Use este identificador para citar ou linkar para este item:
https://repositorio.ifgoiano.edu.br/handle/prefix/4898
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.advisor1 | Farnese, Fernanda dos Santos | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9449315151367208 | pt_BR |
dc.contributor.advisor-co1 | Silva, Paulo Eduardo de Menezes | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/7516021532884796 | pt_BR |
dc.contributor.referee1 | Silva, Paulo Eduardo de Menezes | - |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/7516021532884796 | pt_BR |
dc.contributor.referee2 | Silveira, Neidiquele Maria | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3333007954556870 | pt_BR |
dc.creator | Silva, Maria Lucia Fontineles da | - |
dc.creator.Lattes | https://lattes.cnpq.br/7700849665114798 | pt_BR |
dc.date.accessioned | 2024-11-18T17:42:47Z | - |
dc.date.available | 2024-11-30 | - |
dc.date.available | 2024-11-18T17:42:47Z | - |
dc.date.issued | 2024-09-30 | - |
dc.identifier.uri | https://repositorio.ifgoiano.edu.br/handle/prefix/4898 | - |
dc.description.abstract | Water availability plays a central role in plant growth and survival and is therefore a determining factor in the distribution of species across the globe. The vulnerability and, therefore, the dependence of plants on water availability involves a series of factors that act together and can be divided into main three groups: i) reduction of water losses to the atmosphere; ii) the ability to continue absorbing and transporting water during drought; and iii) the presence of internal water reservoirs. It is likely that the influence of water availability is even more preponderant in drier environments with high seasonality, as is the case of the Brazilian Cerrado, the largest savanna in the Neotropics and one of the richest in biodiversity in the world, where precipitation during the dry season can be close to zero, and the water availability is variable depending where the fragment of Cerrado is located. Therefore, in the present study, we analyzed functional traits that directly impact plant vulnerability to water restriction, focusing on strategies for maintaining water status and xylem tolerance to drought in species that occur simultaneously in Gallery Forest and Dry Forest in the Cerrado. Our data showed that the species from the Dry Forest were associated with characteristics that indicate drought tolerance, such as lower P50 (Water potential associated to 50% PLC), turgor loss point (ѰTLP) and osmotic potential (Пo), while the same species, when located in the Gallery Forest, showed grater water reservoir and greater residual transpiration. Besides, in both areas the species operated in a broad hydraulic safety margin (HSM), indicating high resilience of some Cerrado species even with the intensification of climate change. The results obtained allow us to observe a great intraspecific plasticity of the species that co-occur in the Gallery Forest and Dry Forest and point to distinct strategies for dealing with drought in the Cerrado. | pt_BR |
dc.description.resumo | A disponibilidade hídrica desempenha um papel central no crescimento e sobrevivência das plantas e, portanto, é um fator determinante na distribuição das espécies pelo globo. A vulnerabilidade e, portanto, a dependência das plantas da disponibilidade hídrica envolve uma série de fatores que atuam em conjunto e podem ser divididos em três grupos principais: i) redução das perdas de água para a atmosfera; ii) capacidade de continuar absorvendo e transportando água durante a seca; e iii) presença de reservatórios internos de água. É provável que a influência da disponibilidade hídrica seja ainda mais preponderante em ambientes mais secos e com alta sazonalidade, como é o caso do Cerrado brasileiro, a maior savana dos Neotrópicos e uma das mais ricas em biodiversidade do mundo, onde a precipitação durante a estação seca pode ser próxima de zero, e a disponibilidade hídrica é variável dependendo de onde o fragmento de Cerrado está localizado. Portanto, no presente estudo, analisamos características funcionais que impactam diretamente a vulnerabilidade das plantas à restrição hídrica, com foco em estratégias para manutenção do estado hídrico