0 0 0
05 05 05
1 - g ~ 7 3
2 15 1 05 0 05 1 T2 15 1 05 0 05 1 2 1.5 05 0 05
Fi(x) Fi(x) Fi(x)
2 2
2
5 15
15
1 1 1
Eos Zo0s
= <N ‘.
o 0 0
05
% -05 -05
. 5 . .
2 15 1 05 0 05 1 1) A
Fy(x) 2 -1.5 - -0.5 0 05 1 2 -15 05 [05
Fi(z) Fi(x)

PRP
Figure 2.8: Non-Convez problem-Farl

2.6 Computational experiments

Hill

038 v
d

0.6

0.4

0.2

-0.2

-04

Fyfx)

/
P

(

//

/
rd

Fy(x)

/

0 2 0 N 0
. \
;\‘ ke
05 05 05
%05 o 05 1 15 05 o 05 1 15 05 0 05 1 s
Fi(=) Fi(x) Fi(z)
15 15
15
1 1
1 1
T\ \ \
\ - b
. .
hN ", .

Fy(x)

()
/

S
F(x

\ \
o \\ 0 \‘ 0
h N .
. . ~
~— s, T
05 :
o5 3 05 1 15 05 05
Fi(z) 05 0 05 1 15 05 0 05 1 15
Fi(x) Fi(x)

PRP HS
Figure 2.9: Non-Convez problem-Hill

2.6 Computational experiments

71

KW2

8
6
4
2
~ 0
<
=
iz
4
E
-8
-10 : !
-10 5 0
Fi(z)
8
6
4
2
—_
&
=0
&
2
4
5
-8
0 8
s o
s s
4 4 4 :
2 p

Fy(x)

- -4

6 6

E E)

“10 6 4 2 0 2 4 6 8 10 0 8 6 4 2 0 2 10
Fi(w) Fi(x)

8 8

6 6

4 N 4 N

2 2 .

2 2

-4 “4

i . i

-8

10 6 4 =2 0 2 4 6 8 10 0 8 6 4 2 0 8 10
Fi(x) Fi(x)

PRP

Figure 2.10: Non-Convez problem-KW2

2.6 Computational experiments

72

fulz)

1200

Lov4

1200

1000

1200
1000 Hy
800
o
5
= 600 * F
<3
*
400 A
* *
* *
K
200 P
P/
W
y =
o
0 100 200 300 400 500 600 700 800
Fi(z)
w0 . w . :
30 % 30
T sl {
20)
i 5 i
10 . 10 .
o 0 .
o s 10 B = 2 s @ o s 10 5w 2 @ 4
Fi(2) Fi(x)
40
w0
35
3
30
» o, LY
Swf
[<h
i5 15
10 s 10
s .
5 .
o ; ; ;
o s 10 15 = s 5 =
Fix) o 0 15 20 25 % 3% 4

PRP

700 800
W " .
3
30
2
15
10 .
" .
0 0 15 20 2 s 4
Fi(z)
40
35
30
15
10 s
5 5
4 S
0 0 15 2 25 30
Fi(x)

Figure 2.11: Non-Convex problem-Lov/

2.6 Computational experiments

73

MOP3

60

70

2
30 30
3
i i
i
25 i
%
08 N,
10 10 ., 10 %
5F. .
I 5 5
o . . el .
o 15 2 2 B 0 0 5
Fi(x) 0 5 10 15 20 2 30 0 5 1 15 20 2
Fi(x) Fi(z)

PRP HS
Figure 2.12: Non-Convezr problem-MOP3

CHAPTER 3

Steepest descent method with a new line

search

In this chapter, we will study the gradient method when the Armijo search
is replaced by the new line search introduced early. A family of conjugate gradient
methods, with this new line search, was studied in Chapter 2. Theoretical results
of convergence and numerical performance were satisfactory when compared with
the results presented in [39|. Therefore, we decided to proceed with a similar study
for the steepest descent algorithm. As was commented before, the new line search
does not make use of function values. So, it may have good performance when the

objectives are functions for which the is simpler to compute the gradient.

3.1 Modifying the new line search

The new line search was presented in Chapter 2. In our studies was necessary
to introduce some hypotheses to guarantee that the sequence v remains bounded.
Now, we make a modification that assures that v} is bounded.

Let v: R" xR"\ {0} x (0,1) x (0,00) — [0,00) and ¢: R" x R"\ {0} x Ry x
(0,1) x (0,00) x (0,1) = Z, be defined as

(3-1)

v(z,d,d, p) = max {07 25f(ac,d) — f(z + pd, d)}

plldl[®

and

vpo'||d]*

i(z,d,v,d, p,w) = min {izo | fz+ pw'd,d) + 5

< (5f(x,d)} . (3-2)

respectively. For some combinations of x and d, which are of our interest, ¢ is well-
defined.

Lemma 3.1. If d is K-descent direction for F' at x then, i is well defined.

3.2 Convex case 75

Proof. The proof is by contradiction. Remember that v and p > 0. Assume that

f(z + pw'd, d)

zd 2
2 S e a),

for all positive integer i. Then, considering the limit as + — oo, we get

f(x,d) = 0f(x,d)

since w € (0,1) and f(+,d) is continuous. The inequality above is impossible because
f(z,d) <0 and § € (0,1). Thus, minimum at (3-2) must exist. O

Lemma 3.2. Assume L is Lipschitz constant of the Jacobian JF. Then,
v(, v(x),0,p)
2

Proof. As observed in (1-2),

1-6

f(@,v(@)) + [[o(@)[I* = 0.

Let = be not KC-critical. By definition (3-1) and Lemma 1.11

v(@,v(@),0,p) _ 0f(x,v(x)) — f(@ + pv(@), v(z))

2 l@P
(0= Df(av(@) + [, o(@) — fla+ pola),v(@)]
EGIE
d—1f(z,v(x))
= T@pE "
_1-0
p

]

Next, we will propose a procedure for computing a critical point of Prob-

lem 0-3. This method is based on the steepest descent algorithm proposed in [21, 28].

3.2 Convex case

For KC-convex and continuously differentiable F', our algorithm is the fol-

lowing.
Algorithm 3.3. Consider three exogenous constants: 0 < p,w,d < 1

0. Initialization: Let it be 2° € R". Compute v(x°), and initialize k < 0.

3.2 Convex case 76

1. Stopping criterium: If v(2*) = 0, then STOP.

2. Line search: Compute
4 = min{e > 1| f(2" + pw'v(aF), v(2F)) < §f (2", v(2*))}. (3-3)

3. Iteration step: Define
ap = pw't (3-4)

and

" = 2F + agu(a¥). (3-5)

Compute v(z**1), set k <+ k+ 1, and go to Step 1.

Herafter, {z*} refers to the sequence generated by Algorithm 3.3. Again, if
there exists k with v(2*) = 0, our procedure stops successfully. Let us then assume
v(z"®) # 0 for all k. Henceforth, f(z*, v(z*)) < 0 for all k.

Lemma 3.4. The sequence {F(x*)} is strictly K-decreasing, i.e., F(z*1) < F(x")
for all k.

Proof. Observe that
F(zFh) = F(2%) + /0 b JE (2% + tv(2))v(z")dt.
Then, considering w € G,
(F™1), w) = (F(*), w) + (/Oak JF (2" + tv(a®))o(a*)dt , w)
= (F(z"), w) + /akUF(xk + to(®)) (), w)dt

< (F(2"), w) + Oak f(2® + to(zF), v(aF))dt

IN

(F(z%), w) + /Oak f(z* + ago(@®), v(®))dt
= (F(a"), w) + o f (2" + opv(a*), v(2))
(F(z"), w) + apd f (¥, v(a"))

< (F(2"), w).

IN

The first inequality above is validated by f’s definition, the second is a consequence
of f(z* + tv(x*),v(x*))’s monotonicity, Lemma 1.15 item (b), the third is true by
(3-3), and f(2*,v(2¥)) < 0 implies the fourth. Then,

F(aF) < F(2).

3.2 Convex case 77

[
Lemma 3.5. If there exists F =i F(z*) for all k, then limy_.o oy f (2, v(2*)) = 0.

Proof. Consider e € K such that 0 < (e, w) <1 for all w € C. In the proof of the

previous lemma we showed that
F(2"™) < F(a®) + apd f (2", v(zF))e.

Therefore,

F =g F(a"h) 25 F(2%) + apdf (2", v(a¥))e < F(2°) + (5[2 asf(x®,v(z®))]e,
SZO (3-6)

for all k, series > oy, f (2%, v(x")) is summable, and limy,_,o ap f (2%, v(2%)) =0. O

Lemma 3.6. If
T ={x cR" | F(z) < F(z%) for all K} # 0,

then it exists x* € T such that limy_,o 2% = z*.

Proof. The previous Lemma remains holds. Then, Y ayf(z", v(z*)) is summable.
By Lemma 1.10 (b), f(zF, v(a*)) < —||v(2*)||?/2. Therefore, > ai||v(x®)||* < oo.
Take # € T. By Lemma 1.15 (a), it is true that (z* — 2, v(2"*)) <0, hence

lo* + apo(a®) — | = 2" = 2]]* < [|l2* = 2] + anllo(=")])*

because 0 < a < 1. Observe that 7 is convex, then {z*} is quase-Féjer convergent
to 7. Therefore, {z*} is bounded. Consider z*, a accumulation point of {z*}. Since

{F(z*)} is monotone decreasing (see Lemma 3.4), 2* € T. Then,

lim z* = 2*.

k—o0

]

Theorem 3.7. Assume T # (. The sequence generated by Algorithm 3.3, {x*}, is

convergent to a weak-K-minimum.

Proof. The last two lemmas hold. Then, {zF} is convergent. Consequently,
apllo(®)]] — 0 as k — oo. Assume that z* = lim;_,, 2F. We have two cases to

analyze because {a} C (0, pl.

3.2 Convex case 78

e First, assume that limy .., ar = 0. In this case, given k, there exists aj €

[, w™tay) such that
f@® + apo(a®), v(@®) = of (2", v(a")).

Considering the limit as k& — oo, we get f(z*,v(z*)) = 6 f(x*, v(2*)). Then,
f(z*,v(z*)) = 0 because ¢ # 1.
e Now, assume that liminf o, = 2a¢ > 0. Then, for all given € > 0, there exists

k such that k > k implies
e > arflo(@®)] > afloa®)].

Hence, v(z*) = 0.

In both cases, x* is K-critical. Then, by the K-convexity of F, x* is a weak-XC-

minimum for function F. O

3.2.1 Rate of convergence

In this section we will derive a convergence rate for Algorithm 3.3. Let it
be limy_, ¥ = 2*. We assume that L is the Lipschitz constant of the Jacobian JF

and that the parameters of the algorithm are such that £5 < ﬁ

Lemma 3.8. Assume that)
P

< —.
1—0 2L
Then, the following statement is true for any w € (0,1):

ap=wp, k=0,1,2,...,

and, consequently oy, < ﬁ, k=0,1,2,....

Proof. Assume that there exists k such that a; < wp. Then,
f@® +w apu(a®), v(@®) > 5f (2", v()).
Then, by Lemma 1.11 and the above inequality,

Lo~ agllo(@)|* > (2" + v apo(ah), v(a")) = f(2", v(a"))
> (6 — 1) f(z*, v(a")).

3.3 Lipschitz case 79

But, by Lemma 1.10 (b),
Ft o) 1
[[o(*)]J? 2’

implying
w(l—9) _ w(d — 1) f(z*, v(2))

2L Lo flo@h)|?
contradicting the hypothesis. Therefore ay = wp, for all k.

< ap < wp,

Hence,
c e 1-9 - 1
=w —_— < .
W =WP=P="0 S ar

]

Set f* = ming<j<n | f (2%, v(2*))|. Following the ideas from Section 1.2.3 in
[43], we get

(n-+ Do f; < do 3 £, 0(a)] = 6 D fla* v(a).
k=0 k=0
Take e € int(K) such that max{(e,w): w € C'} = 1. Substituting in (3-6), we get
(F(a°) = F(2™), w) = =61 apf (2", v(a)){e, w) = (n+ 1)dpw (e, w)
k=0

for all w € C. Remember that |w| = 1. Therefore, using the Cauchy-Schwarz

Inequality, we obtain the inequality

e L1

F(2°) — F(z*
r S T FE) — FEOI,

which describes the convergence rate of {f;} to zero.

3.3 Lipschitz case

In this section, we will show some properties the line-search has when the

Jacobian is Lipschitz continuous. We start with the following auxiliary lemma.

Lemma 3.9. Let d be K-descent direction for F' at x, L > 0 Lipschitz constant of
the Jacobian JF, 6 € (0,1) and p > 0.

(5 — 1)f(£E, d)

If L< ,
plld]?

then f(rx+ ad,d) <df(z,d) forall 0<a<p.

Proof. The thesis is true at o = 0 because f(x,d) < 0. Assume that there exists
0 < & < p such that f(x 4+ ad,d) > §f(z,d). Then, taking in account Lemma 1.11,

3.3 Lipschitz case 80

we get
(8= V) f(x,d) < f(z+ad,d) — f(z,d) < La|ld|* < Lplld||?,

in contradiction with our hypothese. O

Corollary 3.10. Assume that the hypothesis of Lemma 3.9 holds and let it be
¥ =z + ad, where a € (0, p). Then,

F(2") =g F(z) + daf(z,d)e,
for any e € int(K).
Proof. By the Fundamental Theorem of Calculus,
F(z') = F(z) + /a JF(z + td)d dt.
0
Then, taking any w € C, it holds

(P w) = (Pl wh + ([I+ td)d it w)
— (F(z), w) + /Oaup(x +td)d, w)dt
< (F(z), w) + Oa Fx + td, d)dt
< (F(x), w) +6/0a f(z,d)dt
= (F(x), w) +adf(x,d).

The first inequality above is validated by f’s definition, the second is a consequence

of Lemma 3.9 because a < p. Hence,
F(2') <k F(z) + af(x, d)e. (3-7)

]

Observe that (3-7) implies in F'(z') <x F(z) because f(x,d) < 0.
For the sake of simplification, we introduce function LS: R™ x R™ \ {0} x
(0,1) x (0,00) x (0,1) — R™, which is defined as follows:

LS(z,d,d, p,w) =z + put (@ v (@d3:p).0:pw) . (3-8)

where functions v and @ were defined by expressions (3-1) and (3-2), respectively.

The steepest descent algorithm with the line-search LS is the following.

