Use este identificador para citar ou linkar para este item: https://repositorio.ifgoiano.edu.br/handle/prefix/1208
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Malafaia, Guilherme-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7222293518573336pt_BR
dc.contributor.advisor-co1Carvalho, Wanessa-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4187592036301627pt_BR
dc.contributor.advisor-co2Silva, Daniela-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/9895211901348365pt_BR
dc.contributor.referee1Alves Júnior, José-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3786547382583232pt_BR
dc.contributor.referee2Silveira, Ricardo-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0730391715177052pt_BR
dc.creatorOliveira, José Silonardo-
dc.creator.Latteshttp://lattes.cnpq.br/5091300107431804pt_BR
dc.date.accessioned2020-04-16T01:32:15Z-
dc.date.available2020-04-28-
dc.date.available2020-04-16T01:32:15Z-
dc.date.issued2020-02-28-
dc.identifier.urihttps://repositorio.ifgoiano.edu.br/handle/prefix/1208-
dc.description.abstractThe damaging effects of the pesticides glyphosate (Gly), atrazine (Atra) and fipronil (Fip) are known in different organisms, however the mutagenic, genotoxic and morphotoxic potential in erythrocytes of freshwater Testudines is poorly studied. Thus, we aim to evaluate the toxicological potential of these compounds in puppies of Podocnemis expansa (Amazon turtles) hatched from eggs incubated artificially in substrate with different concentrations of the herbicides Gly and Atra and the insecticide Fip. The micronucleus test and other nuclear abnormalities, comet assay and morphometric measurements of the animals' circulating erythrocytes were used as biomarkers of toxicity. Puppies exposed to Gly (groups Gly-65 ppb and Gly-6500 ppb) had a higher frequency of erythrocytes with multilobulated nucleus, for groups Atra-2 ppb and Gly-65 ppb the notched and displaced nucleus abnormalities were the most frequent. In addition, it was observed that all treatments (Gly-6500 ppb, Atra-2 ppb, Atra-200 ppb, Fip-4 ppb and Fip-400 ppb), with the exception of the Gly-65 ppb group, induced a decrease in the erythrocyte area, increase in the “nuclear area: erythrocyte area” ratio and decrease in the circularity of erythrocytes and their nuclei, which indicates a clear effect on the size and shape of these cells. On the other hand, in the comet assay there was no evidence suggestive of the genotoxic effect of pesticides. In conclusion, this study pioneered the mutagenic, genotoxic and morphotoxic potential of pesticides in puppies of P. expansa exposed in ovo to Gly, Atra and Fip, which constitutes how these compounds can affect the health of these animals.pt_BR
dc.description.resumoOs efeitos danosos dos agrotóxicos glifosato (Gly), atrazina (Atra) e fipronil (Fip) são conhecidos em diferentes organismos, porém os potenciais mutagênico, genotóxico e morfotóxico em eritrócitos de Testudines de água doce é pouco estudado. Assim, objetivou-se avaliar os potenciais toxicológicos desses compostos em recém-eclodidos de Podocnemis expansa (tartarugas-da-amazônia) nascidos de ovos incubados artificialmente em substrato com diferentes concentrações dos herbicidas Gly e Atra e do inseticida Fip. O teste do micronúcleo e outras anormalidades nucleares, ensaio cometa e medidas morfométricas de eritrócitos circulantes dos animais foram utilizados como biomarcadores de