Use este identificador para citar ou linkar para este item: https://repositorio.ifgoiano.edu.br/handle/prefix/1200
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisor1Castro, André Luis da Silva-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6092344430155408pt_BR
dc.contributor.referee1Santos, Adriana da Silva-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6346556753868080pt_BR
dc.contributor.referee2Louly, Carla Cristina Braz-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6916213086136790pt_BR
dc.creatorFerreira, Juliene de Brito-
dc.creator.Latteshttp://lattes.cnpq.br/3451388065892541pt_BR
dc.date.accessioned2020-04-06T23:05:04Z-
dc.date.available2020-04-06-
dc.date.available2020-04-06T23:05:04Z-
dc.date.issued2020-02-28-
dc.identifier.urihttps://repositorio.ifgoiano.edu.br/handle/prefix/1200-
dc.description.abstractFluoxetine is one of the drugs consumed worldwide and prescribed as an anxiolytic, mainly for the treatment of depression and has been found in low concentrations in different aquatic environments. The effects of aquatic contamination by fluoxetine on organisms are poorly known. The aim of the study was to evaluate the effects of fluoxetine on predictive behaviors of anxiety and aggression in zebrafish (Danio rerio). We used 108 non-sexed adult fish, allocated in one of the experimental groups (n = 18): control, fluoxetine in environmental concentration (0.54 µg / L) and fluoxetine in concentration ten times higher than the environmental one (5.40 µg / L) submitted to acute and chronic exposure, as a way to evaluate possible effects of the increase in the environmental concentration of the drug. We conducted individual behavioral tests to assess predictive behaviors of anxiety and aggression at 0, 24, 72 and 120 hours (acute exposure) and 0, 1, 7, 14, 21 days (chronic exposure). The concentrations of 0.54 and 5.4 µg / L of fluoxetine caused changes in the predictive behaviors of anxiety and aggression in adult zebrafish in acute and chronic exposures. Behavioral changes caused by contamination of fluoxetine in non-target organisms are of concern, since they can trigger ecological effects in aquatic communities.pt_BR
dc.description.resumoA fluoxetina é um dos fármacos mais consumidos em todo o mundo e prescrito como ansiolítico, principalmente para o tratamento da depressão e tem sido encontrada em baixas concentrações em diferentes ambientes aquáticos. Os efeitos da contaminação aquática por fluoxetina em organismos são pobremente conhecidos. O objetivo do estudo foi avaliar os efeitos da fluoxetina nos comportamentos preditivos de ansiedade e agressividade em zebrafish (Danio rerio). Foram utilizados 108 peixes adultos não sexados, alocados em seis grupos experimentais (n=18): controle, fluoxetina em concentração ambiental (0,54 µg/L) e fluoxetina em concentração dez vezes superior à ambiental (5,40 µg/L) submetidos à exposição aguda e crônica, como forma de avaliar possíveis efeitos do aumento da concentração ambiental do fármaco. Foi realizado testes comportamentais individuais, para avaliação de comportamentos preditivos de ansiedade e agressividade, a 0, 24, 72 e 120 horas (exposição aguda) e 0, 1, 7, 14, 21 dias (exposição crônica). As concentrações 0,54 e 5,4 µg/L de fluoxetina causaram alterações nos comportamentos preditivos de ansiedade e de agressividade em zebrafish adultos nas exposições aguda e crônica. As alterações comportamentais causadas pela contaminação da fluoxetina em organismos não alvo são preocupantes, uma vez que podem desencadear efeitos ecológicos relevantes nas comunidades aquáticas.pt_BR
dc.description.provenanceSubmitted by Juliene de Brito Ferreira (2018101330940137@ifgoiano.edu.br) on 2020-04-06T20:01:09Z No. of bitstreams: 1 Dissertacao_Juliene Ferreira.pdf: 2814213 bytes, checksum: 84b8e46f65262e6b109d5a8724cbb5cf (MD5)en
dc.description.provenanceApproved for entry into archive by Johnathan Diniz (johnathan.diniz@ifgoiano.edu.br) on 2020-04-06T23:04:10Z (GMT) No. of bitstreams: 1 Dissertacao_Juliene Ferreira.pdf: 2814213 bytes, checksum: 84b8e46f65262e6b109d5a8724cbb5cf (MD5)en
dc.description.provenanceMade available in DSpace on 2020-04-06T23:05:04Z (GMT). No. of bitstreams: 1 Dissertacao_Juliene Ferreira.pdf: 2814213 bytes, checksum: 84b8e46f65262e6b109d5a8724cbb5cf (MD5) Previous issue date: 2020-02-28en
dc.description.sponsorshipCNPqpt_BR
dc.languageporpt_BR
dc.publisherInstituto Federal Goianopt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentCampus Urutaípt_BR
dc.publisher.programPrograma de Pós-Graduação em Conservação de Recursos Naturais do Cerradopt_BR
dc.publisher.initialsIF Goianopt_BR