3.3 Lipschitz case 81

Algorithm 3.11. Let it be 6,w € (0,1), p > 0 and 2° € R".

0. Initialization: Compute v(2°), and initialize k < 0.

1. Stopping criterium: If v(2*) = 0, then STOP, else go to Step 2.

2. Iteration step: Compute 2" = LS(z* v(2%),0, p,w) and v(x*1). Set k
k+ 1, and go to Step 1.

If v(z¥) # 0, then v(z") is a descent direction for F' at z* and, therefore, Step
2 will return a new iterate %! - see Lemma 3.1. Algorithm 3.11 stops at iteration k
only if v(2*) = 0. In such a case, {z*} is finite and the last iterate is K-critical. Let
us consider the case when {x*} is infinite, i.e., v(z*) # 0 for all k. In what follows,
numbers v, and aj, will denote v(z*, v(z%),8, p) and pui@ 0wt o(h).0).0p0)
respectively.
As observed before,
feo@) 1
[o()[* 2
when x is not K-critical point for F'. Then, in such a case,
d—1 f(z,v(z)) - 6—1_ 1-6

> L.
p o v(@)? 2p 2p

In other words, if the parameters of Algorithm 3.11 are such that %5 < %,

Lemma 3.9 and Corollary 3.10 hold. Hence, { F(2*)} is K-monotone decreasing.
Theorem 3.12. Assume that L is Lipschitz constant of the Jacobian; that L < 12;/)5,

and that there exists F <y F(a*). Then, every accumulation point of {z*}, if any,

1s IC-critical.

Proof. Observe that
F =i F(2"™) < F(2®) + apd f (2, v(zF))e (3-9)

k
=<k F(2°) + 5[2 asf(z®,v(x%))]e, forall k.
s=0

Then, series > apf(z¥, v(2%)) is summable and limg_ .. apf(2® v(2%)) =
limy o0 agl|v(zF)|| = 0. Let it be {z*}, subsequence of {z*}, convergent to z*.
By continuity of v, limj_ . v(z*) = wv(z*). Our goal is to demonstrate that
f(z*,v(z*)) = 0. By definition of vy,

v pllo () ||

fla™ + po(a*), v(z")) + > o f (2", v(a™)).

3.3 Lipschitz case 82

Since f(.,v(z")) is continuous, there exists ax, € (a,,w ' ag,], such that

Vg, Ot [0 (™) ||

2

Fa™ + o), v(@™)) + = of (", v(a™)) (3-10)

because, by (3-2),

iy O [[0 (") ||

5 < §f(ake v(xh)).

F(@Fe 4 ago(z™), v(z™)) +
Remember that {ag,} C [0, p). Then, we have the following two cases to consider.
e First, assume that lim;_,,, o, = 0. Observe that
0 < v lo@™)|I* < 206 f (2™, v(a™)) — (2™ + prv(a®), v(a™))].
Since v and f are continuous functions, we have that
{l0.f (2" v(@®) — f(a™ + pro(a™), v(="))}
is convergent and, henceforth,
{vnllo(=")]*}

is bounded. Now, taking limit in (3-10), we get

vl o (@)
2

Fa @) = lim | £ + (). ola) +
=4f(z",v(z")).

Hence, f(z*,v(z*)) = 0 because 6 # 1.

e Now, assume that there exists a subsequence {ay, } of {ag} such that
lim, o ag,, = 2a¢ > 0. Then, for any given ¢ > 0, there exists x such that
s > Kk implies

e > ay, [[u(@*)[| > allu(z")

Therefore, ||v(z*)|| = 0, and consequently, f(z*,v(z*)) = 0.

3.3.1 Rate of convergence

In this subsection, L is Lipschitz constant of JF.

3.3 Lipschitz case 83

We claim that zero is not an accumulation point of {ay,}. Indeed, suppose
that {ag, } is a subsequence of {ay} with limg_,o, ag, = 0. Without loss of generality,

we can state that

-1 k(|2
Fla 4w o(a), o)) + 2O WDIE S spe i) (@)
for all s. We have assumed that
1—9
2L < ——.
P
Therefore,
1-9 1-9
2L + <2
P P
Hence,

w™ o, [lv(a™)

1—9
29 (T) > w’laksHv(m‘ks)

> w oy [v(a™)

()
YL+ v, /2)

Vi, w™ oy, [|(2®) |2

2

= Lw’laksHv(:cks) 2y

> (6 — 1) f (=", v(a")).

Where the second inequality holds by Lemma 3.2 and we get the last inequality
using (3-11) with the Lipschitz-continuity of JF'. Therefore,

— f(a*, o) wp
N TIPS E

Noting that

e, v(@®) + () * =0,

we get

wp
M=

which gives a contradiction. Without loss of generality, we can assume that
ar > a >0,

for all k. We denote f* = ming<j<, | f (2%, v(2"))|. Hence,

(n+1)dafy < oy [f(a* v(@) <6 anlf(a* v(a")] = =8) anf(a", v(ah)).

3.4 General case 84

Consider any e € int(K) such that max{{(e,w): w € C'} = 1. Substituting in (3-9),

we get
(F(a®) = F(2%), w) = =0 apf(2*, v(a")){e, w) = (n+ 1)daf; (e, w)

for all w € C. Remember that ||w|| = 1. Therefore, using the Cauchy-Schwarz

Inequality, we obtain the inequality

1 1
* < -
f”_n—i—laé

1F(2%) = F()],

which describes the convergence rate of {f*} to zero.

3.4 General case

In this section we will present an algorithm for the general case, this is, we

will assume neither the convexity of F' nor Lipschitz continuity of JF'.
Algorithm 3.13. We need three exogenous constants: §,w € (0,1), and p > 0

0. Initialization: Let it be 2° € R™. Compute v(2°), and initialize k < 0.
1. Stopping criterium: If v(2*) = 0, then STOP.
2. Line search: Compute

(3-12)

Uy = max {0’ SOF (a2 v(@h) — " + po(at), v(a")) }

pllo(x*)]2
and

vepw' o (z*) ||

i, = min {z >1 | fla® + pwiv(@®),v(®)) + < §f (2", v(2"))

2
(3-13)
3. Iteration step: Define
ap = pw'* (3-14)
and
" = 2P g (a?). (3-15)

Compute v(z**1), set k <+ k+ 1, and go to Step 1.
We will continue to present the convergence results for Algorithm 3.13.

Theorem 3.14. Let {x*} be the sequence generated by Algorithm 3.15. If {z*} is

convergent, then its limit point is K-critical.

3.4 General case 85

Proof. Let x* = limy_,o 2*. Then, by the continuity of v, limy_, v(z*) = v(z*).
Our goal is to demonstrate that f(z*,v(z*)) = 0.
By (3-12),

I

£t -+ o). v(a)) + I 5 5y o)

Because f(.,v(z*)) is continuous, there exists ay € (o, w tag], such that

vl ||v(2) |2 i i
f@" 4+ apv(a), v(=*)) + M =0f(2", v(x")) (3-16)
because, by (3-13) and (3-14),
k k k vpag|[v(z*)|” k k
f(a" 4+ apo(z™), v(x")) + 5 < Of (2%, v(z")).

So, we have two cases to consider.

e [irst, assume that limy_,, o = 0. By assumption {z*} is convergent. There-
fore {vg|[v(z*)]|?} is bounded and limy ., agv(z*) = 0. Taking the limit in
(3-16), we get

owWNzgnﬂﬁ+@mwwww+@%%ﬁM

=of(x",v(z")).

Hence, f(z*,v(z*)) = 0 because 0 # 1.
e Now, assume that liminf ay, = 20 > 0. Then, for all given € > 0 there exists x

such that k > k implies
e > agl|v(z®)|| > aljv(z®)|, because lim oy llv(z¥)|| = 0.
k—o0

Therefore, ||v(z*)|| = 0, and consequently, f(z*,v(z*)) = 0.
O

To conclude this section, we will make an important observation. If it turns
out that there exists e € int(K) such that k =0,1,2,... and

F(2Fh) <k F(2®) + Sap f (2%, v(a"))e, (3-17)

as showed by Lemma 3.4 then we can prove that every accumulation point of

the sequence {z*}, generated by Algorithm 3.13, if any, is K-critical. Note that

3.5 Numerical experiments 86

Algorithm 3.3 is a modification of Algorithm 3.13 for the convex case that guarantees
the condition (3-17), as showed by Lemma 3.4. Just like this, Algorithm 3.11 is also

a modification of procedure 3.13 that ensures condition (3-17) when the parameters

p

1 < % where L is Lipschitz constant of the Jacobian, see Lemma 3.10.

satisfy

3.5 Numerical experiments

This section presents the results of numerical experiments to evaluate
the effectiveness of the algorithm and their ability to generate Pareto curves. All
considered problems are multi-objective optimization-based. Thus, K = R and G
is the canonical basis of R™.

The specifications of program, computer, stopping criteria and the maxi-
mum number of iterations are the same presented in Chapter 2 and therefore will

be omitted here.

3.5.1 Finding Pareto points

We have tested 37 nonconvex problems with parameters p = 2, w = 0.9, and
§ = 1073, while Algorithm 3.3 was tested using 19 convex problems with parameters
p=w=0.9and § =1073.

In the tables below, the column “Problem” indicates the names. “Source”
lists the source papers of the problems. Column n and m indicate the numbers of
variables and objectives, respectively. All the problems were solved 200 times using
starting points from a uniform random distribution inside a box specified in 2°. The
last four columns list the corresponding results. The “%” column lists the percentages
of runs that reached a critical point. “it” lists the average iterations per successful
runs, and “evalg” lists how many times the Jacobian was computed.

Algorithm ended at critical points for 100% of runs for 26 problems of runs.
Its performance was only unsatisfactory for Lov2 (35% success) and LTDZ (only
17% success). For the other 8 problems, it achieved critical points at least 69% of
the times.

Only the FDS problem was a challenge for Algorithm 3.3. It ended 69,5%

of the runs at a critical point. This problem is known to be difficult — see [20].

Problem | Source| n | m 20 % it evalg | time
AP3 1] 2 12 [—10, 10]" 95 | 2641.2 | 7965.9 | 4.871
DD1 [10] 51 2 [—20, 20]" 100 | 79.15 | 251.45 | 0.169

DGO1 [32] 1|2 [—10, 13]" 100 | 5.07 21.45 | 0.014

DTLZ2.2 | [11] 313 0, 1]™ 86 | 15.91 | 69.34 | 0.039

3.5 Numerical experiments

87

FA1 [32] 313 (0.1, 1]" 100 | 12.76 | 39.90 | 0.027
Farl [32] 2 | 2 [—1,1]" 100 | 90.22 | 293.77 | 0.179
FF1 |32] 2 | 2 —1,1]" 100 | 33.52 | 104.94 | 0.069
Hil1 [31] 2| 2 [0, 1]™ 100 | 22.70 | 97.52 | 0.050
KW2 |36] 2 | 2 [—3,3]" 91.5| 216.93 | 673.54 | 0.397
LE1 |32] 2 | 2 [—5,10]" 100 | 80.11 | 272.28 | 0.151
Lov2 [38] 2 | 2 | [-0.75,0.75]" | 35 | 26.29 | 90.77 | 0.053
Lov3 |38] 2 | 2 [—20, 20]" 100 | 7.33 36.01 | 0.018
Lov4 |38] 2 | 2 [—100,100]™ | 100 | 9.56 44.84 | 0.022
Lovd [38] 3| 2 [—2,2]" 100 | 47.41 | 146.13 | 0.097

LTDZ [37] 313 [0, 1]™ 17 | 2578.3 | 7750.2 | 4.769

MGH7 [43] 313 [—2,2]" 100 | 150.53 | 486.38 | 0.290

MGH26 [43] 4 | 4 —1,1]" 100 | 14.04 | 55.59 | 0.031

MLF1 [32] 1] 2 [0, 20]™ 100 | 4.96 20.61 | 0.015

MLF2 [32] 2 | 2 [—100,100]™ | 100 | 2.02 9.79 | 0.006

MMR1 |41] 2 | 2 0, 1]™ 100 | 7.16 53.85 | 0.018

MMR3 [41] 2| 2 [—1,1]" 69 | 14.93 | 45.84 | 0.045

MMR5 [41] o0 | 2 [—50, 50]™ 94 | 7923.9 |23772.8|16.560

MOP2 [32] 2 | 2 —1,1]" 100 | 35.40 | 113.73 | 0.071

MOP3 [32] 2| 2 [—7, 7] 100 | 16.72 | 73.00 | 0.035

MOP5 [32] 2|3 [—1,1]" 100 | 1545 | 47.94 | 0.035

QV1 [32] 10 | 2 | [-5.12,5.12]* | 100 | 829.1 | 2497.4 | 1.611
SK1 [32] 1] 2 [—100,100]™ | 100 | 0.82 5.79 | 0.004
SK2 [32] 4 | 2 [—10, 10]" 100 | 41.51 | 135.41 | 0.080
SLC2 [50] |100| 2 [—10, 10]" 100 | 460.39 | 949.41 | 1.411
SLCDT1 [51] 2| 2 [—1.5,1.5]" | 100 | 2.77 20.32 | 0.009
SSEYY?2 [32] 1] 2 [—10, 10]" 100 | 3.15 21.59 | 0.010
TKLY1 [32] 4 | 2 [[0.1,1] x [0,1]™] 78 | 647.4 | 1995.7 | 1.219
Toi9 [53] |100{100| [—100,100]" |100 | 32.17 | 122.75 | 0.678
Toil0 [53] 10 9 [—2,2]" 80 | 4335.0 |13072.3] 9.630
VU1l [32] 2 | 2 (-3, 3]" 100 | 1361.61 | 4108.63 | 2.416
Table 3.1: Performance of nonconvex problems.