toxicidade. Os recém-eclodidos expostos aos grupos Gly-65 ppb e Gly-6500 ppb apresentaram maior frequência de eritrócitos com núcleo multilobulado. Para os grupos Atra-2 ppb e Gly-65 ppb as anormalidades núcleo entalhado e núcleo deslocado foram as mais frequentes. Além disso, observou-se que em Gly-6500 ppb, Atra-2 ppb, Atra-200 ppb, Fip-4 ppb e Fip-400 ppb, com exceção do grupo Gly-65 ppb, induziram diminuição da área eritrocitária, aumento da relação “área nuclear: área eritrocitária” e diminuição da circularidade dos eritrócitos e seus núcleos, o que indica claro efeito sobre o tamanho e forma dessas células. Por outro lado, no ensaio cometa não se observou evidências sugestivas de efeito genotóxico dos pesticidas. No entanto, concluiu-se que as concentrações de glifosato, atrazina e fripronil permitidas pela legislação ambiental brasileira causam morfotoxidade eritrocitária e efeito aneuploidogênico, sem efeito genotoxico identificado pelo ensaio cometa. A ausência de efeitos genotóxicos identificados pelo ensaio cometa possivelmente é explicada pela longa exposição aos agrotóxicos. Os longos períodos de exposição podem elevar os danos genotóxicos, causando morte celular. Assim como muitos outros, este estudo comprova a ação danosa do glifosato, atrazina e fipronil à biota, contudo, além destes, diversos pesticidas são prejudiciais, muitos dos quais se tem pouco ou nenhum conhecimento dos impactos lesivos ao meio ambiente, e a própria vida humana, a longo prazo.pt_BR
dc.description.provenanceSubmitted by José Silonardo Pereira de Oliveira (2018101330940129@ifgoiano.edu.br) on 2020-04-15T21:14:37Z No. of bitstreams: 1 Dissertação_José Silonardo Pereira de Oliveira..pdf: 1709462 bytes, checksum: 0a45f23da2588487132d67bb95d7ce56 (MD5)en
dc.description.provenanceApproved for entry into archive by Johnathan Diniz (johnathan.diniz@ifgoiano.edu.br) on 2020-04-16T01:31:45Z (GMT) No. of bitstreams: 1 Dissertação_José Silonardo Pereira de Oliveira..pdf: 1709462 bytes, checksum: 0a45f23da2588487132d67bb95d7ce56 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-04-16T01:32:15Z (GMT). No. of bitstreams: 1 Dissertação_José Silonardo Pereira de Oliveira..pdf: 1709462 bytes, checksum: 0a45f23da2588487132d67bb95d7ce56 (MD5) Previous issue date: 2020-02-28en
dc.languageporpt_BR
dc.publisherInstituto Federal Goianopt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Urutaípt_BR
dc.publisher.programPrograma de Pós-Graduação em Conservação de Recursos Naturais do Cerradopt_BR
dc.publisher.initialsIF Goianopt_BR
dc.relation.referencesAbarikwu, S.O., Adesiyan, A.C., Oyeloja, T.O., Oyeyemi, M.O., Farombi, E.O, 2009. Changes in sperm characteristics and induction of oxidative stress in the testis and epididymis of experimental rats by a herbicide, atrazine. Arch Environ Contam Toxicol. Apr;58(3):874-82. doi: 10.1007/s00244-009-9371-2. Acharya, G., Mohanty, P.K., 2019. Comparative cytomorphometry of red blood cells of some fishes. African Journal of Biological Sciences. 1(1): 23-32. Aktar, M.W., Sengupta D., Chowdhury, A., 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol, 2(1): 1-12. Alkaladi, A., El-Deen, N.A., Afifi, M., Zinadah, O.A., 2015. Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi J Biol Sci. 22(5):556-63. doi: 10.1016/j.sjbs.2015.02.012. Anderson, T.D., Lydy, M.J., 2002. Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environ Toxicol Chem. 21(7):1507-14. Araújo, A.P.C., Lima, V.S., Vieira, J.E.A.V., Mesak, C., Malafaia, G., 2019. First report on the mutagenicity and cytotoxicity of Zno nanoparticles in reptiles. Chemosphere. 235:556-564. doi: 10.1016/j.chemosphere.2019.06.164. Avery, M.L., Primus, T.M., Mihiach, E.M., Decker, D.G., Humphrey, J.S., 1998. Consumption of Fipronil-Treated Rice Seed Does Not Affect Captive Blackbirds. Pestic. Sci. 52, 91-96. Ayres, M., Ayres Jr, M., Ayres, D.L., Santos, A.A.S., 2007. Bioestat: aplicações estatísticas nas áreas das Ciências Biomédicas. Versão 5.0. Belém, Pará: Sociedade Civil Mamirauá, MCT-CNPq. 324 p. Babalola, O.O., Truter, J.C., van-Wyk, J.H., 2019. Mortality, teratogenicity and growth inhibition of three glyphosate formulations using Frog Embryo Teratogenesis Assay‐Xenopus. Journal of Applied Toxicology, 39(9): 1257-1266. Bali, Y.A., Kaikai, N., Ba-M’hamed, S., Bennis. M., 2019. Learning and memory impairments associated to acetylcholinesterase inhibition and oxidative stress following glyphosate based-herbicide exposure in mice. Toxicology, 415: 18-25. Borges, F.F.V., Silva, C.R., Goes, W.M., Godoy, F.R., Franco, F.C., Véras, J.H., Bailão, E.F.L.C., Silva, D.M., Cardoso, C.G., Cruz, A.D., Chen-Chen, L. 2018. Protective Effects of Silymarin and Silibinin against DNA Damage in Human Blood Cells. Biomed Research International. ID: 2;2018:6056948. doi: 10.1155/2018/6056948. Bünemann, E.K., Schwenk, G.D., Zwieten, V., 2005. Impact of agricultural inputs on soil organisms – a review. Australian Journal of Soil Research, 44(4): 379-406. Burella, P.M., Odetti, L.M.L., Simoniello, M.F., Poletta, G.L., 2018. Oxidative damage and antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to pesticide formulations. Ecotoxicol Environ Saf. 2018 Oct;161:437-443. doi: 10.1016/j.ecoenv.2018.06.006. Carneiro, I.V., Vierira, L.G., Mendonça, J.S., Hirano, L.Q.L, Valdes, S.A.C, Menezes-Reis, L.T., Santos, A.Q., 2019. Development of scleral ossicles in Podocnemis expansa (Testudines: Podocnemididae) embryos exposed to atrazine. Drug Chem Toxicol. 14:1-6. doi: 10.1080/01480545.2019.1598427. Cederlund, H. 2017. Effects of spray drift of glyphosate on nontarget terrestrial plants-A critical review. Environ Toxicol Chem, 36(11):2879-2886. doi: 10.1002/etc.3925. Critical Ecosystem Partnership Fund (CEPF) - Announcing the World’s 36th Biodiversity Hotspot: The North American Coastal Plain. Retrieved on February 14, 2016 from http://www.cepf.net/news/top_stories/Pages/Announcing-the-Worlds-36thBiodiversity-Hotspot.aspx. Choudhary, S., Raheja, N., Yadav, S.K., Hamboj, M.L., Sharma, A.A., 2018. Review: pesticide residue: cause of many animal health problems. Journal of Entomology and Zoology Studies, 6(3): 300-333. Collins, A.R., 2004. The Comet assay for DNA damage and repair principles, applications, and imitations. Mol Biotechnol. 26:249–260. Cooper, J., Dobson, H. 2007. The benefits of pesticides to mankind and the environment. Crop Protection, 26(9): 1337-1348. Costa, M.J., Monteiro, D.A., Oliveira-Neto, A.L., Rantin, F.T., Kalinin, A.L. 2008. Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original. Ecotoxicology. (3):153-63. Crott, J., Fenech, M. 2001. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis. 16(3):213-7. Daam, M.A., Moutinho, M.F., Espíndola, E.L.G., Schiesari, L. 2019. Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate and metribuzin to tropical frog larvae. Ecotoxicology. (6):707-715. doi: 10.1007/s10646-019-02067-5. Dalton, R.L, Boutin, C. 2010. Comparison of the effects of glyphosate and atrazine herbicides on nontarget plants grown singly and in microcosms. Environ Toxicol Chem. 29(10):2304-15. doi: 10.1002/etc.277. Degen, G.H., Gerber, M.M., Obrecht-Pflumio, S., Dirheimer, G. 1997. Induction of micronuclei with ochratoxin A in ovine seminal vesicle cell cultures. Arch. Toxicol. 71 365–371 DeLorenzo, M.E., Scott, G.I, Ross, P.E. 2001. Toxicity of pesticides to aquatic microorganisms: a review. Environ Toxicol Chem.20(1):84-98. Dill, G.M., Sammons, R.D., Feng, P.C.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J.L., Farmer, D., Wright, D. and Haupfear, E.A. 2010. Glyphosate: Discovery, development, applications, and properties. In: Nandula, V.K., Ed., Glyphosate Resistance in Crops and Weeds: History, Development, and Management, John Wiley and Sons, Inc., Hoboken, 1-33. doi:10.1002/9780470634394.ch1. Dornelles, M.F., Oliveira, G.T. 2013. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol. 2014 Apr;66(3):415-29. doi: 10.1007/s00244-013-9967-4. European Food Safety Authority (EFSA), 2009. Guidance of EFSA: risk assessment for birds and mammals. EFSA J. 7, 1438. Florencia, F.M., Carolina, T., Enzo, B., Leonardo, G. 2017. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina). Ecotoxicol Environ Saf. 144:360-368. doi: 10.1016/j.ecoenv.2017.06.049. Gibbons, D., Morrissey, C., Mineau, P. 2015. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res Int. 22(1):103-18. doi: 10.1007/s11356-014-3180-5. Gill, J.P.K., Sethi, N., Mohan, A., Datta, S., Girdhar, M. 2018. Glyphosate toxicity for animals. Environmental Chemistry Letters, 16(2): 401-426. Glinski, D., Henderson, M., Purucker, T., VanMeter, R. 2013. Metabolism of pesticides after dermal exposure to amphibians. Presented at 34th Annual SETAC North America, Nashville, TN. Gonçalves, M.W. Gambale, P.G., Godoy, F.R., Alves, A.A., Rezende, P.H.A., Cruz, A.D., Maciel, N.M., Nomura, F, Bastos, R., Marco-Jr, P., Silva, D.M.. 2017. The agricultural impact of pesticides on Physalaemus cuvieri tadpoles (Amphibia: Anura) ascertained by comet assay. Zoologia, 34: 1-8. Gyori, B.M., Venkatachalam, G., Thiagarajan, P.S., Hsu, D., Clement, M.V. 2014. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 9;2:457-65. doi: 10.1016/j.redox.2013.12.020. eCollection 2014. Harabawy, A.S., Mosleh, Y.Y. 2014. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus. Ecotoxicol Environ Saf. 2014. 104:28-35. doi: 10.1016/j.ecoenv.2014.02.015. Hayes, T.B., Anderson, L.L., Beasley, V.R., de Solla, S.R., Iguchi, T., Ingraham, H., Kestemont, P., Kniewald, J., Kniewald, Z., Langlois, V.S., Luque, E.H., McCoy, K.A., Muñoz-de-Toro, M., Oka, T., Oliveira CA, Orton F, Ruby S, Suzawa M, Tavera-Mendoza LE, Trudeau VL, Victor-Costa AB, Willingham, E. 2011. Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem Mol Biol. 127(1-2):64-73. doi: 10.1016/j.jsbmb.2011.03.015. Hirano, L.Q.L., Alves, L.S., Menezes-Reis, L.T., Mendonça, J.S., Simões, K., Santos, A.L.Q., Vieira, L.G. 2019. Effects of egg exposure to atrazine and/or glyphosate on boné development in Podocnemis unifilis (Testudines, Podocnemididae). Ecotoxicology and Environmental Safety, 182: 109400. Hopkins, W.A. 2000 Reptile toxicology: challenges and opportunities in the last frontier in vertebrate ecotoxicology. Environmental Toxicology and Chemistry, 19(10): 2391-2393. Humpage, A.R., Fenech, M., Thomas, P., Falconer, I.R. 2000. Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat Res. 20;472(1-2):155-61. Hussain, R., Ali, F., Rafique, A., Ghaffar, A., Jabeen, G., Rafay, M., Liaqat, S., Khan, I., Malik, R., Khan, M.K., Niaz, M., Akram, K., Masood, A. 2019. Exposure to Sub-Acute Concentrations of Glyphosate Induce Clinico-Hematological, Serum Biochemical and Genotoxic Damage in Adult Cockerels. Pak Vet J. http://dx.doi.org/10.29261/pakvetj/2019.064. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2013. Aplicação de critérios e categorias da IUCN na avaliação da fauna brasileira. ICMBioMMA. Jasper, R., Locatelli, G.O., Pilati, C., Locatelli, C. 2012. Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup(®). Interdiscip Toxicol. 5(3):133-40. doi: 10.2478/v10102-012-0022-5. Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Liu, W., Fu, Z. 2010. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere. 78(7):846-52. doi: 10.1016/j.chemosphere.2009.11.044. Kartheek, R.M., David, M. 2018. Assessment of fipronil toxicity on wistar rats: A hepatotoxic perspective. Toxicol Rep, 5: 448-456. Kidd, H., James, D.R. 1991. The agrochemicals handbook. Royal Society of Chemistry Information Services, Cambridge. Kwiatkowska, M., Huras, B., Bukowska, B. 2014. The effect of metabolites and impurities of glyphosate on human erythrocytes (in vitro). Pestic Biochem Physiol. 109:34-43. doi: 10.1016/j.pestbp.2014.01.003. Lajmanovich, R.C., Peltzer, P.M., Attademo, A.M., Martinuzzi, C.S., Simoniello, M.F., Colussi, C.L., Boccioni, P.C., Sigrist, M. 2019. First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles. Heliyon, 5(10): e02601. Langiano, V.C., Martinez, C.B. 2008. Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C Toxicol Pharmacol. 147(2):222-31. Lindsay, E.A., French, K. 2004. The impact of the herbicide glyphosate on leaf litter invertebrates within Bitou bush, Chrysanthemoides monilifera ssp rotundata, infestations. Pest Manag Sci. 60(12):1205-12. Linz, G.M., Blixt, D.C., Bergman, D.L., Bleier, W.J. 1996. Responses of red-winged blackbirds, yellow-headed blackbirds and marsh wrens to glyphosate-induced alterations in cattail density (Respuesta de Agelaius phoeniceus, Xanthocephalus xanthocephalus y Cistothorus palustris a Alteración en la Densidad de Eneas Tratadas con Yerbicidas. J Field Ornithol 167–176. Loro, V.L., Glusczak, L., Moraes, B.S., Leal, C.A.M., Menezes, C., Murussi, C.R., Leitemperger, J., Schetinger, M.R.C., Morsch, V.M. 2015. Glyphosate-based herbicide affects biochemical parameters in Rhamdia quelen (Quoy & Gaimard, 1824 and) Leporinus obtusidens (Valenciennes, 1837). Neotrop Ichthyol, 13(1): 229-236. Lushchak, V.I., Matviishyn, T.M., Husak, V.V., Storey, J.M., Storey, K.B. 2018. Pesticide toxicity: a mechanistic approach. Excli j, 17: 1101-1136. Ma, J., Zhu, J., Wang, W., Ruan, P., Rajeshkumar, S. 2019. Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. Environmental Pollution, 252:1288-1300. McComb, B.C., Curtis, L, Chambers, C.L., Newton, M., Bentson, K. 2008. Acute toxic hazard evaluations of glyphosate herbicide on terrestrial vertebrates of the Oregon coast range. Environ Sci Pollut Res Int. 15(3):266-72. Mendonça, J.S., Vieira, L.G., Valdes, S.A.C., Vilca, F.Z., Tornisielo, V.L., Santos, A.L.Q. 2016. Effects of the exposure to atrazine on bone development of Podocnemis expansa (Testudines, Podocnemididae). Ecotoxicology. 