Use este identificador para citar ou linkar para este item: https://repositorio.ifgoiano.edu.br/handle/prefix/210
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Silva, Daniel Paiva-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1409353191899248pt_BR
dc.contributor.advisor2Mendes, Poliana-
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/8662088240150501pt_BR
dc.contributor.referee1Silva, Daniel paiva-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1409353191899248pt_BR
dc.contributor.referee2Rocha, Ednaldo Candido-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9200178886364293pt_BR
dc.contributor.referee3Teresa, Fabricio Barreto-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2706179711969560pt_BR
dc.creatorD'arc, Fagner Correia-
dc.creator.Latteshttp://lattes.cnpq.br/4216026034671990pt_BR
dc.date.accessioned2019-02-01T11:46:44Z-
dc.date.available2018-02-28-
dc.date.available2019-02-01T11:46:44Z-
dc.date.issued2018-02-28-
dc.identifier.urihttps://repositorio.ifgoiano.edu.br/handle/prefix/210-
dc.description.abstractThe growth of humanity has increased the demand for electricity. Among the sources that feed the Brazilian energy matrix, such small hydropower plants (SHPs) have been very appealing for investment and therefore are increasingly implanted. Considerations on the implementation of SHPs have promoted the loss of habitat for several non-Cerrado species, this work has the objective of evaluating its effects on local bats communities after the implementation of 10 artificial lakes in the Cerrado of Goiás and Minas Gerais. Bats were collected using mist networks, with a sampling effort of 705,600 m² / h, divided into eight campaigns, four before and four after the formation of the artificial lakes of the SHPs, equivalent to a mean axis of two years after the disturbances. After the installation of the SHPs, there was an average increase of 380% in the coverage of water. In all, 2,441 specimens (1,129 before and 1,312 after) were cataloged from 43 species (34 before and 36 after) belonging to six families and distributed in six trophic guilds. Among the taxa registered, Carollia perspicillata was the species with the highest number of catches (N = 967, 39.6%), considering 475 before and 492 after. As for other species, the abundances of evidence are discrete (<13% each). The results demonstrate that asbestos caused in the landscape by the implementation of SHPs are not sufficient to cause species richness, frequency of catches and composition of the local community of bats. There are, for example, frugivorous and hematophagous, which were most captured after the implementation of SHPs in the rainy season. The environmental changes promoted by SHPs were not sufficient to change the communities of bats in the Cerrado in the time scale analyzed.pt_BR
dc.description.resumoO crescimento da humanidade tem aumentado a demanda por energia elétrica. Dentre as fontes que alimentam a matriz energética brasileira, as pequenas centrais hidrelétricas (PCHs) têm se apesentando muito atrativas para investimento e por isso vêm sendo cada vez mais implantadas. Considerando que a implantação de PCHs tem promovido a perda de habitat para diversas espécies no Cerrado, este trabalho teve o objetivo de avaliar seus efeitos sobre as comunidades locais de morcegos após a implantação de 10 lagos artificiais no Cerrado goiano e mineiro. Os morcegos foram coletados utilizando redes de neblina, com um esforço amostral de 705.600 m²/h divididos em oito campanhas, sendo quatro antes e quatro após a formação dos lagos artificiais das PCHs, equivalendo a um tempo médio de dois anos após os distúrbios. Após a implantação das PCHs, houve