Problem | Source | n |m 20 % it evalg | time
AP1 [1] 213 [—10, 10]" 100 | 964.32 | 1939.56 | 1.8758
AP2 1] 1|2 [-100,100]" | 100 | 4.43 14.87 10.0131
AP4 1] 313 [—10, 10]" 100 | 853.39 | 1718.03|1.6716

3.5 Numerical experiments 88

BK1 32] |2]2]| [-5 10" |100| 376 | 13.52 |0.0111
DGO2 | [32] 2| [-9,9" | 100| 71.83 | 144.66 |0.1502
FDS [20] [50] 3| [-2.2® |69.5|1799.16|3614.50 |4.1121
IKK1 32] |2|3| [-50,50]* |100| 3.12 | 11.15 |0.0095
JOS1 [35] [10] 2| [=10%10%" |100| 91.17 | 183.34 |0.1700
Lovl 38] |2|2]| [~100,100]" |100| 4.64 | 15.29 |0.0139
MGH33 | [43] |10{10| [-1,1]* |100| 2.19 | 35.61 |0.0122
MHHM?2 | [32] |23 [0,1]" 100 | 2.81 | 11.56 |0.0093
MOP1 | [32] 2| [-55" |100] 271 | 10.49 |0.0091
MOP7 | [32] |23 [—400,400]" | 100 | 159.37 | 319.73 |0.3117
PNR [48] 2| [-2,2]" | 100| 1237 | 41.13 |0.0301
SLCDT2 | [51] [10]3| [~1,1]* |100| 20.49 | 56.05 |0.0433
SP1 [32] 2 | [~100,100]" | 100 | 41.94 | 97.79 |0.0815
Toid [53] 2 | [~100,100]* | 100 | 4.99 | 15.98 |0.0133
Toi8 [53] 3| [~1,1» |100| 3.92 | 30.93 |0.0127
ZLT1 [32] |10| 5 |[~1000,1000]" | 100 | 5.96 | 18.80 |0.0161

Table 3.2: Performance of Algorithm 3.3.

3.5.2 Building Pareto fronts

We tested the ability of our methods to generate Pareto frontiers appro-
priately. We considered four non-convex examples from Table 3.1 and four convex
problems from Table 3.2, which are all bicriteria problems. The results are shown
in Figures 3.1 and 3.3. For each problem, there are three graphics. The first ones
were obtained by discretizing the corresponding boxes by a fine grid and plotting
all the image points. These provide good representations of the image of F' and
a geometric notion of the Pareto frontiers. The second graphics were obtained by
running Algorithm for each non-convex and Algorithm 3.3 for each convex problem,
300 times, using randomly generated starting points belonging to the corresponding
boxes. The third graphics were obtained in a similar manner, but by running the
algorithms only 20 times. In these graphics, the image of a starting point is repre-
sented by a start, while black and blue points represent images of the final iterate
and intermediately computed iterates, respectively. Straight segments link images
of consecutive iterates.

Figure 3.1 shows that for the chosen set of test problems, considering a
reasonable number of starting points, our algorithms were able to satisfactorily
estimate the Pareto frontiers. We emphasize that the non-monotonous behavior of

the sequences generated by Algorithm A, where it begins from some of the initial

3.5 Numerical experiments

89

points, is observable in the third graphics,

TKLY1

0|
o
0
- V
o 0z 04 05 08 T 12
Fi(x)

El -
M. S
e - .,
B s o
o 02 [0 1 2

BK1

FAR1

Hill

especially for FAR1, Hill and KW2.

KW2

05
Fi(z)

Fy(a)

Figure 3.1: Non-convez problems

TLovl

PNR

SD

o
25 16 o
2 o t
4 /
- . 4
2
1 - 4
5 =
05) N e
: 4
[y "
o ‘
\ ol
05 + 4l
q . P I 50 P
2 s 05 o 05 1 o4 02 0 02 04 05 08 16 10 o o 10
Fifz) Fifx) Fi(w)

0
180

0
160 ’
40 20r
120

Fi(w)

Figure 3.3:

e
®
8 7
7 65 &
/ +
6 6
s 3/ .
74 LI
4
35
E] ™ o o 2 m ® ®
Fy(x) Fifz)

Conver problems

3.6 A new group of testing problems 90

3.6 A new group of testing problems

Since our algorithm makes use of gradient values of the objective function
only, unlike most of the algorithms from the literature, we will propose a set of test
problems in which the computation of a gradient value requires less computational
effort than that required for calculating an objective function value.

Given b € R™ and A, symmetric positive definite n x n matrix, we define

1
q(z) = éa:TA:L’ + vz,

Moreover, let ¢, T and I': R® — R defined as

C(x) = 321, @ + arctan(x;) (x) = =50, [7 e /s

120

100
\
80 \

60 .2

40 %
X
N
20 N
56 P

-20

1

0.9

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

0

e

V4
/

-5

3 4 5

Figure 3.4: Graphic of ((z) forn =1

and

Figure 3.6: Graphic of Y(x) forn =1

A simple computation shows that

Vq(x) = Ax+b, V((z); =2x; +

14+ 2%’

3.6 A new group of testing problems 91

ZJIZ'

i +e

VY (x);

Function ¢ is strongly convex with module ||A||. { is separable and convex with only
one minimizer. The other two functions are separable and non-convex. I' has not
minimizer and (0,n) is its image. T achieves its minimum at the origin.

In order to build a set of test problems, we combine functions ¢, (, T and I"
forming different objectives. Altogether there are 11 problems, which are presented
in the following table. Columns # show the number that will identify each problem

from now on.

F(x) # F(x) # F(x)

L (q(z), @) |7 (alx), ¢(2), D))" |11 (g(), ¢(x), D), T(2))"
2 (q(x), D(@)" | 8 (q(x). ¢(x), T(a)"

3 (q(x), Y(@))" |9 (q(x), D(x), T(2))"

4 (C(x). D))" 110 (C(x), D(x), T(2))"

5 (Cx), T(x)!

6 (D(z), T(x)"

Table 3.3: New problems.

The following figures illustrate the image, Pareto fronts and optimal solu-

tions sets of the first six problems when n = 2 and

A_<_1 5)

For Problems 1 and 2, b is the zero vector of R? and for Problem 3, b = (0,4)T. The
starting point was taken in the box [—1,1]. For each of the six problems we have
three graphs. The first ones were obtained by discretizing the box [—1,1] by a fine
grid and plotting the image points. The second graphics were constructed compiling
the algorithm for each problem 300 times, thus obtaining a critical point and then
plotting its image. The third graphics were obtained plotting the 300 critical points.

The performance of the algorithm for this situation is shown in Table 3.4.

3.6 A new group of testing problems

92

Problem| a° % it
1 |[-1,1]"|100.00] 7.13
5 |[=1,1]"|100.00| 19.56
3 |[=1,1]"|100.00| 6.26
4 |1=1,1]]100.00| 19.50
5 |[=1,1]"|100.00| 6.05
6 |[-1,1]"|100.00| 7.15
7 |[=1,1]"|100.00|13.20
8 |[~1,1]" | 100.00| 5.10
9 |[=1,1]"|100.00| 7.40
10 |[~1,1]"|100.00| 6.91
11 |[~1,1]"]100.00| 7.52

Table 3.4: Performance of new problems.

045 S ses e
0 005 01 015 02 025 03 035 04 045 05
F(x)

!
0350 |

045

045 04 035 03 025 02 015 01 -005 0
)

05

3.6 A new group of testing problems 93
Fy(z) = (¢(x), T(x))"
Wx) = (Clx), I'(x
18
07 ~
065 !_ 05 v
0.6 \ 06 /
055 07 4
05 \ 08 /
5 045 ! -09 ./
04 \ A ,-’/
0.35 \'\ -1
03 T 12
0.25 1.3
B4 @2 o 0z o o8 08 1 42 a4 43 a2 41 4 09 o8 07 06 05
Fy(x) z
Fy(z) = (¢(x), T(x))"
s(r) = (C(x), T(x
22 o ~
218 -0.05 ,‘j'
#
216 0 //:
214 015 e
212 02 ke
\E 21 -0.25
& |
208 '\ -0.3
2.06 :‘ -0.35
204 e 04 /"‘
202 b 045
%45 04 035 03 025 02 :1-5--;1 005 0 0%5 045 04 035 03 025 02 015 01 005 0
Fi(z) o
Fy(x) = (T(x), T(x))"
2
26 [
26 o //
25 “ 02 e
24 -03 ”'//
24 04 e
Eza g“ 3 ' 05 /_."/
) P
" = \\ e
2.1 21 . 08
"\'__\ 09
: 1 12 14 s . 09 08 07 06 05 o4 03 02 o1 0
Fi(x) Fi(x) z
Figure 3.9: Graphics of Image, Pareto Front and problem

solving with two objective functions, two vari-
ables and the starting point taken in the range

[1,1].

We compare the steepest descent algorithm with the two different line

searches, the Armijo’s one and ours, using as criterium the average number of

iterations needed to find a critical point, and the average employed CPU time.

3.6 A new group of testing problems

94

1 |
T Y e e e e e
-
’ -
—~. 08 e i
] -
1 /
=] g
g ’
= 06f ’ |
c £
= s
s ’
- ¢
< /
so4af . i
) ’
w Fd
'
b
o2 |
0 . j :
10° 10! 102 10°
Performance ratio - [teration
T P s _.._-.—_-u..—_—_—_-_—_—__._.'
' I’
s
’ rd
—~o0sf ! ¢ j
b5 ! -
= & #
= i
i]
Zo06F j
= V]
=y ’
= ’
Eoap |
(=]
173
02 i
10° 10’ 102
Performance ratio - Tteration
T - e e = e e o e o Em wm e
¢ =TI D R e
' -
rs
! s
—~08F I ’ 4
=] -
= .
=] -
3] l‘ ’
= 08 j
= [4
5 p
=y
T
£ o4} |
(=]
173
02 i
10° 10! 102

Performance ratio - Tteration

n=—2

n=10

n=20

Solved Problems(%)

Solved Problems(%)

Solved Problems(%)

1 pmm o e]
/ -
Vs P T
b i
L s 4
0.8 #
’
’
’
' 4
06 ’ |
'
'
s
’
o4f ! 1
1
1
)
02 # |
L
5 i j ;
10° 10! 107 16%
Performance ratio - Time
T ______;-.-.-.--J-J-r_—:'
JRPCCE="
s ,
4 52
7] ’
0.8 ’ g
r'd
-
-
-
”
r 4
08 ’ 1
]
s
'
04fF |
I
]
’
02p 1
10° 10! 102
Performance ratio - Time
T o o e e R W W s e W
e = = = o o o
’ P
’ ’
’ ’
08 ’ 1
¥ %
]
06f ! 1
Il
I
’
L ’ i
04r
]
”
L
02 1
10° 10 102
Performance ratio - Time

3.6 A new group of testing problems 95
n=>50
1
— e = = = P <5, 5 S e o o ey gy -
s - - .- ot -
—~0.8 . i —~0.8 P ’ 1
e / - e ’ p
T 4 -’ T ’
g / i g -—-
g] - @ =
=08 - i =06 i
G | ;" e ’
& b & p
B Lo T ’
B 04 & 04 - =
(=] (=]
93] 93]
02 1 1
== == rNonm == == rNonm
= = "Gradient = = "Gradient
5 i ; ; 7
1 2 3 4 10!
Performance ratio - [teration Performance ratio - Time
n=100
1
AO08F L e e e D on . £ < I N — R]
‘i\u., - L - ‘i\u., e - 7 r
W ’ [
g ’ J g o .
(4] (4]
= 086 4 o = - e
© AR ° - o
& | e & P
f
T ‘ T 4
£ 04 ’ =L U ——— 4
[=] b = (=]
w w

0.2

= = rNonm
= = "Gradient

Performance ratio - Tteration

= = rNonm
= = "Gradient

=

10
Performance ratio - Time

Figure 3.12: Performance Profiles comparing iteration and
time for the group of 11 new problems.

With the same data obtained to generate the Performance Profile above, we

decided, to check the quality of the Pareto front using the metrics: Purity metric,

Spread Metric-Delta and Spread Metric-Gamma-see [8, 22| or Appendix A. So we

can compare which Pareto curve has the least dominated points (Purity metric)

and which ones have less holes (Spread Metric-Delta e Spread Metric-Gamma). The

results obtained are shown in Figure 3.14.

We can observe that when the Gradiente algorithm is compared with the

two searches (Armijo and the new search), there exists a highlight for the new search,

both in terms of time and iteration. And when we look at the quality of the points

that belong to the Pareto curve, we see that the new search does not lose in quality

respect to the Armijo search. Therefore, the new search has significant contributions

3.6 A new group of testing problems 96
Purit tri A-S d Metri I'-S d Metri
L e L et 1 —_———————
1 1 ! 1 ! 1
Rttt == Il i =
Bl s = e |
08 1 d 08 1 1 08 1
e gl (o
v | I_.l | Sp—]
M. Cid ol
T [} T 3 <
) 1
]
04 1 04 04
b
1
¢
1
o2p. ! 02 02
0 0
1 11 12 13 14 15 i 105 11 115 12 125 13 135 1 12 14 16 18 2 22
@)) @)
1 s e e e 1f e e ———— e 1 o - —
T ! T G 3 b e e e s
1 1 1 . I
o8t £ osf ¢ 7 ol Fm— ¢
1 _l I - L !
1 1 I | 1
E T = i
08 —~osl —~osf |
o sl & A e
< < <
L ! =l
04 04 04
0.2 02 02
3 o
1 105 1 115 12 125 13 1 105 14 115 12 125 13 135 1 15 2 25 3
=) (r) (]
o —— i i e e b e
| :' I : 1 1
h e - ————- :_ ________ e
U7 e S osf Ermia L o
1] 1
. B e g
1) |
~08 1 —~osl | —~os] 1
< - o - e
< | < |1 <
- .
04ty 04f1 04
1 n
02 02 02
0 o 3
1 12 14 16 18 2 ;| 1.05 11 1.15 12 125 13 1 15 2 25
() () ()
1 1 Fisiie e 1 P ——
1
- e
- [E— | I
08 08 = 08 =
1 1 ! 1
[= = |
. . N " — .
—~osf! —~o0s 1 ~os !
= |e & ——— X 3
< < < 1
I = -
04 04 04
02 02 02
0 0
1 2 3 4 5 8 1 1.05 1.1 115 12 125 1 15 2 25
(r) () (r)
1 1 1
SRR = :________________I__ ol e
e e m e ———————— S i (e ey
| i [1
e fr— fm————— ———
1 1)
—~06 ' —~os | !
S P8 O =%
< i < <)
b ! B
04 04 04
02 02 02

Figure 3.14: Purity metric, Spread Metric-Delta, Spread

Metric-Gamma for the group of 11 new prob-
lems.

3.6 A new group of testing problems

when is used in this new group of problems.

3.6.1 Non-monotone algorithms

with others that have this same characteristic. We make the Performance Profile

confronting iteration and time of the gradient algorithms with the linear search of

Since in general our algorithm is non-monotone, we decided to compare it

Armijo, average-type and max-type, with the parameters suggested by the authors,

see |42]. For this, we changed the number of variables and the interval where the

starting point is taken, this information can be found in Table 3.5.