25(3):594-600. doi: 10.1007/s10646-016-1618-x. Mesak, C., Montalvão, M.F., Paixão, C.F.C., Mendes, B.O., Araújo, A.P.D.C., Quintão, T.C., Malafaia, G. 2019. Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible? Environ Sci Pollut Res Int. 26(6):6234-6243. doi: 10.1007/s11356-019-04155-9. Mingo, V., Lötters, S., Wagner, N. 2016. Risk of pesticide exposure for reptile species in the European Union. Environmental Pollution, 215: 164-169. Mitra, J., Raghu, K. 1998. Pesticides‐non target plants interactions: An overview. Archives of Agronomy and soil Science, 43(6): 445-500. Mittermeier, R.A., Gil, R.P., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J., Fonseca, G.A.B. 2005. Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions, 2. ed. University of Chicago Press, Boston. Mossa, A.T.H., Swelam, E.S., Mohafrash, S.M.M. 2015. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats. Toxicology Reports, 2: 775-784. Noss, R.F., Platt, W.J., Sorrie, B.A., Weakley, A.S., Means, D.B., Costanza, J., Peet, R.K. 2015. How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions 21:236-244. Nwani, C.D., Lakra, W.S., Nagpure, N.S., Kumar, R., Kushwaha, B., Srivastava, S.K. 2010. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). Int J Environ Res Public Health. 2010 (8):3298-312. doi: 10.3390/ijerph7083298. Nwani, C.D., Nagpure, N.S., Kumar, R., Kushwaha, B., Lakra, W.S. 2013. DNA damage and oxidative stress modulatory effects of glyphosate-based herbicide in freshwater fish, Channa punctatus. Environmental Toxicology and Pharmacology, 36(2): 539-547. Olson, G.A., Hessler, J.R., Faith, R.E. 1975. Technics for blood collection and intravascular infusion of reptiles. Lab Anim Sci. 25(6):783-6. Paganelli, A., Gnazzo, V., Acosta, H., López, S.L., Carrasco, A.E. 2010. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling. Chem Res Toxicol. 18;23(10):1586-95. doi: 10.1021/tx1001749. Pinto, M.M.P.L.; Santos, N.F.G. 2010. Amaral, A. Current status of biodosimetry based on standard cytogenetic methods. Radiation and Environmental Biophysics, v.49, p.567-581. Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van-der-Sluijs, J.P., Van-Dyck, H., Wiemers, M. 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1): 68-102. Poletta, G.L., Larriera, A., Kleinsorge, E., Mudry, M.D. 2008. Caiman latirostris (broad-snouted caiman) as a sentinel organism for genotoxic monitoring: basal values determination of micronucleus and comet assay. Mutat Res. 29;650(2):202-9. doi: 10.1016/j.mrgentox.2007.12.001. Poletta, G.L., Larriera, A., Kleinsorge, E., Mudry, M.D. 2009. Genotoxicity of the herbicide formulation Roundup (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat Res. 31;672(2):95-102. doi: 10.1016/j.mrgentox.2008.10.007. Ramos, J.S., Alves, A.A., Lopes, M.P., Pedroso, T.M., Felício, L.P., Carvalho. W.F., Franco, F.C., Melo, C.O.A., Gonçalves, M.W., Soares, T.N., Cruz, A.D., Silva, D.M. 2016. DNA damage in peripheral blood lymphocytes and association with polymorphisms in the promoter region of the CYP2E1 gene in alcoholics from Central Brazil. Alcohol. 57:35-39. doi: 10.1016/j.alcohol.2016.08.007. Reindl, A.R., Falkowska, L., Grajewska, A. 2015. Chlorinated herbicides in fish, birds and mammals in the Baltic Sea. Water, Air, & Soil Pollution, 226: 276. Sampaio, D.M.D.R., Estrela, F.N., Mendes, B.O., Estrela, D.D.C., Montalvão, M.F., Mesak, C., Silva, F.G., Araújo, A.P.D.C., de Freitas, C.S., Gontijo, B.V., Rodrigues, A.S.L., Malafaia, G. 2019. Ingestion of tannery effluent as a risk factor to the health of birds: A toxicological study using Coturnix coturnix japonica as a model system. Sci Total Environ. 