aumento médio de 380% na cobertura de lâmina d’água. Ao todo, foram catalogados 2.441 espécimes (1.129 antes e 1.312 depois), de 43 espécies (34 antes e 36 depois) pertencentes a seis famílias e distribuídas em seis guildas tróficas. Dentre os táxons registrados, Carollia perspicillata foi a espécie com maior número de capturas (N = 967; 39,6%), sendo 475 antes e 492 após. As demais espécies tiveram abundâncias discretas (<13% cada). Os resultados demostram que as alterações provocadas na paisagem em virtude da implantação das PCHs, não foram suficientes para provocar alterações na riqueza de espécies, na frequência de capturas e composição da comunidade local de morcegos. Entretanto, do ponto de vista funcional, foram observadas alterações nas taxas de captura de algumas guildas (e.g. frugívora e hematófaga), que foram mais capturadas após a implantação das PCHs no período chuvoso. As mudanças ambientais promovidas por PCHs não foram suficientes para alterar as comunidades de morcegos no Cerrado na escala temporal analisada.pt_BR
dc.description.provenanceSubmitted by Patrícia Oliveira (patricia.oliveira@ifgoiano.edu.br) on 2019-02-01T11:01:19Z No. of bitstreams: 1 2018-07-18-11-24-16Dissertação_Fagner_IFGoiano.pdf: 4679708 bytes, checksum: a0a6c336d6f3e9d2fe51a42843cbb631 (MD5)en
dc.description.provenanceApproved for entry into archive by Patrícia Oliveira (patricia.oliveira@ifgoiano.edu.br) on 2019-02-01T11:46:21Z (GMT) No. of bitstreams: 1 2018-07-18-11-24-16Dissertação_Fagner_IFGoiano.pdf: 4679708 bytes, checksum: a0a6c336d6f3e9d2fe51a42843cbb631 (MD5)en
dc.description.provenanceApproved for entry into archive by Patrícia Oliveira (patricia.oliveira@ifgoiano.edu.br) on 2019-02-01T11:46:44Z (GMT) No. of bitstreams: 1 2018-07-18-11-24-16Dissertação_Fagner_IFGoiano.pdf: 4679708 bytes, checksum: a0a6c336d6f3e9d2fe51a42843cbb631 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-01T11:46:44Z (GMT). No. of bitstreams: 1 2018-07-18-11-24-16Dissertação_Fagner_IFGoiano.pdf: 4679708 bytes, checksum: a0a6c336d6f3e9d2fe51a42843cbb631 (MD5) Previous issue date: 2018-02-28en
dc.languageporpt_BR
dc.publisherInstituto Federal Goianopt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Urutaípt_BR
dc.publisher.programPrograma de Pós-Graduação em Conservação de Recursos Naturais do Cerradopt_BR
dc.publisher.initialsIF Goianopt_BR
dc.relation.referencesAbril M, Muñoz I, Casas-Ruiz JP, Gómez-Gener L, Barceló M, Oliva F, Menéndez M. Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition. Sci Total Environ. 2015 Jun 1;517:57-65. doi: 10.1016/j.scitotenv.2015.02.015. Epub 2015 Feb 24. PubMed PMID: 25721144. Agostinho, A. A., & Gomes, L. C. (1998). Avaliação de impactos de represamentos sobre a ictiofauna: o reconhecimento do possivel. Boletim Da Sociedade Brasileira de Ictiologia, 52, 15–16. Retrieved from http://nou-rau.uem.br/nou-rau/document/?code=346 Agostinho, A. A., Gomes, L. C., Pelicice, F. M. 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. UEM. 501p. Agostinho, Angelo a, and Luiz C Gomes. 2005. “Conservação Da Biodiversidade Em Águas Continentais Do Brasil.” Algae 1 (1):70–78. https://doi.org/10.1017/CBO9781107415324.004. Agostinho, Angelo Antônio; Pelicice, F M; Gomes, L C. 2008. “Dams and the Fish Fauna of the Neotropical Region: Impacts and Management Related to Diversity and Fisheries.” Brazilian Journal of Biology = Revista Brasleira de Biologia 68 (4 Suppl):1119–32. https://doi.org/10.1590/S1519-69842008000500019. Aguiar, L. M. S., & Antonini, Y. (2008). Diet of two sympatric insectivor ores (Chiropter optera : Diet of tw o sympatr ic insectiv or es bats ( Chir opter a : V espertilionidae ) in the Cer r ado of Centr al Br azil Cerr