0.8

—~. 06

04

0.2

102
e

Purity Metric

Problem | n 20
1 100 | [—10%,107]
2 5) [—5, 5]
3 10 | [—10%,107]
4 50 [—5, 5]
) 200 | [-10?%,107]
6 500| [-5,5]
7 2 [—5, 5]
8 10 | [—10%, 107
9 10 [—5, 5]
10 100| [—5,5]
11 10 [—5, 5]
Table 3.5: New problems, variable numbers and starting point
range.
Time Iteration
"_/’:_',-' . ,,' / ;;,y"" S
;;; : L is'
/ Cru
< /:;’4
0.4 ;’?/

102
e

I'—Spread Metri

3.6 A new group of testing problems 98

0.8 1 0.8

| R PR
: i
04 04 i
..... . S— |
0.2 .__3 = = *Nonm _ 072!, ____________ = = :Nonm
L o MaxType Ir o MaxType
i | R e A AverageType Gapsiecsarpeasarpeaaall®f 0 ||HesEaswa AverageType
g f —=—=:GRADIENTE —=—""GRADIENTE
L]

10° 10 1 15 2 25 3

0.8 1

02L = = *Nonm
MaxType

......... AverageType

—==='GRADIENTE

1 1.1 1.2 1.3 14 15 16 17 18 19

We can see a very significant performance of the new linear search, both
in terms of effectiveness and robustness of the Algorithm 3.13, when it is compared
with itself using Armijo’s search and with the Averagr-type and Max- type. In the
graphs that compare Iteration and Time, we see that the new search is the one
that stands out the most. And in the graphs that compare the quality of the Pareto
Front (Purity Metric, I'—Spread Metric and A—Spread Metric) we observe that
the algorithm with the new search generates a better Pareto curve than the other
algorithms. So here we see a more significant highlight of the new search using this
new group of problems.

3.6.2 Four new problems

We created a new set of test problems with four bi-objective optimization

problems, that is, m = 2. Functions {, I', T, and ¢ were combined with the following
one, 0 : R" — R, see [12, 41],

3.6 A new group of testing problems 99

O(x) = 2 —0.8¢ 0.4 _e \ 0.004

As it was pointed before, I', T, and ¢ have just one critical point which is the
respective global minimizer. On the other hand, function # has one local minimum at
0,6 and one global minimum at 0, 2. Observe that the attraction valley of the local
minimizer is much larger than the attraction valley of the global minimizer. That

situation should challenge any procedure which intends to find global minimizers.

Figure 3.16: Graphic of 0(x) forn =1:

We created a new group of problems involving function 6(z) to check the

efficiency of our algorithm:

F(x)
12| (q(x), 6(x))"
13| (C(x), 6(x))"

14| (T(x)), 6(x))"
15| (Y(x), 6(x))

We will continue to describe our new set of problems. We will present the
“Image” of the problems together with the “Pareto Front” and the Pareto Points of
the problem from 12 to 15.

The graph of “Image” was constructed by discretizing the interval Pareto
Points and plotting the image of the respective values.

The Pareto Front was constructed plotting the image of solution of each
problem obtained compiling our Algorithm 300 times, taking the starting point in
the interval [0, 1].

For the Pareto Points of the problem, we generated 300 starting points
randomly in the interval [0, 1] and the number of variables n = 2. The solutions

were plotted and the results are as follows:

3.6 A new group of testing problems 100
0 T
Fia(z) = (q(x), 0(x))
4 06 T
|
35 05 N
!
. 04 I3
& | . N ;
T\ .) 03 3
=‘ \ 0.2 - - ————
2k 1 N\C
“ 01 1
sl \ i
0 01 02 03 04 05 06 07 08 01 02 03 04 05 06
Fy(z) o
Fis(z) = 0(z))"
13\T) = x), €T
- 06
34 * X, 05
32 e 04
3 03
28 sy 02 FR——————
:za\ o i
R4 ' 0 !
22 . 01 I
? . 02
18 : 05 .
18 i i : B
14 \ ' -
0.5 o 0.5 1 15 2 0 02 04 06 08 1 12 14 16 18 2 02 -01 0 01 02 03 04 05 06 07
Fi(z) Fi(x) £
T
Fu(r) = (I(z), 0(x))
34 06 H o
32 - - . ‘.',
3 04 e
28 T 916, odmars vamamw o v e o e
26 \ /‘
= 24 i 0 l
22 1 |
02 i
2 N :
18 04 !
i
% 16 o H
ks 14 i 06 .
06 0.8 1 12 14 16 06 07 08 09 1 1112 13 14 15 06 04 0.2 0 02 04 06
Fi(x) F(z) ay
T
Fis(z) = (Y(x), 6(2))
06
3s
35
05
2 9 04
© = |\
&' 25 T \ 203
i
3 L 02 ———-uy s
\
i 0.1
15 wsho
1.9 2 205 21 2.1 22 225 23 2 205 24 215 22 225 23 DD 0.1 0.2 0.3 0.4 05 06
Fi(z) F(z) ai

Now, it follows the numerical experiments involving the new set of problems.

We will compare our algorithms with Gradiente and Average-Type [42], using

different metrics, Iteration, Computational Time, the Purity Metric, A—Spread
Metric and I'—Spread Metric, see [8, 22|. Figure 3.20 shows us the results of these
experiments, which are presented in blocks by the number of variables, with six
graphics in each. We did the experiments for n = 2,10,20,50 and 100, with the
range of the starting point taken in [0, 1]. The first and second graphs of the block

present the Performance Profile in relation to time and iteration, respectively. The

3.6 A new group of testing problems

101

third and fourth graphs compare our algorithm with the gradient and the Average-

type, respectively, this is, check which of the algorithms has the Pareto front with

less dominated points. The fifth and sixth ones compare the three algorithms in

relation to the A—Spread Metric and I'—Spread Metric, respectively, this is, check

which Pareto curve is more continuous, that is, which one has less holes.

Solved problems (%)

Nonm
= = -Gradiente
—-—=-AverageType

100 10! 102
Performance ratio - Time

Purity Metric

1 |mm———————
1
1
08 1
_________]
!
i
06 i
-t
r
i
04 |
i
____________ J
02
— = ‘Nonm
—-—--Average
4
1 11 12 13 14 15 16 17

Performance ratio - purity

Time

£
a
5
50
]
5
o
g
20
]
@
o P Nonm
Lial - = -Gradiente
—=-==AverageType

100 10! 102 100
Performance ratio - Time

Purity Metric

— = ‘Nonm
—-—--Average

1 15 2 25 3 35 4
Performance ratio - purity

n=2

Tteration

g

°

5

20

g

3

°

3

20

S

@

. Nonm

— — -Gradiente
—-—=-AverageType

10° 10! 102
Performance ratio - Iteration

A—Spread Metric

Nonm
— — -Gradiente
--------- AverageType

n=10

Tteration

v
5
50
]
&
°
3
20
]
@
.
02 S Nonn’|
=& — — -Gradiente

==-==-AverageType

10° 10! 107
Performance ratio - Iteration

A—Spread Metric

— — -Gradiente
--------- AverageType

Purity Metric

1 = ——————
1
1
08 1
06
04
02
= = Nonm
——Gradiente
%1 12 13 14 15 16 17 18
Performance ratio - purity
I'—Spread Metric
1 fm—————
1
1
0.8 1

Nonm
— = ‘Gradiente
--------- AverageType

111 12 13 14 15 16 17 18 19

08

06

04

02
== Nonm
—— Gradiente

0

1 12 14 16 18 2 22 24 26 28 3
Performance ratio - purity

I'—Spread Metric

Nonm
— — ‘Gradiente
--------- AverageType

1 15 2 25 3 35
o

3.6 A new group of testing problems

102

Time

-0
£
@
5
2o
]
&
5
20
]
@
02t/ Nonm
e = *Gradiente
—-—=-AverageType
o o 0 0
Performance ratio - Time
Purity Metric
1
1
1
1
08 '
T
I
06 1
1
--
04 o
1
1
02

1 12 14 16 18 2 22 24 26
Performance ratio - purity

Time

Solved problems (%)

Nonm
= ‘Gradiente
-AverageType

10° 10! 10% 10°
Performance ratio - Time

Purity Metric

‘Nonm
- Average

115 2 25 3 35 4 45 5 55
Performance ratio - purity

Iteration

Solved problems (%)

10° 10! 102 10°
Performance ratio - Iteration
1
1
1
08 1
~06
G
S
i
oar i
i)
02
0
1105 11 115 12 125 13 135 14 145

n=>50

Solved problems (%)

10° 10! 102
Performance ratio - Iteration

A—Spread Metric

08
1
1
O "
< e
1
04 1
I
.
02 Nonn:\
= = ‘Gradiente
--------- AverageType
0
1 105 11 1.15 12 125 13

Purity Metric

1
08
r
1
06 !
1
04
02
= = ‘Nonm
—Gra
0
1 15 2 25 3
Performance ratio - purity
I'—Spread Metric
1
1
1
08 !
=0
I
—~06 !
Gy 1
<
1
04 1
1
1
02 1 Nonm
1 = = 'Gradiente
1 AverageType
% 12 14 16 18 2
T
Purity Metric
1 '
1
1
08 1
1
1
06 i
________ i
04
02
0
1 15 2 25 3 35 4

Performance ratio - purity

['—Spread Metric

1 (
1
I
08 1
~06
©
=
04
02 Nonm
= = 'Gradiente
--------- AverageType
0

3.6 A new group of testing problems 103

n=100

Time Iteration Purity Metric

AT i e o o i
1
1
1

08 1

04

Solved problems (%)
Solved problems (%)

Nonm

Nonm
— — -Gradiente — — -Gradiente

’
‘
’
’,
02 4 02
. = = Nonm
—-—-AverageType —-—=AverageType ——Gradiente

9 0 1 2 9

10 10 10 10 10 115 2 25 3 35 4 45 5 55
Performance ratio - Time Performance ratio - Iteration Performance ratio - purity

Purity Metric A—Spread Metric I'—Spread Metric

st o

Nonm
— — -Gradiente
--------- AverageType

Nonm

02 i 92 i . 5
i - - :Nonm i Gradiente
i —-—- Average b =S AverageType
" tes 11 115 1z 125 13 135

i
1 15 2 25 3 35 4 45 5 55 6
Performance ratio - purity

Figure 3.20: Performance Profile in relation to time, iter-
ation, Purity Metric, A—Spread Metric and
I'—Spread Metric with different values of vari-
ables.

We can observe that for n = 2, the algorithm Average-Type has better
performances both in time and iteration, and on Purity Metric our algorithm
performs better, same in the A—Spread Metric, but in the I'—Spread Metric the
gradient stands out.

For n = 10, our algorithm has better robustness and efficiency in relation
to time and iteration, but it loses when we use it to Purity Metric, it performs well
in A—Spread Metric, but does not stand out in I'—Spread Metric.

For n = 20, our algorithm performs well with both time and iteration,
stands out in Purity Metric when compared to Gradient but loses to Average-Type.
In A—Spread Metric and I'—Spread Metric the Average-type, performs better than
the other algorithms.

With n = 50, when we look at the Performance Profile in relation to time,
we observe that the Average-Type is more efficient, but our algorithm is more robust
and in relation to iteration, ours has better performance. When we look at Purity
Metric charts, we lose in efficiency and gain in robustness when we compare it with
the gradient, and we have better performance if we compare it with the Average-

Type. For the A—Spread, Metric our algorithm is more efficient but Average-Type is

3.7 Chapter conclusion 104

more robust, while in I'—Spread Metric we see better performance for Average-type.

If n = 100, we see that Average-type is more efficient but our algorithm is
more robust when comparing time. In relation to iteration, ours has better perfor-
mance as well as when we use Purity Metric, we also have significant performance
for the A—Spread Metric and I'—Spread Metric.

3.7 Chapter conclusion

As we look at everything that has been presented in this chapter, both
in theory and in numerical experiments, we emphasize that our algorithm has a
satisfactory performance when we compare it with others using problems that have
the characteristic cited by Yunda Dong, [14, 15] “problems that are easier to evaluate
the gradient than functional values”. However, when evaluating the performance of
the non-monotonicity characteristic of line search, we see that our algorithm does
not have a great advantage over others, such as the Average-Type. So this further
underscores the importance of this work, that is, we present a new line search that
does not make use of functional values and which has a significant performance
in examples whose evaluation of gradients demands less computational effort than

evaluating their respective functional values.

CHAPTER 4

How to compute inexact /C-steepest descent

directions

In this chapter we will present a practical way to calculate the inexact K-
steepest descent direction, this is, we will calculate some direction that is descending
but not necessarily the steepest. Moreover, we will display numerical experiments
that show the efficiency, the robustness and the quality of such procedure. This
chapter was based on the work of Fliege and Svaiter [21|, Drummond and Iusem
[27], Drummond and Svaiter [28], and Fukuda and Drummond in [24].

4.1 o-Approximate K-steepest descent direction

We begin this section with two propositions known from the literature that

can be found in [28], and which will be used in later results.

Proposition 4.1. Let d a K-descent direction for F' at x and 5 € (0,1). Then there
exists t such that

F(z 4 tv) < F(x) + ptJF(z)d
for all t € (0,1).
Proof. See Proposition 2.1 in [28]. O

Proposition 4.2. Let 5 € (0,1) and d a K-descent direction for F' at x. There exist
t, 6 and &' > 0 such that t < i, ||’ — x| < 6 and ||d' — d| < &' imply that d' is

IC-descent direction for F' at x' and
F(a' +t') <g F(2') + tJF (2).

Proof. See Proposition 3.6 in [28|. O

Next we will define a o-Approximate K-steepest descent direction, as well

as the problem to calculate the direction and its dual, together with results that will

4.1 o-Approximate K-steepest descent direction 106

be the basis for the conclusion of this chapter. Also note that we can define f(x,d)

about convex hull of G.

Remark 4.3. Let G = conv(G). Then,
f(x,d) = max{(JF(z)d, w) | w € G}.

Proof. Tt is clear that f(z,d) < max{(JF(z)d, w) | w € G} because G C G. We
have to proof that f(x,d) > max{(JF(z)d, w) | w € G}. Take @ € G such that

max{(JF(z)d, w) | w € G} = (JF(z)d, w).