1;681:275-291. doi: 10.1016/j.scitotenv.2019.05.046. Santo, G.D., Grotto, A., Boligon, A.A., Da Costa, B., Rambo, C.L., Fantini, E.A., Sauer, E., Lazzarotto, L.M.V., Bertoncello, K.T., Júnior, O.T., Garcia, S.C., Siebel, A.M., Rosemberg, D.B., Magro, J.D., Conterato, G.M.M., Zanatta, L. 2018. Protective effect of Uncaria tomentosa extract against oxidative stress and genotoxicity induced by glyphosate-Roundup® using zebrafish (Danio rerio) as a model. Environ Sci Pollut Res Int. (12):11703-11715. doi: 10.1007/s11356-018-1350-6. Serrano-García, L., Montero-Montoya, R. 2001. Micronuclei and chromatid buds are the result of related genotoxic events. Environ Mol Mutagen. 38(1):38-45. Shehata, A.A., Schrödl, W., Aldin, A.A., Hafez, H.M., Krüger, M. 2013. The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66(4):350–358. Siems, W.G., Sommerburg, O., Grune, T. 2000. Erythrocyte free radical and energy formation. Clin Nephrol 53(Suppl 1):S9–S17. Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh J, Van der Sluijs, J.P., Whitehorn, P.R., Wiemers, M. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 22(1):5-34. doi: 10.1007/s11356-014-3470-y. Slaninova, A., Smutna, M., Modra, H., Svobodova, Z. 2009. A review: oxidative stress in fish induced by pesticides. Neuro Endocrinol Lett. 30 Suppl 1:2-12. Souza, J.M., Montalvão, M.F., da Silva, A.R., Rodrigues, A.S.L., Malafaia, G. 2017. A pioneering study on cytotoxicity in Australian parakeets (Melopsittacus undulates) exposed to tannery effluent. Chemosphere. 175:521-533. doi: 10.1016/j.chemosphere.2017.02.087. Terradas, M., Martín, M., Tusell, L., Genescà, A. 2010. Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res. 2010 705(1):60-7. Thierens, H., Vral, A. 2009. The micronucleus assay in radiation accidents. Ann Ist Super Sanità, v.45, p.260-264. Tingle, C.C., Rother, J.A., Dewhurst, C.F., Lauer, S., King, W.J. 2003. Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev. Environ. Contam. Toxicol. 176:1-66. Turkmen, R., Birdane, Y.O., Demirel, H.H., Yavuz, H., Kabu, M. 2019. Ince S. Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environ Sci Pollut Res 26(11):11427-11437. doi: 10.1007/s11356-019-04585-5. Ulla, S., Zorriehzahra, M.J. 2015. Ecotoxicology: a review of pesticides induced toxicity in fish. Advances in Animal and Veterinary Sciences, 3(1): 40-57. United States Environmental Protection Agency (EPA). About Pesticide Registration. Available in: https://www.epa.gov/pesticide-registration/about-pesticide-registration#registration. Access on: 07 December 2019. United States Environmental Protection Agency (EPA). Atrazine - Background and Updates. Available in: https://www.epa.gov/ingredients-used-pesticide-products/atrazine-background-and-updates. Access on: 08 December 2019a. Valdes, S.A.C., Vieira, L.G., Ferreira, C.H., Mendonça, J, S., Ribeiro, P.R.Q., Fernandes, E.A., Santos, A.L.Q. 2015. Effects of Exposure to Methyl Parathion on Egg Hatchability and Eggshell Chemical Composition in Podocnemis expansa (Testudines, Podocnemididae). Zoolog Sci. 32(2):135-40. doi: 10.2108/zs140164. Wacksman, M.N., Maul, J.D., Lydy, M.J. 2006. Impact of atrazine on chlorpyrifos toxicity in four aquatic vertebrates. Arch Environ Contam Toxicol. 