Central Brazil. Revista Brasileira de Zoologia, 25(1), 28–31. http://doi.org/10.1590/S0101-81752008000100005 Aguiar, L. M. S., Bernard, E., Ribeiro, V., Machado, R. B., & Jones, G. (2016). Should I stay or should I go? Climate change effects on the future of Neotropical savannah bats. Global Ecology and Conservation, 5, 22–33. http://doi.org/10.1016/j.gecco.2015.11.011 Assis, J. M. O.; Souza, W. M.; Sobral, M. C. Análise climática da precipitação no submédio da bacia do rio São Francisco a partir do índice de anomalia de chuva. Revista Brasileira de Ciências Ambientais, n. 36, p. 115-127, jun. 2015 Baillie, el al. (2010). Evolution Lost: Status and Trends of the World’s Vertebrates (1st ed.). London: Zoological Society of London. Baillie, el al. 2010. Evolution Lost: Status and Trends of the World’s Vertebrates. 1sted. London: Zoological Society of London. Barbosa, L.S.N.S., Bogdanov, D., Vainikka, P., Breyer, Ch, 2016. Hydro, Wind and Solar Power as a Base for a 100% Renewable Energy Supply for South and Central America (submitted for publication). Bello, C., Galetti, M., Pizo, M. A., Magnago, L. F. S., Rocha, M. F., Lima, R. A. F., … Jordano, P. (2015). Defaunation affects carbon storage in tropical forests. Science Advances, 1(11), 1–11. http://doi.org/10.1126/sciadv.1501105 Benchimol, M., & Peres, C. A. (2015). Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biological Conservation, 187, 61–72. http://doi.org/10.1016/j.biocon.2015.04.005. Bernard E. 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. J. Trop. Ecol. 17(1): 115-126 Bernard, E., Aguiar, L. M. S., & Machado, R. B. (2011). Discovering the Brazilian bat fauna: a task for two centuries? Mammal Review, 41(1), 23–39. http://doi.org/10.1111/j.1365- 2907.2010.00164.x Bernard, E., and M. B. Fenton. (2003). “Bat Mobility and Roosts in a Fragmented Landscape in Central Amazonia, Brazil.” Biotropica 35 (2):262–77. https://doi.org/10.1111/j.1744- 7429.2003.tb00285.x. 21 Bernard, E., Fenton, M. B. (2007). Bats in a fragmented landscape: Species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biological Conservation, 134(3), 332-343. Bernard, E.; Aguiar, L. M. S.; Brito, D.; Cruz-Neto, A. P.; Gregorin, R. ., & Machado, R. B.; Oprea, M.; Paglia, A. P.; Tavares, V. C. (2012). Uma análise de horizontes sobre a conservação de morcegos no brasil de morcegos no Brasil. In E. Freitas, TRO; Viera (Ed.), Mamíferos do Brasil: Genética, Sistemática, Ecologia e Conservação. vol II (pp. 19–35). Rio de Janeiro: Sociedade Brasileira de Mastozoologia. Bogdanov, D., Breyer, Ch., 2016. North-East Asian Super Grid for 100% Renewable Energy supply: optimal mix of energy technologies for electricity, gas and heat supply options. Energy Convers. Manag. 112, 176e190. Boitani L, Maiorano L, Baisero D, Falcucci A, Visconti P, Rondinini C. What spatial data do we need to develop global mammal conservation strategies? Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2011;366(1578):2623–32. PubMed Central PMCID: PMC3140738. pmid:21844041 Boivin, N. L., Zeder, M. A., Fuller, D. Q., Crowther, A., Larson, G., Erlandson, J. M., … Petraglia, M. D. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences, 113(23), 201525200. http://doi.org/10.1073/pnas.1525200113 Boyles, J. G., Cryan, P. M., McCracken, G. F., & Kunz, T. H. (2011). Economic Importance of Bats in Agriculture. Science, 332(6025), 41–42. Retrieved from http://science.sciencemag.org/content/332/6025/41.abstract Bruinsma, J. (2009). the Resource Outlook To 2050. Water, (June), 24–26. Retrieved from ftp://ftp.fao.org/docrep/fao/012/ak971e/ak971e00.pdf Bruinsma, Jelle. 