For each w € G, there exists A(w) > 0 such that w =) _.AMw)w and
Y wee AMw) = 1. Therefore,
(JF =) Aw 2)d, w) < f(z,d).
weG

[l

An equivalent formulation for Problem (1-1) is

d|| .
min{max{%jL(JF(x)d,w) |w€G} |d€R”}. (4-1)

Indeed, first, observe that v(z) is optimal solution of (4-1) because, taking
in account Remark 4.3 and the definition of v(z), for all d € R™ it holds that

WP 1 0

max { ||d2||2 +(JF(x)d, w) | w € G’}
> ”“(;)“2 + f(,v(@))

e {4 p@eto).) | w e 6
max (L 4 w00 | w e 6}

Second, if d is optimal solution of (4-1), then d = v(x). Taking in account

4.2 How to compute a o-K-descent direction 107

Remark 4.3 again, we get, for all d € R”, that

] + f(x,d) = max { (s + (JF(z)d, w) |w € G}
2 T 2 ’
= max { [y + (JFE(z)d, w) | w e G}
= . ,
< max s +(JF(x)d, w) |w € é’}
d 2
_ 2|| fad)

Then, d = v(z) because Problem (1-1) has only one optimal solution.
The dual problem of (4-1) is

max {min{@—i— (JF(z)d, w) | deR”} | w € é}. (4-2)

Problems (4-1) and (4-2) are convex and Problem (4-1) has optimal solution.

Then, it does not exist a duality gap. Moreover, since

d 2 F T 2
min{” 2” +{(JF(x)d, w) | d € R”} _ F) el (Z) vl
for z € R" and w € G given, (4-2) is equivalent to
F T 2 _
max{—w \wEG}. (4-3)

Definition 4.4. Given o € [0,1), we say that d is a o-approzimate K-steepest

descent direction for F' at x if

I]I*
2

+ f(z,d) < (1 —0)0(x). (4-4)

Observe that v(x) is the O-approximate KC-steepest descent direction for F
at x. Another immediate consequence of the definition is that every o-approximate

IC-steepest descent direction for F' at x is also K-descent direction for F' at x.

4.2 How to compute a o-K-descent direction

In this section will be present a practical way of how to compute a o-
Approximate KC-steepest descent direction. Thus, it becomes possible to perform

numerical experimentation.

4.2 How to compute a o-K-descent direction 108

From now on, we assume that
G =A{w,...,w},

i.e., K* and (consequently) I are finitely generated cones.

We need to introduce some additional notations. In the corresponding linear
space, e identifies the vector which has all its components equal to 1, and ey, identifies
the vector with all components equal to zero except the k-th, which is equal to 1.

For yy € R® x R given, § is the projection of y onto R*. Matrix

ismx{and B=WTJF(z)JF(z)"W is ¢ x £, then

A:<§8> and M= (-B —c)

are ({+1) x ((+1) and £ x (¢ + 1), respectively. The simplex in R® will be denoted
by S, i.e.,

/
8:{y€R€|ZyZ:17 ylz())ayfzo}
i=1

and, finally, for a given o € [0, 1),

(1—0/2)y" Ay + (ees1, y)
D={yeR xR | My

Y

m N IA

As the most important consequence of our assumption, there exists
§ € S such that v(z) = —JF(z)"W4. Then, for any given o € [0,1), § =
(7, f(z,v(z)))" € D because

My = —Bj— f(z,v(x))e = WTJF(x)v(z) — f(z,v(x))e <0
and

10/ Ag+ern . i) = PO pa w17

l(@)|* = —ollv()]*/2 < 0.

Obviously, D is closed and convex. We claim that D is compact. Indeed, compactness
of S implies that B(S) = {Bz | z € S} is compact. Observe that y'Ay =

4.2 How to compute a o-K-descent direction 109

|JF(x)TWg||> > 0. Then, for any y € D it holds that —a < y;,; < 0, where
a=max{max{y; |y € B(S)} |i=1,...,(}.
Hence,
D C S x[—a,0].

The next lemma shows how to calculate the K-steepest descent direction

for F' at x when K is finitely generated.

Lemma 4.5. Consider problem
1+ -
(AP) min Sy Ay +{ep1,y) st. My<0, ges.

(a) Takey* € R such that y* € S, v(x) = —JF(x) "Wy*, and yoy1 = f(z,v(x)).
Then, y* is optimal solution of (AP).

(b) If y* is optimal solution of (AP), then v(z) = —JF(z)"Wy*, and yiq =
[z, v(z).

Proof. For item (a), observe that

My* = —f(z,v(x))e+ W JF(2)[~JF () Wy] (4-5)
(wi, JF(z)v(x))

= —f(z,v(x))e+ : (4-6)
(wy, JF(x)v(x))

<0. (4-7)

Then, y* is solution of (AP) and, since

_ @)l

1 * * k
§(y)TAy + <€g+1 » Y > 9 + f(l',?](l’)),
y* is optimal solution of (AP). For item (b), denote d* = —JF(z)" Wy*. Observe

that y;,, = f(x,d"). Then,

ST A+ yi = IR+ Fd) < SI@)P + f o)

Since v(z) is the only one KC-steepest descent direction for F' at x, we get d* =
v(x). O

Lemma 4.6. Take 0 € [0,1) and y € D such that yir1 = f(x,d), where
d = —JF(x)"Wj. Then, d is a o- approzimate K-steepest descent direction for
F at .

4.3 Computational experiments 110

Proof. First, observe that W§ € G and therefore,

CIE@) Wyl [l

2 ;- =0

because (4-3) is the dual problem of (1-1). Then,

ST < (1 - 0)oe).

Second, it holds that

T A _ lap? -0
(1= 0 /2y Ay +{evnr y) = 15 + flad) + —Z|dI> < 0.

Consequently,
I1d]”

1—0
+ f(x,d) < ———ldII” < (1= 0)f(x),
i.e., d is o—approximate [C-steepest descent direction for F' at x. O

Now, we present our main contribution: a practical way to compute o—
approximate IC-steepest descent directions for F' at x.

Take y* € S such that (1 — o/2)||JF(x)"W||? + f(z,—JF(x)TW\) < 0.
Then d = —JF(x) "W\ is oc—approximate K-steepest descent direction for F at .

4.3 Computational experiments

In this section we will present the well-known Armijo line search along
o-approximate K-steepest descent direction for F at x, the Algorithm and its
Convergence Results. Moreover, present the numerical experiments that show the
efficiency and robustness of an o—approximate IC-steepest descent direction for F' at

x.

4.3.1 An algorithm using an Armijo-type line-search along

c-approximate K—steepest descent direction

In this section we will recall an algorithm proposed by Grana Drummond
and Svaiter, in [28], and the corresponding convergence analyses.
Let 45 be defined as

ir =min{i € N | F(x +27'd) < F(x) +27'8JF(z)d}. (4-8)

4.3 Computational experiments 111

Function 7, defines a line-search of Armijo-type. Proposition 4.1 assures that if d is
a K-descent direction for F' at x then there exists 7;. So the following algorithm is
well-defined.

Algorithm 4.7. Consider two exogenous constants: o and 5 € (0,1).

Initialization: Choose 2° € R". Compute d(z°) and initialize k + 0.
Stopping criterium: If d(2*) = 0, then STOP.
Direction: Compute d*, a o-K-descent direction for F at x*.

Line search: Compute iy, as in (4-8) and define the steplength t, = 27,

AR

Iteration step: Set

karl = l’k+tkdk
and k < k+1. GOTO Step 1.

In what follows, {2*}, {d*} and {t;} are the sequences generated by
Algorithm 4.7. If it stops at some iteration k, then z* is K-critical for F and it
was successful. Let us assume then, that the algorithm does not stop, i.e. {z*}, {d*}

and {t;} are infinite sequences. Regarding convergence we have the following results.

Lemma 4.8. If T is an accumulation point of {x*} then F(z) <x F(2*) for all k

and limy_,o F'(2%) = F(Z). In particular, F is constant in the set of accumulation
points of {z*}.
Proof. See Proposition 2.2 in [28]. O

Lemma 4.9. If there exists F < F(2%) for all k then

D tlf(2)] < o0 and > tilld¥|* < oo
Proof. By assumption, {2*} is infinite sequence, then

M + f(2®, d*) < (1 —0)0(2") <0
2 T

and
F(aFth) ¢ F(aF) + Bt JF(a%)d* < F(2%)

for any k. Take some k& > 0. Using the properties of ¢ and the definition of f, we
get
P(F) < p(FaM) < o(F(ah)) + Btrp(JF (a*)d") < o(F(a%)) + Bty f (", d¥)
= o(F(z")) + Bty [f(xk,dk) + ||d;\2 - Hdk||2}

< Q(F () + Bt [(1 - 0)0(a*) — 4L]

N

4.3 Computational experiments 112

because d* is o-KC-approximate steepest descent direction for F at z*. Then,

) S AR+, - o) - L41C]
= @(F(a) =B 1, [(1 — o)) + @1 |

In other words,

- _ s W — o - s 1 : 5|2
Dt |(L=)l0()] + (1=0) Y _t:l0(@)] + 5 Dt

o(F(2%) — o(F)
: ,

for all £, and the conclusion follows. O

IN

Theorem 4.10. If there exists F < F(a%) for all, k then any accumulation point
of {x*} is K-critical.

Proof. See Theorem 4.2 in [28|. O
The results below there are for case in that F' is K-convex.

Theorem 4.11. Suppose that F is K-conver and that d* is o—approzimate
K—steepest descent direction for F at x. If F(2) <x F(a*) then

12 — 2" < [l — 2M)* + [l - 2F)%

Proof. See Lemma 6.1 in [28]. O

Theorem 4.12. Suppose that F is K-conver and there exists F < F(x*) for all

k. Then, {x*} converges to a K-critical point x*.

Proof. See Theorem 6.3 in [28|. O

4.3.2 Computational experiments

We will now present the numerical experiments that show the efficiency
and robustness of a o—approximate K-steepest descent direction for F' at x. The
implementation was divided into three groups of problems. The first formed by
simple convex examples, the second formed by more elaborate convex examples and
a third group formed by nonconvex examples. This way we could see the behavior

of the algorithm in several examples with different structures.

4.3 Computational experiments 113

The specifications of program, computer, stopping criteria and the maxi-
mum number of iterations are the same presented in Chapter 2 and therefore will
be omitted here.

To calculate the oc—approximate IC-steepest descent direction, described in a
practical way in the previous section, we created a subroutine using the Conditional
Gradient Method-CGM. So the subroutine stops when we find a y satisfying (4-4)
or when it satisfies inequality S(z*) = 0. We will continue presenting this algorithm
which can be found in |3].

We created the diagram 4.1 to illustrate how Algorithm 4.7 was implemented
with the search o-approximate. Note that rectangles are part of the routine of

Algorithm 4.7 and the circles refer to the subroutine referring to algorithm 4.13.

Algorithm 4.13. Start with 2° € S C R". Generate the sequence {x*}, Vk =
1,2,... via the following steps:

1. Compute
p* = argmin{(p — 2*, 7 f(«*)) : p € S}. (4-9)

2. Stopping Criteria: Let

S(r) = min(p — 2.7/ (2)) (4-10)
If S(z%) = (p* — 2F, 7 f(2*)) = 0, STOP. Else, goto Step 3.

3. Line search: Compute
Nt = argmin f(2* + \(p* — 2%)). (4-11)

Update 2%t = ok + Nk (pP — 2P).
4. Set k<« k—+1. Goto Step 1.

All problems were solved 300 times. Tables 4.1, 4.2 and 4.3 were mounted
in blocks of four lines. The four lines are dedicated to the corresponding results.
In the first line, “%” are the percentages of runs that reached a critical point.
In the second line, “it”, for the successful runs, displays the average of iteration’s
numbers. In the third line, “Itint” is the average of the internal interactions, this is,
the subroutine that calculates the o—approximate. Finally, in the fourth line of the
“Time” block, we have the average time taken for the algorithm to find a critical
point. The first columns of the tables are dedicated to the identification of the
problems, the paper where we found it, “n” and “m” give the number of variables

and objectives respectively and “z%” represents the starting points from a uniform

4.3 Computational experiments 114

(Does y satisfy
(4-4))7

compute s,
as in (4-10);

no

of Armijo-type.

Figure 4.1: Fluzogram of Algorithm 4.7.

4.3 Computational experiments 115

random distribution inside a box specified. The last ten columns are dedicated to
the corresponding results with the variation of o between 0.0 and 0.9.

We did the performance profile over time to compare the exact search
(0 = 0) with the search o-approximate varying the o the same way as in the
tables. For more details on performance profile, see [13].

We need to answer a question: The quality of Pareto points when using a
o—approximate direction is as good as when we use the exact direction? To answer
this question let us present the purity metric and spread metrics graphs, which show
the pareto curve quality. See [8, 22].

Furthermore, the direction o—approximate gives us a 6(x) also approximate,
thus, it is necessary to verify the quality of the critical points obtained by the
algorithm. So, based on articles [8, 22| or Appendix A, we present the performance
profile for the Purity metric, which compares the non-dominated points belonging
to the Pareto front generated by each o, compared two by two. In this way, the
algorithm that presents less dominated points has a better performance. Graphs
were generated comparing the exact direction “o = 0”7 with the best performance in
terms of time, that being o = 0.8.

In order to evaluate the quality of pareto points, we will also present the
“I'-Spread metrics” and the “A-Spread metrics”. The “I'-Spread metrics” compare
the size of “holes” of pareto front, thus, the best pareto front is the one that presents
minors “holes”. The “A—Spread metrics” measure how well the points are distributed

over a pareto front.

4.3.3 First group of problems

Twelve simple convex examples form the first group of problems. So, it was
relatively easy for the algorithm to find critical points. The numerical results appear
in Table 4.1.

Figure 4.2 presents a performance profile, using time as criterion, comparing
the results, obtained by the algorithm for different values of o: from ¢ = 0, which
corresponds to the use of exact K-steepest descent direction, to ¢ = 0.9, which
corresponds to values close to the maximum allowed for o. This graphic suggests
that, regarding computational time and considering only these ten values, the best
option for o is 0.8.

In Figures 4.3, 4.4 and 4.5, we show a comparison of quality of the Pareto
fronts computed by the algorithm when o = 0 and when o = 0,8. We did these
comparisons by three different criteria: the purity metric in Figure 4.3, the I'-spread

metric in Figure 4.4 and the A-spread metric in Figure 4.5.