e tolerância do xilema à seca em espécies que ocorrem simultaneamente em Mata de Galeria e Mata Seca no Cerrado. Nossos dados mostraram que as espécies da Mata Seca foram associadas a características que indicam tolerância à seca, como menor P50 (potencial hídrico no qual 50% dos vasos do xilema estão embolizados), ponto de perda de turgor (ѰTLP) e potencial osmótico (Пo), enquanto as mesmas espécies, quando localizadas na Mata de Galeria, apresentaram maior reservatório de água e maior transpiração residual. Além disso, em ambas as áreas as espécies operaram em uma ampla margem de segurança hidráulica (HSM), indicando alta resiliência de algumas espécies do Cerrado mesmo com a intensificação das mudanças climáticas. Os resultados obtidos nos permitem observar uma grande plasticidade intraespecífica das espécies que coocorrem na Mata de Galeria e na Mata Seca e apontam para estratégias distintas para lidar com a seca no Cerrado. | pt_BR |
dc.description.provenance | Submitted by Maria Lucia Fontineles da Silva (maria.fontineles@estudante.ifgoiano.edu.br) on 2024-11-18T16:28:29Z No. of bitstreams: 1 Dissertação - Silva, Maria Lucia F - 2024.pdf: 1888303 bytes, checksum: cd14d5a0c802addc9feca6adacff5650 (MD5) | en |
dc.description.provenance | Approved for entry into archive by Johnathan Diniz (johnathan.diniz@ifgoiano.edu.br) on 2024-11-18T17:33:24Z (GMT) No. of bitstreams: 1 Dissertação - Silva, Maria Lucia F - 2024.pdf: 1888303 bytes, checksum: cd14d5a0c802addc9feca6adacff5650 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2024-11-18T17:42:47Z (GMT). No. of bitstreams: 1 Dissertação - Silva, Maria Lucia F - 2024.pdf: 1888303 bytes, checksum: cd14d5a0c802addc9feca6adacff5650 (MD5) Previous issue date: 2024-09-30 | en |
dc.description.sponsorship | FAPEG | pt_BR |
dc.language | eng | pt_BR |
dc.publisher | Instituto Federal Goiano | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Campus Rio Verde | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Biodiversidade e Conservação | pt_BR |
dc.publisher.initials | IF Goiano | pt_BR |
dc.relation | Bolsa de Formação de Mestrado | pt_BR |
dc.relation.references | Ackerly D, Knight C, Weiss S, Barton K, Starmer K. 2002. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449–457. Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98: 604–613. Alves RDFB, Menezes-Silva PE, Sousa LF, Loram-Lourenço L, Silva MLF, Almeida SES, Silva FG, Perez de Souza L, Fernie AR, Farnese FS. 2020. Evidence of drought memory in Dipteryx alata indicates differential acclimation of plants to savanna conditions. Scientific Reports 10. Ávila-Lovera E, Winter K. 2024. Variation in stem bark conductance to water vapor in Neotropical plant species. Frontiers in Forests and Global Change 6. B. Eller C, de V. Barros F, R.L. Bittencourt P, Rowland L, Mencuccini M, S. Oliveira R. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell & Environment 41: 548–562. Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology Letters 15: 393–405. Brodribb TJ, Bienaimé D, Marmottant P. 2016. Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences 113: 4865–4869. Brodribb TJ, Cochard H. 2009. Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers. Plant Physiology 149: 575–584. Brodribb TJ, Holbrook NM. 2003. Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytologist 158: 295–303. Bueno A, Alfarhan A, Arand K, Burghardt M, Deininger AC, Hedrich R, Leide J, Seufert P, Staiger S, Riederer M. 2019. Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. Journal of Experimental Botany 70: 1627–1638. Bueno ML, Dexter KG, Pennington RT, Pontara V, Neves DM, Ratter JA, de Oliveira‐Filho AT. 2017. The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. Journal of Ecology 106: 2109–2120. Bueno ML, Neves DR, Oliveira Filho AT, Lehn CR, Ratter JA. 2013. A study in an area of transition between seasonally Dry Tropical Forest and Mesotrophic Cerradão, in Mato Grosso do Sul, southwestern Brazil. Edinburgh Journal of Botany 70: 469–486. Caird MA, Richards JH, Donovan LA. 2007. Nighttime Stomatal Conductance and Transpiration in C3 and C4 Plants. Plant Physiology 143: 4–10. Campos J de O, Chaves HML. 2020. Tendências e Variabilidades nas Séries Históricas de Precipitação Mensal e Anual no Bioma Cerrado no Período 1977-2010. Revista Brasileira de Meteorologia 35: 157–169. Cardoso AA, Batz TA, McAdam SAM. 2020. Xylem Embolism Resistance Determines Leaf Mortality during Drought in Persea americana. Plant Physiology 182: 547–554. Carrasco LO, Bucci SJ, Di Francescantonio D, Lezcano OA, Campanello PI, Scholz FG, Rodriguez S, Madanes N, Cristiano PM, Hao G-Y, et al. 2015. Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiology 35: 354–365. Challis A, Blackman C, Ahrens C, Medlyn B, Rymer P, Tissue D. 2022. Adaptive plasticity in plant traits increases time to hydraulic failure under drought in a foundation tree (J Martinez-Vilalta, Ed.). Tree Physiology 42: 708–721. Choat B. 2013. Predicting thresholds of drought-induced mortality in woody plant species. Tree Physiology 33: 669–671. Crawley MJ. 2009. Life history and environment. In: Crawley MJ, ed. Plant Ecology. Oxford, UK: Blackwell Publishing Ltd., 73–131. Delzon S, Cochard H. 2014. Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist 203: 355–358. DeWitt TJ, Sih A, Wilson DS. 1998. Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution 13: 77–81. Dodds WK, Hutson RE, Eichem AC, Evans MA, Gudder DA, Fritz KM, Gray L. 1996. The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiologia 333: 151–159. D’Odorico P, Caylor K, Okin GS, Scanlon TM. 2007. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research: Biogeosciences 112. Duursma RA, Blackman CJ, Lopéz R, Martin-StPaul NK, Cochard H, Medlyn BE. 2019a. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221: 693–705. Duursma R, Choat B. 2017. fitplc - an R package to fit hydraulic vulnerability curves. Journal of Plant Hydraulics 4: e002. Forzza RC, Baumgratz JFA, Bicudo CEM, Canhos DAL, Carvalho AA, Coelho MAN, Costa AF, Costa DP, Hopkins MG, Leitman PM, et al. 2012. New brazilian floristic list highlights conservation challenges. BioScience 62: 39–45. Franklin O, Fransson P, Hofhansl F, Jansen S, Joshi J. 2023. Optimal balancing of xylem efficiency and safety explains plant vulnerability to drought. Ecology Letters 26: 1485–1496. Fuchs S, Leuschner C, Mathias Link R, Schuldt B. 2021. Hydraulic variability of three temperate broadleaf tree species along a water availability gradient in central Europe. New Phytologist 231: 1387–1400. Garcia MN, Hu J, Domingues TF, Groenendijk P, Oliveira RS, Costa FRC. 2022. Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. Journal of Experimental Botany 73: 939–952. Garzón MB, González Muñoz N, Wigneron J, Moisy C, Fernández‐Manjarrés J, Delzon S. 2018. The legacy of water deficit on populations having experienced negative hydraulic safety margin. Global Ecology and Biogeography 27: 346–356. Greiser C, Hederová L, Vico G, Wild J, Macek M, Kopecký M. 2024. Higher soil moisture increases microclimate temperature buffering in temperate broadleaf forests. Agricultural and Forest Meteorology 345: 109828. Guan X, Werner J, Cao K ‐F., Pereira L, Kaack L, McAdam SAM, Jansen S. 2022. Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought. Plant Biology 24: 1208–1223. Hammond WM, Yu K, Wilson LA, Will RE, Anderegg WRL, Adams HD. 2019. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytologist 223: 1834–1843. Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, et al. 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist 218: 15–28. Huber H, Chen X, Hendriks M, Keijsers D, Voesenek LACJ, Pierik R, Poorter H, de Kroon H, Visser EJW. 2012. Plasticity as a plastic response: how submergence‐induced leaf elongation in Rumex palustris depends on light and nutrient availability in its early life stage. New Phytologist 194: 572–582. Huo J, Shi Y, Zhang H, Hu R, Huang L, Zhao Y, Zhang Z. 2021. More sensitive to drought of young tissues with weak water potential adjustment capacity in two desert shrubs. Science of The Total Environment 790: 148103. Iida Y, Niiyama K, Aiba S, Kurokawa H, Kondo S, Mukai M, Mori AS, Saito S, Sun Y, Umeki K. 2023. The trait‐mediated trade‐off between growth and survival depends on tree sizes and environmental conditions. Journal of Ecology 111: 1777–1793. INMET. 2024. Mapas de estações meteorológicas, CEMADEN - D3475. https://mapas.inmet.gov.br/. Johnson DM, Berry ZC, Baker KV, Smith DD, McCulloh KA, Domec J-C. 2018. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Funct Ecol.; 32: 894–903. Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec J-C. 2016. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology 36: 983–993. Lamy J, Delzon S, Bouche PS, Alia R, Vendramin GG, Cochard H, Plomion C. 2014. Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist 201: 874–886. López R, Cano FJ, Choat B, Cochard H, Gil L. 2016a. Plasticity in Vulnerability to Cavitation of Pinus canariensis Occurs Only at the Driest End of an Aridity Gradient. Frontiers in Plant Science 7. Loram‐Lourenço L, Farnese FS, Alves RDFB, Dario BMM, Martins AC, Aun MA, Batista PF, Silva FG, Cochard H, Franco AC, et al. 2022. Variations in bark structural properties affect both water loss and carbon economics in neotropical savanna trees in the Cerrado region of Brazil. Journal of Ecology 110: 1826–1843. Loram-Lourenço L, Farnese F dos S, Sousa LF de, Alves RDFB, Andrade MCP de, Almeida SE da S, Moura LM de F, Costa AC, Silva FG, Galmés J, et al. 2020. A Structure Shaped by Fire, but Also Water: Ecological Consequences of the Variability in Bark Properties Across 31 Species From the Brazilian Cerrado. Frontiers in Plant Science 10. Lü S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, Bangarusamy DK, Wang G, Rowland O, Juenger T, et al. 2012. Arabidopsis ECERIFERUM9 Involvement in Cuticle Formation and Maintenance of Plant Water Status. Plant Physiology 159: 930–944. Machado R, Loram-Lourenço L, Farnese FS, Alves RDFB, de Sousa LF, Silva FG, Filho SCV, Torres-Ruiz JM, Cochard H, Menezes-Silva PE. 2021a. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytologist 229: 1415–1430. Markesteijn L, Poorter L, Bongers F, Paz H, Sack L. 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytologist 191: 480–495. Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala A. 2019. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. The New phytologist 223: 22–32. Martin‐StPaul N, Delzon S, Cochard H. 2017. Plant resistance to drought depends on timely stomatal closure. Ecology Letters 20: 1437–1447. McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, et al. 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth and Environment 3: 294–308. Meinzer FC, James SA, Goldstein G, Woodruff D. 2003. Whole‐tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant, Cell & Environment 26: 1147–1155. Nadal M, Flexas J, Gulías J. 2018. Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters 21: 1372–1379. Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros F de V., Cordoba EC, Fagundes M V., Garcia S, et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytologist 221: 1457–1465. Pereira TS, Oliveira LA, Andrade MT, Haverroth EJ, Cardoso AA, Martins SC V. 2024. Linking water‐use strategies with drought resistance across herbaceous crops. Physiologia Plantarum 176. Pérez-Ramos IM, Volaire F, Fattet M, Blanchard A, Roumet C. 2013. Tradeoffs between functional strategies for resource-use and drought-survival in Mediterranean rangeland species. Environmental and Experimental Botany 87: 126–136. R Core Team. 2018. R: A Language and Environment for Statistical Computing. Reich PB, Uhl C, Waiters MB, Ellsworth DS. 1991. Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia 86: 16–24. Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD. 1998. Relationships of Leaf Dark Respiration to Leaf Nitrogen, Specific Leaf Area and Leaf Life-Span: A Test across Biomes and Functional Groups. Oecologia 114: 471–482. Ribeiro JF, Walter BMT. 2008. As principais fitofisionomias do bioma Cerrado. In: s. m. Sano SPA, ed. Cerrado: Ecologia e flora . Planaltina: EMBRAPA - CPAC, 152–212. Rodriguez‐Dominguez CM, Forner A, Martorell S, Choat B, Lopez R, Peters JMR, Pfautsch S, Mayr S, Carins‐Murphy MR, McAdam SAM, et al. 2022. Leaf water potential measurements using the pressure chamber: Synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell & Environment 45: 2037–2061. Sack L, Cowan PD, Jaikumar N, Holbrook NM. 2003. The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species. Plant, Cell & Environment 26: 1343–1356. Salomón RL, Limousin JM, Ourcival JM, Rodríguez-Calcerrada J, Steppe K. 2017. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant Cell and Environment 40: 1379–1391. Schneider HM. 2022. Characterization, costs, cues and future perspectives of phenotypic plasticity. Annals of botany 130: 131–148. Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT. 1965. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 148: 339–346. Skelton RP, Anderegg LDL, Papper P, Reich E, Dawson TE, Kling M, Thompson SE, Diaz J, Ackerly DD. 2019. No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. New Phytologist 223: 1296–1306. Slot M, Nardwattanawong T, Hernández GG, Bueno A, Riederer M, Winter K. 2021. Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. New Phytologist 232: 1618–1631. Sorek Y, Greenstein S, Hochberg U. 2022. Seasonal adjustment of leaf embolism resistance and its importance for hydraulic safety in deciduous trees. Physiologia Plantarum 174. Sperry JS, Donnelly JR, Tyree MT. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment 11: 35–40. Suissa JS, Friedman WE. 2021. From cells to stems: the effects of primary vascular construction on drought‐induced embolism in fern rhizomes. New Phytologist 232: 2238–2253. Trueba S, Pouteau R, Lens F, Feild TS, Isnard S, Olson ME, Delzon S. 2017. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant Cell and Environment 40: 277–289. Tyree MT, Hammel HT. 1972. The Measurement of the Turgor Pressure and the Water Relations of Plants by the Pressure-bomb Technique. Journal of Experimental Botany 23: 267–282. Vieira EA, Silva M das G, Moro CF, Laura VA. 2017. Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiology and Biochemistry 115: 472–483. Vilagrosa A, Chirino E, Peguero-Pina JJ, Barigah TS, Cochard H, Gil-Pelegrín E. 2012. Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems. In: Plant Responses to Drought Stress. Berlin, Heidelberg: Springer Berlin Heidelberg, 63–109. Walthert L, Ganthaler A, Mayr S, Saurer M, Waldner P, Walser M, Zweifel R, von Arx G. 2021. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Science of The Total Environment 753: 141792. Wang W, Wang H, Xiao L, He X, Zhou W, Wang Q, Wei C. 2018. Microclimate regulating functions of urban forests in Changchun City (north-east China) and their associations with different factors. iForest - Biogeosciences and Forestry 11: 140–147. Wolfe BT. 2020. Bark water vapour conductance is associated with drought performance in tropical trees. Biology Letters 16: 20200263. Yan C-L, Ni M-Y, Cao K-F, Zhu S-D. 2020. Leaf hydraulic safety margin and safety–efficiency trade-off across angiosperm woody species. Biology Letters 16: 20200456. Zhang Z, Lv Y, Pan H. 2013. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban Forestry & Urban Greening 12: 323–329. Zhao M, A G, Liu Y, Konings AG. 2022. Evapotranspiration frequently increases during droughts. Nature Climate Change 2022 12:11 12: 1024–1030. Zhu S-D, Chen Y-J, Ye Q, He P-C, Liu H, Li R-H, Fu P-L, Jiang G-F, Cao K-F. 2018. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology 38: 658–663. Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret J-Y, Heuret P, Levionnois S, Maillard P, Bonal D, et al. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany. Ziemińska K, Rosa E, Gleason SM, Holbrook NM. 2020. Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species. Plant Cell and Environment 43: 3048–3067. | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Vulnerabilidade ao embolismo | pt_BR |
dc.subject | Embolism vulnerability | pt_BR |
dc.subject | Crescimento | pt_BR |
dc.subject | Growth | pt_BR |
dc.subject | Gleaf | pt_BR |
dc.subject | Cerrado | pt_BR |
dc.subject.cnpq | CIENCIAS BIOLOGICAS | pt_BR |
dc.subject.cnpq | CIENCIAS AGRARIAS | pt_BR |
dc.title | INTRASPECIFIC PLASTICITY DRIVES DIFFERENT DROUGHT-TOLERANCE STRATEGIES AND HELPS TO SHAPE FORESTS PHYTOPHYSIOGNOMIES IN THE BRAZILIAN SAVANNAH | pt_BR |
dc.title.alternative | Plasticidade intraespecífica impulsiona diferentes estatégias de tolerância à seca e ajuda a moldar as fitofisionomias do Cerrado brasileiro. | pt_BR |
dc.type | Dissertação | pt_BR |
Aparece nas coleções: | Mestrado em Biodiversidade e Conservação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissertação_Maria Lucia Fontineles da Silva.pdf | 1,76 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.