2009. “The Resource Outlook To 2050.” Water, no. June:24–26. Christianini, A. V, Oliveira, P. S., Bruna, E. M., & Vasconcelos, H. L. (2014). Fauna in decline: Meek shall inherit. Science, 345(6201), 1129. Retrieved from http://science.sciencemag.org/content/345/6201/1129.1.abstract Cockrum, E. L. (1956). Homing, movements and longevity os bats. Mammalian Species, 417: 1 – 9. Collinge SK (2009) Ecology of fragmented landscapes. Johns Hopkins University Press, Baltimore. Connell, J.H.1978 Diversity in tropical rainforest and coral reefs. Science 199:1302-1310. Connolly D., and Mathiesen B.V., 2014. A technical and economic analysis of one potential pathway to a 100% renewable energy system, Intl. J. Sustainable Energy Planning & Management, 1, 7–28. Cosson, J., Pons, J., & Masson, D. (1999). Efeitos da fragmentação da floresta em bastões frugívoros e nectarívoros na Guiana Francesa. Journal of Tropical Ecology, 15 (4), 515-534. Dobrovolski, R., Diniz-Filho, J. A. F., Loyola, R. D., & De Marco Júnior, P. (2011). Agricultural expansion and the fate of global conservation priorities. Biodiversity and Conservation, 20(11), 2445–2459. http://doi.org/10.1007/s10531-011-9997-z Eid C., Guillén J. R., Marín P. F., & Hakvoort R., 2014. The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives. Energy Policy, 75, 244–254. Ellis EC, Antill EC, Kreft H (2012) All Is Not Loss: Plant Biodiversity in the Anthropocene. PLoS ONE 7(1): e30535. https://doi.org/10.1371/journal.pone.0030535 Emer, Carine, Eduardo Martins Venticinque, and Carlos Roberto Fonseca. 2013. “Effects of Dam-Induced Landscape Fragmentation on Amazonian Ant-Plant Mutualistic Networks.” Conservation Biology 27 (4):763–73. https://doi.org/10.1111/cobi.12045. 22 Emmons, L.H. & Feer, F. 1997. Neotropical rainforest mammals: a field guide. University of Chicago Press, Chicago, 307p. Esteves, F. A. (1998). Fundamentos de limnologia. (Interciência, Ed.) (2o ed.). Rio de Janeiro. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Syst 34:487– 515 Farfan J. and Breyer Ch. (2017). Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator, Journal of Cleaner Production, 141, 370–384 Fox, J.W. 2013. The intermediate disturbance hypothesis should be abandoned. Trends in Ecology & Evolution 28: 86-92. Gardner, A.L. 2008. Mammals of South America: marsupials, xenarthrans, shrews, and bats. Chicago, The University of Chicago Press, 669 p Gibson, Luke, Antony J. Lynam, Corey J A Bradshaw, Fangliang He, David P. Bickford, David S. Woodruff, Sara Bumrungsri, and William F. Laurance. 2013. “Near-Complete Extinction of Native Small Mammal Fauna 25 Years after Forest Fragmentation.” Science 341 (6153):1508–10. https://doi.org/10.1126/science.1240495. Haddad, Nick M, Lars A Brudvig, Jean Clobert, Kendi F Davies, Andrew Gonzalez, Robert D Holt, Thomas E Lovejoy, et al. (2015). “Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems.” Science Advances 1 (2). Hanski, Ilkka, and Otso Ovaskainen. “Extinction Debt at Extinction Threshold.” Conservation Biology, vol. 16, no. 3, 2002, pp. 666–673. JSTOR, JSTOR, www.jstor.org/stable/3061213. Henry, M., J.-M. Pons, and J.-F. Cosson. (2007). Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. The Journal of animal ecology 76:801–13. John Gichimu Mbaka, Mercy Wanjiru Mwaniki. (2017). A critical review of the effect of water storage reservoirs on organic matter decomposition in rivers. Environmental Reviews, 25(2): 193-198 Jones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., & Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8(1-2), 93–115. http://doi.org/10.3354/esr00182 Jones, Isabel L., Nils Bunnefeld, Alistair S. Jump, Carlos A. Peres, and Daisy H. Dent. (2016). “Extinction Debt on Reservoir Land-Bridge Islands.” Biological Conservation 199. Elsevier Ltd:75–83. https://doi.org/10.1016/j.biocon.2016.04.036. Kalka, M. B., Smith, A. R., & Kalko, E. K. V. (2008). Bats Limit Arthropods and Herbivory in a Tropical Forest. Science, 320(5872), 71. Retrieved from http://science.sciencemag.org/content/320/5872/71.abstract Kalko, Friemel, Handley, and Schnitzler. (1999). “Roosting and Foraging Behavior of Two Neotropical Gleaning Bats, Tonatia Silvicola and Trachops Cirrhosus (Phyllostomidae).” Biotropica 31 (2):344–53. https://doi.org/10.1111/j.1744-7429.1999.tb00146.x. Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. http://doi.org/10.1016/j.tree.2013.12.001 Marcelino, A. A., Santos, M. A., Xavier, V. L., Bezerra, C. S., Silva, C. R. O., Amorim, M. A. Rogerio, J. P. (2015). Diffusive emission of methane and carbon dioxide from two hydropower reservoirs in Brazil. Brazilian Journal of Biology, 75(2), 331–338. http://doi.org/10.1590/1519-6984.12313 Marinaello, M.M., and E. Bernard. (2014). Wing Mophology of Neotropical Bats: A Quantitative and Qualitative Analysis with Implications for Habitat Use. Canadian Journal of Zoology 92 (2):1–5. https://doi.org/https://doi.org/10.1139/cjz-2013-0127. 23 Marques-Aguiar, S.A. 1994. A systematic review of the large species of Artibeus Leach, 1821 (Mammalia, Chiroptera) with some phylogenetic inferences. B. Mus. Paraense Emílio Goeldi 10:3-83. Meyer, C. F. J., & Kalko, E. K. V. (2008). Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: Land-bridge islands as a model system. Journal of Biogeography, 35(9), 1711–1726. http://doi.org/10.1111/j.1365-2699.2008.01916.x Ministério do Meio Ambiente. (2014). Recursos Hídricos No Brasil. Edited by José Galizia Tundis. Ministério Do Meio Ambiente, Dos Recursos Hídricos E Da Amazonia Legal, Secretaria de Recursos Hídricos. 1sted. Rio de Janeiro: Academia Brasileira de Ciências. Miranda, J.M.D.; Bernardi, I.P. & Passos, F.C. 2011. Chave ilustrada para a determinação de morcegos da região sul do Brasil. Curitiba, João M.D. Miranda. 56 p. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. Retrieved from http://dx.doi.org/10.1038/35002501 Norberg, U. M. L., and R. A. Norberg. (2012). Scaling of Wingbeat Frequency with Body Mass in Bats and Limits to Maximum Bat Size. Journal of Experimental Biology 215 (5):711–22. https://doi.org/10.1242/jeb.059865. Oliveira, E. F., Luiz, E. A., Agostinho, A. A., Benedito-Cecilio, E. (2001). Fish assemblages in littoral areas of the upper Paraná river floodplain, Brazil. Acta Scientiarum Maringá, 23(2), 369-376. Orsi, M. L., Britton, J. R. (2014). Long‐term changes in the fish assemblage of a neotropical hydroelectric reservoir. Journal of fish biology,84(6), 1964-1970. Passamani, M.; R. A. S. Cerboncini. (2013). The effects of the creation of a hydroelectric dam of a small mammal’s communities in central Brazil. Neotropical Biology and Conservation. 8(1): 9-16. Pérez-Méndez, N., Jordano, P., García, C., & Valido, A. (2016). The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Nature Publishing Group, (April), 1–9. http://doi.org/10.1038/srep24820 Rebelo, H., & Rainho, A. (2008). Bat conservation and large dams: Spatial changes in habitat use caused by Europe’s largest reservoir. Endangered Species Research, 8(1-2), 61–68. http://doi.org/10.3354/esr00100 Sala, O. E., Stuart Chapin, F., III, Armesto, J. J., Berlow, E., Bloomfield, J. Wall, D. H. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287(5459), 1770–1774. Retrieved from http://science.sciencemag.org/content/287/5459/1770.abstract Schnitzler, H., E. Kalko, I. Kaipf, And A. Grinnell. (1994). Fishing and echolocation behavior of the greater bulldog bat, Noctilio leporinus, in the field. Behavioral Ecology and Sociobiology 35: 327–345 Silva, D.C., Vieira, T.B., da Silva, J.M. et al. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers Conserv (2017). https://doi.org/10.1007/s10531-017-1464-z Simão, M., & Borges, A. S. (2009). Histoplasmose. Revista Da Sociedade Brasileira de Medicina Tropical, 42(2), 192–198. http://doi.org/10.1590/S0037-86822009000200020 Soito, J.L.S., and M.AV. Freitas. (2011). Amazon and the Expansion of Hydropower in Brazil: Vulnerability, Impacts and Possibilities for Adaptation to Global Climate Change. Renewable and Sustainable Energy Reviews 15. Tundisi, Jg. et al. (1999). Theoretical basis for reservoir management. In: Tundisi, J. G.; Straskraba, M. (Ed.) Theoretical reservoir ecology and its applications. s. l.: IIE, BAS, Backhuys Publishers, p.505-28. Vieira, F., Rodrigues, RR. (2010). A fauna de peixes dos afluentes do rio Paraíba do Sul no estado de Minas Gerais. MG. Biota, Belo Horizonte, v.3, n.1, abr./mai. 24 Vieira, F. (2009). Distribuição, impactos ambientais e conservação da fauna de peixes da bacia do rio Doce. MG. Biota 2(5): 5-22 Vizzoto, L.D.; Taddei, V.A. (1973). Chave para a determinação de quirópteros brasileiros. Publicação da Faculdade de Filosofia, Ciências e Letras de São José do Rio Preto, 72 p. Wilson MC, Chen X-Y, Corlett RT, Didham RK, Ding P, Holt RD, et al. (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landscape Ecology. 31(2):219–27 Wilson, Maxwell C., Xiao Yong Chen, Richard T. Corlett, Raphael K. Didham, Ping Ding, Robert D. Holt, Marcel Holyoak, et al. 2016. “Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges.” Landscape Ecology 31 (2). Springer Netherlands:219–27. https://doi.org/10.1007/s10980-015-0312-3. Winemiller, K O, P B McIntyre, L Castello, E Fluet-Chouinard, T Giarrizzo, S Nam, I G Baird, et al. 2016. “Balancing Hydropower and Biodiversity in the Amazon, Congo, and Mekong.” Science 351 (6269):128–29. Wu JG (2013) Key concepts and research topics in landscape ecology revisited: 30 years after the Allerton Park workshop. Landsc Ecol 28:1–11 Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution 11: 413–418.A. YoungT. BoyleT. Brown1996The population genetic consequences of habitat fragmentation for plants.Trends in Ecology & Evolution11413418 Yu, Mingjian, Guang Hu, Kenneth J. Feeley, Jianguo Wu, and Ping Ding. 2012. “Richness and Composition of Plants and Birds on Land-Bridge Islands: Effects of Island Attributes and Differential Responses of Species Groups.” Journal of Biogeography 39 (6):1124–33. https://doi.org/10.1111/j.1365-2699.2011.02676.x. Zhou, S., Huang, Y., Yu, B., & Wang, G. (2015). Effects of human activities on the ecoenvironment in the middle Heihe River Basin based on an extended environmental Kuznets curve model. Ecological Engineering, 76, 14–26. http://doi.org/10.1016/j.ecoleng.2014.04.020pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectRepresas - Impacto ambientalpt_BR
dc.subjectHidrelétricas - Perda de habitatpt_BR
dc.subjectHidrelétricas - Preservação Ambiental - Brasilpt_BR
dc.subjectMorcegos - Perda de habitatpt_BR
dc.subject.cnpqCIENCIAS BIOLOGICASpt_BR
dc.titleOS LAGOS ARTIFICIAIS DE PEQUENAS CENTRAIS HIDRELÉTRICAS ALTERAM A COMUNIDADE DE MORCEGOS (Mammalia: Chiroptera) DO CERRADO?pt_BR
dc.title.alternativeThe artificial lakes of small hydropower plants change the community of bats (Mammalia: Chiroptera) from the Cerrado?pt_BR
dc.typeDissertaçãopt_BR
Aparece nas coleções:Mestrado Profissional em Conservação dos Recursos Naturais do Cerrado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018-07-18-11-24-16Dissertação_Fagner_IFGoiano.pdfdissertacao Fagner4,57 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.