116

4.3 Computational experiments

69°60T | 86°CTT | VL 80T | LOFCT | 90°FCT | GT'8CT | €L°9ET | 8G 6ET | GL'CVT | V6 6VT | 3 c=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°E6 | % lzel “LdOI
£000°0 [L000°0 | 0T00°0 | ¢T00°0 | 2T00°0 | 8TO0°0 | L2000 | TF#00°0 | 6800°0 | €800°0 | PWILT, u1°0] 3 7
¢0'0 | €00 | YO0 | 90°0 | €00 | 600 | ¥T°0 | €20 | 09°0 | €40 |3uny e=w
00°T | 660 | 00T | 660 | 00T | 660 | 66°0 | 00'T | 660 | 660 1 c=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [ze] ‘TINHHIN
8L¢0°0]6€¢0°0|L52¢0°0 | 882070 | L6€0°0 | 9€E0°0 | 99€0°0 | 86€0°0 | 9TF0°0 | 06¥0°0 | OWILT, J0T°0T—] 2 2
L2°0 | 8L°0 | 640 | ¢80 | 980 | €60 | T0OT | 60°T | €I'T | S¢'T | WD c=uw
G8°C | 98¢ | €6'C | ¢6C | 86'C | €T°€ | 0T'€ | 9T'¢€ | 1I¢’€ | 61T°€ i c=u
00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T [00°00T | 00°00T [00°00T | % [s¢] ‘1407
9.90°019490°0|6¢L0°0 | TTL0°0|L990°0{60L0°0 | 689070 | ¢TLO°0 | €690°0 | #L90°0 | oWILT, «[00T°00T—] 3 ¢
000 | 000 | 000 | OO0 | OO0 | OO0 | OO0 | 000 | 000 | 000 |3uny c=uw
197609 | 00°01S [00°01G |07 019 | G€°0TG | TOOTSG | 0€°OTG | TT°OTG | LS0TG | LV OTIG| 00T = u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | % lee] TsOr
G¢c0°0|87c0°0|LEC0°0| 1492070 | 9¥20°0 | 7492070 | 62¢0°0 | #2200 | 6L€0°0 [9L¥0°0 | OWILT, £[06°06—] 2
89°0 | GL°0 | 9L°0 | 880 | 960 | ¢O'T | 860 | ¢I'T | G&'T | PG°T | 3UB] €E=w
L980T | €F°L6 | €0°TL | TGE€9 | OL'GY | €L°LE | 68°69 | T9°CGE | TT99 |68°FET| I c=u
00001 |{00°00T | 00°66 | 00°00T [00°00T | 00°66 | 00°66 | 0066 | 00°00L | 00°00L| % el ‘131311
€9¢T°0199€T°0(9¢9T°0|0GLT°0|8502°0{998T°0 | T00G°0 | 6LTE 0 | C88F°0 | LEFO'C | 9WILT, W0T°0T—] 2 g7
VL0 | ¢L0 | €EL0 | ¢L0 | T2°0 | 92°0 | LL°0 | €20 | 620 | 00T |3uB] e=w
€8°09T | 6¢ 99T | GLCOT | ¥¢90¢ | 98°04¢ | OT°9F¢ | G67649¢ | 84 GCE | TI'GIE | 48°69€ | I c=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 0066 | % 1] ‘1av
670 80 L0 90 g0 70 €0 ¢'0 10 00

117

4.3 Computational experiments

00°86 | 00°86 | 00°26 | 00°26 | 00°96 | 00°86 | 00°96 | 00°96 | 00°¢6 | 00F6 | % [e¢] ‘proL,
9¢90°0 | 2£90°0 | 0F£0°0 | FOS0'0 | #F80°0 | 0260°0 | ¥860°0 | 2LOT'0 | FOET 0 | LG9T°0 | oW, 4001 °001—] 3 @
€9°0 | 69°0 | L0 | 840 | @80 | 880 | &0 | €0°T | 9T | I¢T |3ung ¢ =w
VPGl | LEGT | 83°TT | 06°TT | TP°ET | €6°TT | 67°GT | €8°1T | 09°2T | 96°TT | 31 c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % el ‘1ds
899T°0| 6LLT°0 | GTGT 0 | 6£8T 0| F60E°0 | TSST0|9T0Z°0|€29T°0 | L9120 | OTTT 0| owWLL, WTT=] 2 07
TOT | GOT | $OT | SOT | 90T | SOT | OT'T | GI'T | ¥TT | 9T'T |3ung ¢=w
90'6 | ¥8'8 | 906 | Y06 | 968 | 016 | 0L'8 | 698 | LL'S | €88 | 91 01 =u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°S6 | % [Te] ‘zradis
6V12°0 | FO1E0 | L681°0 | 2982 0 | ¢FEE 0 | 8861°0 | ZL8T°0| 81120 |8LET 0| 1G0E 0 | oWl J0T°01—] 3 g2
9L°0 | LL0 | 220 | 8L°0 | @80 | €80 | 380 | 880 | ¥6°0 | GO'T | 3um] ¢ =w
ST°GE | 0T | 8€72¢ | €G°¢E | 1208 | 79763 | ¢8°0¢ | 09°8% | ¥6'8T | 6670 | 31 00T = u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % log] ‘2011
COST'0 [T6LT'0|6TST0|928T°0 | F68T°0 [SG8T'0 | TT6T0|298T°0| TFST°0[LL0G 0 |PWIL | u[€ T] X [¢gM X [€gM X [€°T] 2 (@
260 | 260 | 860 | 860 | 860 | 660 | 660 | 660 | 00T | 00T | U ¢ =w
0G'ST | 8L°ST | €0°ST | €9°ST | €4°ST | 6€°ST | ¥8°ST | GE'ST | CP'ST | 6981 | p=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % lze] “as
100°0 | &FF0°0 | F9F0°0 | 06F0°0 | LLS0°0 | 67S0°0 | $9S0°0 | FEC0°0 | FOS0'0 | 8070 | oWILL ueec=] 2 g
69°0 | 290 | 89°0 | 0L0 | FL0O | €40 | €0 | @0 | 020 | 0.0 | 3uny ¢ =w
P6C | 9zC | 6F°C | €96 | 999 | 8§79 | SF'9 | FT9 | 9FC | T¢s | N c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % 87] “UNd
TGTT 0| €STE'0 | 9246270 | 0SVE 0| E65E 0 | 674270 | 80LT 0| GOTE 0 | TEEE 0 | 9SEE 0| owLL, 007 ‘007 —] 3 (@
92°0 | 92°0 | 8¢°0 | 920 | Lz0 | 80 | G20 | 820 | 620 | 0g0 |ung ¢=w

118

1 dnour) ‘wa)qoid T20u07) 1°F S[qelL

0L20°0]€02¢0°0|c€€0°0| P00 | 76€0°0 | 88200 |85€0°0 | €970°0 | 087070 | 6690°0 | 9WILT, «[00T 00T—] 3 (2
¢00 | ¢0°0 | €00 | OO | YOO | 90°0 | 800 | 60°0 | 600 | 910 |3uny ¢c=uw
LEBYE |67 V9¢C | PL8EY | 90°L0€ | €€°L8Y | 8E'0CE | 6T°6¢Y | 06°GT1¢E | 46086 | 94°G08 | 1 p=u

4.3 Computational experiments

4.3 Computational experiments 119

0.8

~—~ 062
%
= |l
04
0.2
0
10 10 10% 10° 1 2 3 4 5 6 7
T T
Figure 4.2: Performance profile- Time Figure 4.3: Purity metric-G1
1 FEEEE RS e 1 [=== ===y
| == - J
- — I- 4
0.8 1 0.8 &
|_I -
r I' |
ED,S = | 1 ED,S [
= < b
04 1 04
0.2 1 0.2
0 0
1 1.5 2 25 3 3.5 4 1 1.1 1.2 1.3 1.4 1.5
Figure 4.4: I'-Spread metric Figure 4.5: A-Spread meltric

Looking at Table 4.1 we see that in general directions c—approximate have
a more satisfying performance than exact direction (o = 0), moreover, we also
conclude that as “o” increases, the results improve, showing that the values 0.8 and
0.9 are the best results. In this group of examples, almost all the problems were
solved, this is, in almost 100% of the 300 times, each problem was compiled until
the algorithm stopped at a critical point. Iterations “It” of the algorithm decrease as
the o increases, and the same happens to internal iterations “Itint” of the routine,
which give the direction oc—approximate, and the time “T'ime”, that represents the
time spent for the algorithm to find a critical point."Time", that represents the time
spent for the algorithm to find a critical point.

We can also see in the graph of performance profile (Figure 4.2) comparing
time, that both robustness and effectiveness of the search c—approximate are better,
also having a better prominence for the o with higher values.

Figure 4.3 shows that the 0.8-approximate direction is better than the exact
IC-steepest descent direction in the sense that it generated fewer dominated points.

On the contrary, Figure 4.4 shows that the exact direction is better than

4.3 Computational experiments 120

the approximate direction because the computed Pareto set has, in this case, fewer
"holes".

Figure 4.5 shows us that, according to the A—Sprenad metric criterion, the
generation of the Pareto set, when using the exact direction, is more robust than
when using the 0.8-approximate direction. On the other hand, the generation of the
Pareto set, when using the 0.8-approximate direction, is more efficient than when

using the exact direction.

4.3.4 Second group of problems

The second group of problems is formed by six convex problems more

elaborate. Table 4.2 presents information of this group of problems.

0.8

0.2

Figure 4.6: Time

Figure 4.8: I'-Spread metric

Figure 4.7: Purity metric

Figure 4.9: A-Spread metric

121

4.3 Computational experiments

00T | 00T | 00T [OO'T | OO'T | OO'T | OOT | OO'T | OOT | OO°T 1 0T =1u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | % lzel ‘1117
87200 | 8970°0 | €270°0 | 8LF0°0 | TS0°0 | 0970°0 | OFF0°0 | TTE0°0 | 62£0°0 | 64£0°0 [9WLL | L[0T ‘0T—] D (¥
190 | €40 | ¥L°0 | #L°0 | LL°O0 | L0 | €40 | 290 | 990 | 69°0 | 3un] c=uw
are | I¢¥v | 9¢v | Iev | 09 | 86°€ | LLE | G6'¢ | 8L¢ | T0°€ 1 c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | % |eg] “groT,
60¢0°0 | 0T¢0°0|0¢¢0°0 | 412070 | LECO0|9¢¢0°0 | 9¢¢0°0 | 8¢¢0°0 | ¥¢¢0°0 | ¥7¢0°0 | oW, W1 1] 2 g
L0 | 92°0 | #L°0 | 920 | 6240 | 08°0 | 640 | 640 | I80 | ¢80 | D] 0T = w
96'¢ | €8C | T6C | 88°C | 06'C | 98'C | 68°C | L&C | 08°C | ¢6C 1 0T =1u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | % [e¥] ‘eeHDOIN
CGVL 01 0GLL°0[9698°0|9LEL0 | L68L0 | LVIS 0| V6870 | 986870 | LEV6'0 | 8€90°T | 9WILT, ug'c=] 2 o
G8'0 | 880 | 680 | 160 | €60 | ¥6°0 | G6°0 | L60 | 660 | €0°T |3uBd] e=w
¢6'8L | OL°08 | 9988 | 9T°GL | €8°6L | 19°C8 | L&'L8 | 8198 | 6988 | 0I'88 | I G=1u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 0086 | % log] ‘sad
€€00°0]9%00°0 [050070 | ¢500°0 | T900°0 | 690070 | 990070 | 690070 | 680070 | #8000 | OWIL], W0T°6—] 3 g7
0¢0 | 8¢°0 | T€0 | T€0 | G€0 | LEO0 | TV O | P70 | LVO | 0970 |3uBdy c=uw
00T | 00T | 00T [OO'T | OO'T | OO'T | OOT | OO'T | OO'T | OO°T 1 c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00001 | 0000 [00°00T | 00°00T | 00°00T | % [eel ‘1314a
P6T1S°0 [S00F°0 | L0SE'0 | T6FF0 | FTEL 0| 6978°0 | 8TOF' T [FOTL 0| 665TT|TT196°E [9WLL | ,[0T 0T—] D (¥
LL°0 | €40 | L0 | 080 | T80 | L80 | 880 | 80 | 80 | €I'T | WO e=w
€G°GY 1| ¢0°60¢C | c0LTC | C0CEE | C8°EYGC | LECEE | 68798€ | 00°91€ | 89V4E | ¢L°L6E| M c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°66 | % 1] ‘7av
670 80 L0 90 g0 v0 €0 ¢'0 10 00

122

JI dnosn ‘usjqosd w20uU07) gF SRl

¢000°0 | 7000°0 | ¥000°0 | ¥000°0 | 7000°0 | ¥000°0 | 7000°0 | 7000°0 | ¥000°0 | £600°0 | 9WLL, | ,[000T ‘000T—] 2 (¥
00’0 | 000 | 000 | 00O | 00O | 000 | 000 | 000 | 000 | 040 |uB] G=w

4.3 Computational experiments

4.3 Computational experiments 123

Looking at Table 4.2, we see the same characteristics of group 1 of problems,
this is, almost all examples are resolved 100% of the 300 times they have been
compiled, and as ¢ increases, iterations “It”, internal iterations “itint”, and time
“Time” are decreasing, respectively.

Figure 4.6 shows that the biggest o, “0.8” and “0.9”, are the ones with
the best performances. Figure 4.7 shows that the exact search (¢ = 0) has fewer
dominated points than the search o—approximate. Figures 4.8 and 4.9 show that
both in I'-Spread metric and A-Spread metric, the o—approximate has better

performance.

4.3.5 Third group of problems

The third group of problems is formed by twenty two non-convex problems.

Tables 4.3 presents information of this group of problems.