51(4):681-9. Wech, J., Suren, A., Brady, M., Kilroy, C. 2018. The effect of willow control using a glyphosate formulation on aquatic invertebrates within a New Zealand wetland. New Zealand Journal of Marine and Freshwater Research, 52(1): 16-41. Wilhelms, K.W., Cutler, S.A., Proudman, J.A., Anderson, L.L., Scanes, C.G. 2005. Atrazine and the Hypothalamo-Pituitary-Gonadal Axis in Sexually Maturing Precocial Birds: Studies in Male Japanese Quail. Toxicological Sciences, 86(1): 152-160. Williams, K.J., Ford, A., Rosauer, D.F., De Silva, N., Mittermeier, R.A., Bruce, C., Larsen, F.W., Margules, C. 2011. Forests of East Australia: The 35th Biodiversity Hotspot. In: Zachos FE, Habel JC (eds) Biodiversity Hotspots: Distribution and Protection of Priority Conservation Areas (pp 295-310). Springer-Verlag, Berlin. World Health Organization (WHO). 2010. International Code of Conduct on the Distribution and Use of Pesticides. Guidelines for the registration of pesticides. World Health Organization (WHO). WHO Pesticide Evaluation Scheme (WHOPES). Available in: https://www.who.int/whopes/resources/who_htm_ntd_whopes_2010.7/en/. Access in: 07 December, 2019. Yoon, D.S., Park, J.C., Park, H.G., Lee, J.S., Han, J. 2019. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicas. Aquatic Toxicology, 213: 105213. Zapata, L.M., Bock, B.C., Orozco, L.Y., Palacio, J.A. 2016. Application of the micronucleus test and comet assay in Trachemys callirostris erythrocytes as a model for in situ genotoxic monitoring. Ecotoxicol Environ Saf. 2016 May;127:108-16. doi: 10.1016/j.ecoenv.2016.01.016. Zhang, B., Zhang, L., He, L., Yang, X., Shi, Y., Liao, S., Yang, S., Cheng, J., Ren, T. 2018. Interactions of Fipronil within Fish and Insects: Experimental and Molecular Modeling Studies. J Agric Food Chem. 66(23):5756-5761. doi: 10.1021/acs.jafc.8b00573. Zhang, C., Qin, L., Dou, D.C., Li, X.N., Ge, J., Li, J.L. 2018. Atrazine induced oxidative stress and mitochondrial dysfunction in quail (Coturnix C. coturnix) kidney via modulating Nrf2 signaling pathway. Chemosphere. 212:974-982. doi: 10.1016/j.chemosphere.2018.08.138. Zhang, L., Rana, I., Shaffer, R.M., Taioli, E., Sheppard, L. 2019. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutation Research/Reviews in Mutation Research, 781: 186-206. Zhang, W. 2018. Global pesticide use: profile, trend, cost/benefit and more. Proceedings of the International Academy of Ecology and Environmental Sciences, 8(1): 1-27.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAgrotóxicos, genotoxicidade, morfotoxicidade, mutagenicidade, pesticidas, toxicologia.pt_BR
dc.subjectTestudines, pesticides, toxicology, mutagenicity, genotoxicity, morphotoxicity.pt_BR
dc.subject.cnpqCIENCIAS BIOLOGICAS::GENETICA::GENETICA ANIMALpt_BR
dc.titleEFEITOS TOXICOLÓGICOS DA CONTAMINAÇÃO POR AGROTÓXICOS EM RECÉM-ECLODIDOS DE Podocnemis expansa (Testudines: Podocnemididae)pt_BR
dc.title.alternativeTOXICOLOGICAL EFFECTS OF PESTICIDE CONTAMINATION IN NEWLY HATCHED OF Podocnemis expansa (Testudines: Pocnemididae)pt_BR
dc.typeDissertaçãopt_BR
Aparece nas coleções:Mestrado Profissional em Conservação dos Recursos Naturais do Cerrado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação_José Silonardo Pereira de Oliveira..pdfEFEITOS TOXICOLÓGICOS DA CONTAMINAÇÃO POR AGROTÓXICOS EM RECÉM-ECLODIDOS DE Podocnemis expansa (Testudines: Podocnemididae)1,67 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.