1 2 3 4 5 6 7

08F |

= = =y
-

0.2 1 0.2

Figure 4.12: I'-Spread metric Figure 4.13: A-Spread metric

124

4.3 Computational experiments

89°G8 |68°€0T| ¢ 16 | I8 CGOT|6T'TIT|PT6ET|66°6TT| €998 | 09F6 | €0°L0T | ¢ =
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T { 00°O0T | 00°00T | 00°00T | 00°00T | % [9€] ‘eI
9¢0¢°0|9T0C°0 | T6LT0 | T99T°0 | 876170 | 60SGT°0 | 98FT°0| L69T°0 | LT9T°0 | 989T°(0 |oWL], uT°0] 2 o7
960 | 860 | 860 [00T | TO'T | GOT | 20T 80T €l'T IgT | 3ung c=uw
8GLL | €€°LT | L&9T | 9TFL | TOLT | 96°FL | I9FIL | 6741 | 96F1 | 9€°GT 1 c=1u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [te] ‘1rtH
GRGE'0| ETLE 0| L9€E0 | 618E0 | G0GE0 | LLIE0 | 8OBE0 | 9GVE0 | 96L€°0 | STIE(0 |OWIL], W1 1] 2 g7
€60 | €60 | 160 | ¥6°0 | ¥6°0 | 960 | 96°0 4670 66°0 00°T | B c=u
LyEE | TEPE | I8TE | 96'7€ | G8°CE | GF'€E | 66°€E | CO'TIE | L9TVE | L9CE i c=u
00°00T | 00°00T [00°00T | 00°00T [00°00T | 00°00T { 00°O0T | 00°00T | 00°00T | 00°00T | % eel ‘144
€ELG 0| LLLY 0| cGLY 0] €997°0 890970 | LTFG0 | GEG9°0 | ¢0LG0 | GE9G°0 | 8LT90 |oWILT, W[T =] 2 ¢
8L0 | 9L°0 | €80 | ¢80 | 180 | ¥8°0 | €80 68°0 1670 060 | WUBI c=uw
26769 | 0999 | 66°9S | 199G | 8G'G9 | T6°09 | LFT9 | 69°LG | ¢8'8YG | 6819 1 c=1u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [cel ‘Treq
FE89°0 | 012970 9€99°0| ¢€€9°0|L8L9°0|94499°0|€8¢9°0| 9¢¢L°0 | L1690 | T6GL°0 | OWL], u[0T 02— 2
860 | 860 | 660 | 660 | 660 | 00T | 00T 00T 10°T ¢O'T | 3ung c=u
0€°69 | L8'8G | ¢0'9¢ | ¥9°99 | 88°09 | ¥¥°6G | 8€°9G | 99°¢9 | I¥TI9 | 60°¢9 i G=1u
00°00T | 00°00T [00°00T | 00°00T [00°00T | 00°00T { 00°00T | 00°00L | 00°00T | 00°00T | % lo1] ‘Taa
8090°0|2¢090°0 | 6¢90°0 | LEBO"0 | 9¢60°0 | OETT0 | 980T°0 | G00T°0 | €LET°0 | 800C0 |oWLT, W[TT=] 2 ¢
1€0 | 6¢0 | ¥¢0 | 9¢°0 | L&0 | 0€0 | 8¢0 6¢°0 ¢€0 €V'0 | unI c=uw
9T'IY | eS8V | 8799 | €6°19 | TV'L9 | LELD | 8€TL | T¥E€L | 8L°GL | G¢4l 1 c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [T]'cav
670 80 L0 90 g0 v0 €0 ¢'0 10 00

125

4.3 Computational experiments

00°00T [00°00T | 00°00T { 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°¢6 % le¥] ‘OTHOIN
GLYP8'9| €180 | GI8GY | 0LLO°L | LVLE L | 6G8T°G | CGEER'L | OLOT9 | 614GE'8 | 9669°G | OWIL], W[1°0] 2 2
660 | 660 | 860 [860 | 00T | 00T | TO'IL 01 0T 0’1 | B €=w
€T°LCL199°06S |06 TTC | PLCVL | OV EV9 | 67 LTI | 1G°C69 | 00°0TS | 627909 | L¥°00S | 3 e=u
0091 | 00°0¢ | O0°LT | 00°¢¢ | O0°LT | 00°9T | 00°6T | 00T | 00°9T | O0'TT % 2¢] ‘zart
9L¥7°0|cP9¥°0 | 8T8G0 | 6TT9°0|6L99°0|08GL°0|0TE8°0| 8OT6°0 | FPEET'T | 066T'T |oWL], ugc=] 2 g7
9%°0 | €5°0 | L9°0 | 190 | ¥9°0 | 0L°0 | L0 ¢80 €60 00'T | 3B c=uw
8OI8 | L6F8 | 9¢°98 | 08798 | 99'88 | 8488 | ¥4'88 | ¢¢'L8 | 6806 | 0688 1 e=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [8¢] ‘gaoT
9890°0 | 9¥90°0 | L690°0 | €¥90°0 | 9€90°0 | 88G0°0 | #9¥0°0 | G9€0°0 | F8TO°0 | €910°0 |OWILL, u[0T 02— 2
880 | L8O | 880 | 480 | 98°0 | €80 | 9L°0 0L°0 6¢°0 19°0 | 3uny c=u
€69 | 649 | 189 | G€9 | 6€9 | G6'G¢ | €6F 6'¢ 86T 18T i c=1u
00°00T | 00°00T {00°00T | 00°00T [00°00T | 00°00T { 00°00T | 00°00T | 00°00T | 00°00T | % €] ‘pao]
GIET 0| ETPT 0| LPLT 0| TEFT 0| TOST 0| 69GT°0|C9GT°0| 6VT°0 | €LGT°0 | 865070 |oWLL, u[02°08—] 2 o
610 | 0¢0 | T¢0 | 0¢0 | ¥¢0 | €0 | S¢'0 vco Gco 660 | WD c=uw
TL08 | 6¢°¢8 | TI'ES | TOC8 | P7°9L | 8G°LL | VI'¢8 | TI'SL | €C'I8 LE°¢ 1 c=u
00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % [8¢] “gaoT
9691°0 | ¥S¥1°0| 607170 | 6ETC 0| SPIT0 9610 |¢8GT°0 | €IST0 | 6V61°0 | I8L¢°0 |OWLL, W0T°6—] 2 v
120 | 1¢0 | 060 | ¢&0 | ¢c0 | €0 | €20 GG 0 aco ¢&’0 | ung ¢c=uw
LV'6L | C9'8L | LL°C8 | CVES | 8E'BL | 99°GL | 9T'¢8 | 0L°08 | VE¥8 | T0O'CO6 il c=1u
00°001 | 00°00T {00°00T | 00°00T [00°00T | 00°001 {00°00T | 00°00L | 00°00T | 00°00T | % leel ‘11
G8¢¥'0| LCch 0| c6Er 0| 6EVY 0| €970 | LLTL 0970970 | GC0F°0 | GLLY'O | PLEGO |9WIL], u€6—12 o7
6.0 | LLO | 640 | 620 | 0850 | 62°0 | 080 180 1670 660 | B ¢ =u

126

4.3 Computational experiments

9680°0 | 8T60°0 | L960°0 | 820T°0 | $660°0 | 960T°0 | 25ZT°0| €IET0 | 00ZT°0 | ZES0'0 | WL, ulfr—=]3 g
88°0 | T60 | 160 | €60 | $6°0 | 960 | 00T | I0T | 90T | SOT |%umg ¢ =w
9¢L | 6EL | 6L | 0008 | FCL | L6L | @LS | 06 | C¢L | L5l | M c=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % lz¢] ‘cdOW
76£0°0 [02£0°0 | 0FE0°0 | 25070 | €L£0°0| TFE0°0|6820°0 | &FF0°0 | 6TF0°0 | 687070 |owLL WV 7] 3 gt
2SO | TS0 | €9°0 | 09°0 | 6570 | S0 | PGSO | €S0 | 8S0 | €90 |ung g =w
ST'LZ | T1'ST | 9L°61 | OF°LT | 0961 | T¥¥C | S€61 | S&'1€ | @692 | ¥¢'8T | 91 z=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % 2] ‘edOIN
960°0 | 668070 | 2080°0 | T880°0 | #£60°0 | 0260°0 | 6980°0 | SOT°0 | 000T'0 | CTOT'0 |oWL, u[T°T°0] 2 g2
160 | ¥6°0 | S6°0 | 2670 | 960 | 660 | 00T | TOT | FOT | OT'T |9ung ¢ =w
ZOTT | G99 | LF'IT | 66°0T | €211 | 8201 | 029 | €10z | L9°L | aLL | ¥ c=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | % [17] ‘THININ
800070 | 2000°0| TT00°0 | €T00°0 | £100°0| ¥200°0 | 8200°0 | TFO0°0 | £600°0 | 280070 | oW, u[T°0] 2 2
€0°0 | 200 | 00 | 90°0 | SO0 | ITO | GT'0O | €20 | 6F0 | 0S0 |3y ¢=w
660 | 00T | 00T | 660 | 00T | 00T | 660 | 860 | 660 | 00T | I z=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % le¢] ‘eNHHIN
€620°0 | 763070 | 62070 | 8SZ0°0 | 822070 | 8920°0 | 26200 | GLZ00 | 182070 | 9FZ0°0 |owLL, W12 g2
gL0 | €40 | 920 | 840 | 080 | 920 | LL0 | 080 | 6.0 | IS0 |9ung 01 = w
06C | 16C | ¥8C | 28C | LLC | 96C | 86T | S6C | 26C | 96T | 4 01 = u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T | % leF] ‘ceHOIN
6092°T | 0Z0€T | Z2ST'T 6862 T|00L8°T| TSI T[062ET| 6000 T | 9988°0 | ©GL6°0 |PWLT, | o[T ‘T—] X (¢ ‘¢—] x [gz ‘Gc—] 2 (@
g60 | €60 | 60 | ¥60 | 860 | 0T | 90T | SOT | GOT | OU'T |9umg G =w
GT'C6 | 92°€6 | €9°C8 | 16768 | L1°68 | OT'9L | TL°9L | SFLL | LTTL | €129 | 41 p=u

127

4.3 Computational experiments

11T dnoar) :udjqoid Taauo)-uopN €% 9[qel,

CGLG'C | CF88'C | G896°C | 998G L | 9ETC 9| 06E8'C | LT8G | €169°C | 0£9%'6 | LgVE 0T | owL], elrol x[1°170] 2 07
L2°0 | 920 | 8.0 | 2.0 | 080 | 180 | @80 | ¥80 | 160 | 00T |ung ¢ =w

0F T0E | 69°G9T | 0LFSH | LS°CSH | F7 CTF | 90°9LE |87 T9E | LOFLE | C6°CLS | 677648 | T p=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°66 [00°00T | 0066 | 0066 | 0066 | % lze] “TATL
L600°0 | 2600°0 | 0600°0 | T600°0 [S600°0 | 960070 | £600°0 | ©600°0 | 9600°0 | 860070 |owL], ulG'G—] 2 ot
700 | €00 | S0°0 | SO0 | SO0 | €00 | GO0 | SO0 | SO0 | SO0 | Uy ¢ =w
L66T | 09°6T | 9L°61 | 69761 | 1661 | 19°6T | 8661 | 6961 | €00¢ | 6961 | M c=1u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | % [1e] ‘TLaO1S
PFOC0| 1€SE°0| 09270 | 899€°0 | SGLE0 | €8FE°0 | 88LE°0| 908€°0 | $2SE0 | SPPE0 |owL], J01°01—] 2 ¢
6570 | €¢°0 | 8¢°0 | 190 | 090 | €50 | 6S0 | 280 | 8¢0 | €90 |uny ¢ =w
8G°CC | LE€C | POTE | €L°CE | FPEE | FOCE | PGS | LPFE | 89°€E | ¥6CE | M p=u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | % 1] “e318
8LET’L | TG6L'L | CT6Z'S |68FF'S| CTTI6'S | FITC 6 |CLLE S| 6CEH 0T | €669 1T | TETE'S | owLy, W21 T16—] 2 o
PL0 | FL0 | 8.0 | 0850 | €8°0 | 980 | 880 | @60 | S60 | 6670 |¥unl ¢ =w
8LTEI | 617689 (8C7GLY| T8 0L9 | €F 29| LE°€69 | T1°T69 | L960L | 0T°CEL | €€°00L | N 0T =u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | % [1] ‘TAD
721070 | #010°0| 8600°0 | 80T0°0 | 6600°0 | IF10°0|6910°0 | 09T0°0 | 161070 | 81070 |owWL], J0€°06—] 2 @
960 | €60 | L60 | S6°0 | 6670 | FET | PST | €41 | 29T | @LT | ung ¢=w

0T°¢ | S¢S | 6T | 809 | €v¥ | 98¢ | 12¢ | ¥8¢ | ¥0¢ | eee | 91 z=1u
00°00T | 00°00T | 00°00T | 00°00T | 00°00T | 00°00T [00°00T | 00°00T | 00°00T | 00°00T | % [z€] ‘cdOIN

4.3 Computational experiments 128

Table 4.3 shows us that with the exception of problem LT DZ, practically
all the examples were 100% solved and the standard observed in the other two
groups of problems remains, that is, as o increases, the performance of the algorithm
improves, so much in iteration, internal iteration as in time. Problem LT DZ does
not perform well, the percentage of problems solved ranges from 11 to 20 percent,
not having a standard in the other criteria. Figure 4.10, referring to Performance
Profile and comparing the time we observe that the pattern of the two previous
groups is maintained, this is, the o’s largest value has the best performance in both
efficiency and robustness. In Figure 4.11 the result is inconclusive, that is, we can
not decide which algorithm has the least dominated points. The same is observed in
the A-Spread metric, having a slight tendency to say that in the I'-spread metric

the exact direction tends to perform better, that is, has “fewer holes”.

4.3.6 Chapter conclusion

In summary, we observe that the performance of a c—approximate K-
steepest descent direction is better than the exact direction for both convex and
non-convex examples. And when we look at the quality of the critical points, it does
not get worse when comparing a o-approximate K-steepest descent direction to an
exact direction. Therefore we conclude that the way to calculate a c—approximate
KC-steepest descent direction presented in this chapter gives satisfactory results when
compared to the exact direction.

The procedure presented in this chapter is not directly related to the linear
search used, then it becomes very suggestive to use the way we calculated the o—
approximate KC-steepest descent direction with the new linear search introduced in

Chapters 2 and 3. We intend to present these results in future works.

Final remarks

This work was divided into basically two parts. In the first, a new way of
computing the step length a; was presented. This search is relevant because it uses
only gradient information i.e., it does not work with functional values. Our numerical
experiments suggest that it has better performance than other algorithms when
evaluating the gradient is easier that evaluating the function itself. In Chapter 2,
the new line-search procedure was used replacing the Wolf conditions in conjugate
gradients algorithm and, in Chapter 3, the same procedure replaced Armijo-type
search in the steepest descent algorithm. Numerical experiments were performed to
test the efficiency and performance of our approach.

In the second part of the thesis - Chapter 4, we discussed a practical way of
computing o — approximate K — steepest descent directions. We compared, also, the
performance of descent algorithm when o assumes different values. Our numerical
experiments suggest that ¢ = 0.8 has best performance without lost of quality of
the generated Pareto front.

We can foresee three different continuations for our work.

First, we intend to study the behavior of the line-search proposed by us
when applied over c-approximate steepest descent direction, instead of the exact
one, and when o-approximate steepest descent direction replaces the steepest descent
direction in the computation of conjugate gradient directions.

Secondly, it is worth studying the behavior of other classes of algorithms,
for instance, Newton and projected gradient, when the line-search is performed
according to our proposal.

Finally, it seems to be possible to apply our framework to vectorial varia-

tional inequality problems, since the line-search use only information of first order.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ANSARY, M. A.; PANDA, G. A modified quasi-newton method for vector
optimization problem. Optimization, 64(11):2289-2306, 2015.

ARMLIO, L. Minimization of functions having Lipschitz continuous first
partial derivatives. Pacific J. Math., 16:1-3, 1966.

BEck, A.; TEBOULLE, M. A conditional gradient method with linear rate
of convergence for solving convex linear systems. Math. Methods Oper.
Res., 59(2):235-247, 2004.

BeLLo Cruz, J. Y.; LucamBio PEREZ, L. R.; MELO, J. G. Convergence
of the projected gradient method for quasiconvex multiobjective opti-
mization. Nonlinear Anal., 74(16):5268-5273, 2011.

BERTSEKAS, D. P. Nonlinear programming. Athena Scientific Optimization
and Computation Series. Athena Scientific, Belmont, MA, second edition, 1999.

BERTSEKAS, D. P. Convex analysis and optimization. Athena Scientific,
Belmont, MA, 2003. With Angelia Nedi¢ and Asuman E. Ozdaglar.

BURACHIK, R.; GRANA DRUMMOND, L. M.; IuseM, A. N.; SVAITER, B. F.
Full convergence of the steepest descent method with inexact line
searches. Optimization, 32(2):137-146, 1995.

CusTODIO, A. L.; MADEIRA, J. F. A.; VAaz, A. 1. F.; VICENTE, L. N. Direct
multisearch for multiobjective optimization. SIAM J. Optim., 21(3):1109-
1140, 2011.

DAI, Y. H.; YUAN, Y. A nonlinear conjugate gradient method with a
strong global convergence property. SIAM J. Optim., 10(1):177-182, 1999.

Das, I.; DENNis, J. E. Normal-boundary intersection: a new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems. SIAM J. Optim., 8(3):631-657, 1998.

Bibliography 131

[11] DEB, K.; THIELE, L.; LAUMANNS, M.; ZITZLER, E. Scalable Multi-

Objective Optimization Test Problems. In: Congress on Evolutionary Com-
putation (CEC 2002), p. 825-830. IEEE Press, 2002.

[12] DEB, K. Multi-objective genetic algorithms: Problem difficulties and
construction of test problems. Evolutionary computation, 7(3):205-230, 1999.

[13] DoLaN, E. D.; MoRrE, J. J. Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201-213, 2002.

[14] DONG, Y. New step lengths in conjugate gradient methods. Comput.
Math. Appl., 60(3):563-571, 2010.

[15] DoNG, Y. A practical PR+ conjugate gradient method only using
gradient. Appl. Math. Comput., 219(4):2041-2052, 2012.

[16] ERMOL’EV, Y. M. On the method of generalized stochastic gradients and
quasi-fejér sequences. Cybernetics, 5(2):208-220, 1969.

[17] Fazzio, N. S.; SCHUVERDT, M. L. Convergence analysis of a nonmono-
tone projected gradient method for multiobjective optimization prob-
lems. Optimization Letters, 13(6):1365-1379, 2019.

[18] FLETCHER, R.; REEVES, C. M. Function minimization by conjugate
gradients. Comput. J., 7:149-154, 1964.

[19] FLETCHER, R. Practical Methods of Optimization: Volume 1 Uncon-
strained Optimization. J. WILEY & SONS, 1980.

[20] FLIEGE, J.; GRANA DRUMMOND, L. M.; SVAITER, B. F. Newton’s method
for multiobjective optimization. SIAM J. Optim., 20(2):602-626, 2009.

[21] FLIEGE, J.; SVAITER, B. F. Steepest descent methods for multicriteria
optimization. Math. Methods Oper. Res., 51(3):479-494, 2000.

[22] FLiEGE, J.; VAZ, A. I. F. A method for constrained multiobjective
optimization based on SQP techniques. SIAM J. Optim., 26(4):2091-2119,
2016.

[23] FukupA, E.; GRANA DRUMMOND, L. M. A survey on multiobjective
descent methods. Pesquisa Operacional, 34:585-620, 09 2014.

[24] FukupA, E. H.; GRANA DRUMMOND, L. M. Inexact projected gradient
method for vector optimization. Comput. Optim. Appl., 54(3):473-493, 2013.

Bibliography 132

[25] GILBERT, J. C.; NOCEDAL, J. Global convergence properties of conjugate
gradient methods for optimization. SIAM J. Optim., 2(1):21-42, 1992.

[26] GONCALVES, M. L. N.; PRUDENTE, L. F. On the extension of the Hager-
Zhang conjugate gradient method for vector optimization. Comput. Optim.
Appl., 76(3):889-916, 2020.

[27] GRANA DRUMMOND, L. M.; TuseMm, A. N. A projected gradient method
for vector optimization problems. Comput. Optim. Appl., 28(1):5-29, 2004.

[28] GRANA DRUMMOND, L. M.; SVAITER, B. F. A steepest descent method
for vector optimization. J. Comput. Appl. Math., 175(2):395-414, 2005.

[29] GripPO, L.; LAMPARIELLO, F.; LuciDIl, S. A nonmonotone line search
technique for Newton’s method. SIAM J. Numer. Anal., 23(4):707-716, 1986.

[30] HESTENES, M. R.; STIEFEL, E. Methods of conjugate gradients for solving
linear systems. J. Research Nat. Bur. Standards, 49:409-436 (1953), 1952.

[31] HILLERMEIER, C. Generalized homotopy approach to multiobjective
optimization. J. Optim. Theory Appl., 110(3):557-583, 2001.

[32] HUBAND, S.; HINGSTON, P.; BARONE, L.; WHILE, L. A review of multiob-
jective test problems and a scalable test problem toolkit. /EEE Transactions
on Evolutionary Computation, 10(5):477-506, 2006.

[33] TusEm, A. N.; SVAITER, B. F.; TEBOULLE, M. Entropy-like proximal
methods in convex programming. Math. Oper. Res., 19(4):790-814, 1994.

[34] JARN, J. Vector Optimization. Springer-Verlag, Berlin, 2011.

[35] JiN, Y.; OLHOFER, M.; SENDHOFF, B. Dynamic weighted aggregation
for evolutionary multi-objective optimization: Why does it work and

how? In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO4€™2001), p. 1042-1049, 2001.

[36] Kim, 1. Y.; DE WECK, O. L. Adaptive weighted-sum method for bi-
objective optimization: Pareto front generation. Structural and multidisci-
plinary optimization, 29(2):149-158, 2005.

[37] LAUMANNS, M.; THIELE, L.; DEB, K.; ZITZLER, E. Combining convergence
and diversity in evolutionary multiobjective optimization. Evolutionary
computation, 10(3):263-282, 2002.

Bibliography 133

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

LovisoN, A. Singular continuation: generating piecewise linear approxi-
mations to Pareto sets via global analysis. SIAM J. Optim., 21(2):463-490,
2011.

Luc, D. T. Theory of vector optimization, volume 319 de Lecture Notes
in Economics and Mathematical Systems. Springer-Verlag, Berlin, 1989.

LucamBIO PEREZ, L. R.; PRUDENTE, L. . Nonlinear conjugate gradient
methods for vector optimization. SIAM J. Optim., 28(3):2690-2720, 2018.

MIGLIERINA, E.; MoOLHO, E.; REccHIONI, M. C. Box-constrained multi-
objective optimization: a gradient-like method without a priori scalariza-
tion. European Journal of Operational Research, 188(3):662-682, 2008.

Mita, K.; FUukuDpa, E. H.; YAMASHITA, N. Nonmonotone line searches
for unconstrained multiobjective optimization problems. J. Global Optim.,
75(1):63-90, 2019.

MORE, J. J.; GARBOW, B. S.; HiLLsTROM, K. E. Testing unconstrained
optimization software. ACM Trans. Math. Software, 7(1):17-41, 1981.

NESTEROV, Y. Introductory lectures on convex programming volume i:
Basic course. Lecture notes, 3(4):5, 1998.

NOCEDAL, J.; WRIGHT, S. J. Numerical optimization. Springer Series in

Operations Research and Financial Engineering. Springer, New York, second edition,
2006.

PorAk, E.; RIBIERE, G. Note sur la convergence de méthodes de
directions conjuguées. Rev. Francaise Informat. Recherche Opérationnelle,
3(16):35-43, 19609.

PorLyak, B. The conjugate gradient method in extremal problems. USSR
Computational Mathematics and Mathematical Physics, 9(4):94-112, 19609.

PrEUss, M.; NAuJOKS, B.; RupoLpH, G. Pareto set and emoa behavior
for simple multimodal multiobjective functions. In: Parallel Problem Solving
from Nature-PPSN IX, p. 513-522. Springer, 2006.

Qu, S.; J1, Y.; JIANG, J.; ZHANG, Q. Nonmonotone gradient methods for
vector optimization with a portfolio optimization application. European J.
Oper. Res., 263(2):356-366, 2017.

Bibliography 134

[50]

[51]

[52]

[53]

[54]

ScHUTZE, O.; LARA, A.; COELLO, C. C. The directed search method for
unconstrained multi-objective optimization problems. Proceedings of the
EVOLVE-A Bridge Between Probability, Set Oriented Numerics, and Evolutionary
Computation, p. 1-4, 2011.

SCcHUTZE, O.; LAUMANNS, M.; CorLLO, C. A. C.; DELLNITZ, M.; TALBI,
E.-G. Convergence of stochastic search algorithms to finite size pareto
set approximations. Journal of Global Optimization, 41(4):559-577, 2008.

STADLER, W.; DAUER., J. Multicriteria optimization in engineering: A
tutorial and survey. Progress in Astronautics and Aeronautics, 150:209-2009,
1993.

ToinT., P. L. Test problems for partially separable optimization and
results for the routine pspmin. The University of Namur, Department of
Mathematics, Belgium, Tech. Rep, 1983.

ZHANG, H.; HAGER, W. W. A nonmonotone line search technique and
its application to unconstrained optimization. SIAM J. Optim., 14(4):1043-
1056, 2004.

APPENDIX A

Metric

The information in this appendix was taken from [8, 22].

A.1 Purity metric

“Let F}, ; be the approximation to the Pareto front computed by solver s for
problem p. Let [, be the approximation to the Pareto front obtained by the union
of all individual Pareto approximation, UscsF), s, where all dominated points are
removed. Since the true Pareto front is not known for all problems in our problems
database, we consider [}, in place of the true Pareto front. We define the purity
metric as the number of points in F,, divided by the number of points solver s is

able to compute that are not dominated by any other point computed, i.e.,

R N B

The purity metric measures the inverse of how many nondominated points a solver is
able to compute from the set of all nondominated points computed. In our version of
the metric, small values are better, as necessitated when using performance profiles.
In case |F), ;N F,| = 0 we set ¢, s := 0o, meaning that solver s was unable to provide

even a single nondominated point for problem p.”

A.2 Spread metrics

“While the purity metric measures how well a solver is able to compute
nondominated points, the purity metric is unable to provide any information about
how points are spread over the Pareto front. In order to understand whether a given
solver is able to provide an approximation to the Pareto front whose points are
“well distributed,” we consider two additional metrics for our performance profiles.
Let the approximated Pareto front computed by solver s for problem p be formed

of N points z1,...,xy, and let these points be sorted by objective function 7, i.e.,

Appendix A 136

fi(xi) < fi(ziy1) (i =1,..., N). Furthermore, let xy and x4, be the extreme values
for objective j; i.e., zo is the best known approximation to a global minimum of f;,
and zy; is the best known approximation to a global maximum of f;, computed
over all Pareto front approximations obtained. Define 6, ; = | f;(z;41) — f;(x;)], and
let §; (j = 1,...,m) be the average of the distances &;;. The I' > 0 and A > 0

metrics are then defined as

I')s = max max 0,
P el 0, N D

and

JEL,..om 0,j+8N j+(N—1)3;

o . N =
0,5+0N,j+> ;21 |0:,5—05]
A, s = max (.

Including z¢ and x4 in the above is important, as f(z;) and f(xy) may be close to
each other but far away from the true Pareto front extremes. This inclusion ensures
that the metric I' is always well defined, while A is not defined in the case N = 1,
o = 1 = xy41. While the I' metric measures the largest gap in the Pareto front,
the A metric measures the scaled deviation from the average gap in the Pareto

front.”

	Elementos Pré-Textuais
	Capa
	Folha de Rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract

	Sumário
	Introduction
	0.1 Thesis outline

	1 Preliminary
	1.1 Basic Results
	1.2 Vector Optimization

	2 Conjugate gradient methods with a new line search
	2.1 Convex case
	2.2 Non-convex case
	2.3 General Case
	2.3.1 Convergence Analysis

	2.4 Analysis of convergence for specific k's
	2.4.1 Fletcher-Reeves
	2.4.2 Conjugate Descent
	2.4.3 Dai-Yuan
	2.4.4 Polak-Rivière-Polyak e Hestenes-Stiefel

	2.5 Complexity
	2.6 Computational experiments
	2.6.1 Constants
	2.6.2 Numerical Results

	3 Steepest descent method with a new line search
	3.1 Modifying the new line search
	3.2 Convex case
	3.2.1 Rate of convergence

	3.3 Lipschitz case
	3.3.1 Rate of convergence

	3.4 General case
	3.5 Numerical experiments
	3.5.1 Finding Pareto points
	3.5.2 Building Pareto fronts

	3.6 A new group of testing problems
	3.6.1 Non-monotone algorithms
	3.6.2 Four new problems

	3.7 Chapter conclusion

	4 How to compute inexact K-steepest descent directions
	4.1 -Approximate K-steepest descent direction
	4.2 How to compute a -K-descent direction
	4.3 Computational experiments
	4.3.1 An algorithm using an Armijo-type line-search along -approximate K–steepest descent direction
	4.3.2 Computational experiments
	4.3.3 First group of problems
	4.3.4 Second group of problems
	4.3.5 Third group of problems
	4.3.6 Chapter conclusion

	Final remarks
	Bibliography
	A Metric
	A.1 Purity metric
	A.2 Spread metrics