dc.relation.referencesABREU, M. S. et al. The smell of “anxiety”: Behavioral modulation by experimental anosmia in zebrafish. Physiology and Behavior, v. 157, p. 67–71, 2016. ARAUJO, J. et al. Behavioral and Pharmacological Aspects of Anxiety in the Light/Dark Preference Test. In: [s.l: s.n.]. p. 191–202. AYRES, M.; JUNIOR AYRES, M. BioEstat 2.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. BioEstat 2.0: aplicações estatísticas nas áreas das ciências biológicas e médicas, 2000. BARRY, M. J. Effects of fluoxetine on the swimming and behavioural responses of the Arabian killifish. Ecotoxicology, v. 22, n. 2, p. 425–432, 2013. BLASER, R. E.; CHADWICK, L.; MCGINNIS, G. C. Behavioral measures of anxiety in zebrafish (Danio rerio). Behavioural Brain Research, v. 208, n. 1, p. 56–62, 2010. BRODIN, T. et al. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science, v. 339, n. 6121, p. 814–815, 2013. BRODIN, T. et al. Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioural alterations. Philosophical Transactions of The Royal Society B, v. 369, p. 1–10, 2014. BROOKS, B. W. et al. Aquatic ecotoxicology of fluoxetine. Toxicology Letters, v. 142, n. 3, p. 169–183, 2003. CACHAT, J. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature Protocols, v. 5, n. 11, p. 1786–1799, 2010. CACHAT, J. et al. Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behavioural Brain Research, v. 236, n. 1, p. 258–269, 2013. CALISTO, V.; ESTEVES, V. I. Psychiatric pharmaceuticals in the environment. Chemosphere, v. 77, n. 10, p. 1257–1274, 2009. CERVENY, D. et al. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. Science of the Total Environment, v. 702, p. 134780, 2020. CLIFT, D. et al. High-Throughput Analysis of Behavior in Zebrafish Larvae: Effects of Feeding. Zebrafish, v. 11, n. 5, p. 455–461, 2014. DE ABREU, M. S. et al. Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS ONE, v. 9, n. 7, p. 1–5, 2014. DZIEWECZYNSKI, T. L.; HEBERT, O. L. Fluoxetine alters behavioral consistency of aggression and courtship in male Siamese fighting fish, Betta splendens. Physiology and Behavior, v. 107, n. 1, p. 92–97, 2012. EGAN, R. J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, v. 205, n. 1, p. 38–44, 2009. FACCIOL, A.; TRAN, S.; GERLAI, R. Re-examining the factors affecting choice in the light–dark preference test in zebrafish. Behavioural Brain Research, v. 327, p. 21–28, 1 jun. 2017. FENT, K.; WESTON, A. A.; CAMINADA, D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, v. 76, n. 2, p. 122–159, 2006. FERNANDES, M. J. et al. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere, v. 239, 2020. FONTANA, B. D. et al. Taurine modulates acute ethanol-induced social behavioral deficits and fear responses in adult zebrafish. Journal of Psychiatric Research, v. 104, n. August, p. 176–182, 2018a. FONTANA, B. D. et al. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Experimental Neurology, jan. 2018b. FORD, A. T. et al. The effects of fluoxetine on attachment and righting behaviours in marine (Gibbula unbilicalis) and freshwater (Lymnea stagnalis) gastropods. Ecotoxicology, v. 27, n. 4, p. 477–484, 1 maio 2018. FORD, A. T.; FONG, P. P. The effects of antidepressants appear to be rapid and at environmentally relevant concentrations. Environmental Toxicology and Chemistry, v. 35, n. 4, p. 794–798, 1 abr. 2016. GEBAUER, D. L. et al. Effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacology Biochemistry and Behavior, v. 99, n. 3, p. 480–486, 2011. GERLAI, R. Zebrafish antipredatory responses: A future for translational research?Behavioural Brain Research, 5 mar. 2010. GROSSMAN, L. et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behavioural Brain Research, v. 214, n. 2, p. 277–284, 2010. HOLMBERG, A. et al. Does waterborne citalopram affect the aggressive and sexual behaviour of rainbow trout and guppy? Journal of Hazardous Materials, v. 187, n. 1–3, p. 596–599, 2011. HOPE, B. V.; HAMILTON, T. J.; HURD, P. L. Submerged plus maze: A novel test for studying anxiety-like behaviour in fish. Behavioural Brain Research, v. 362, n. August 2018, p. 332–337, 2019. KALUEFF, A. V. et al. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicology, v. 170, p. 297–309, jan. 2016. KIM, S. D. et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, v. 41, n. 5, p. 1013–1021, 2007. KÜMMERER, K. From a problem to a business opportunity-design of pharmaceuticals for environmental biodegradability. Sustainable Chemistry and Pharmacy, v. 12, n. March, p. 100136, 2019. KWON, J. W.; ARMBRUST, K. L. Laboratory persistence and fate of fluoxetine in aquatic environments. Environmental Toxicology and Chemistry, v. 25, n. 10, p. 2561–2568, 2006. KYSIL, E. V. et al. Comparative Analyses of Zebrafish Anxiety-Like Behavior Using Conflict-Based Novelty Tests. Zebrafish, v. 14, n. 3, p. 197–208, 2017. LARANJEIRA, D. R. A. D. S. Avaliação do risco ambiental da fluoxeti a em sedimentos marinhos para invertebrados aquáticos. 2019. 115 p. Tese (Doutorado em Tecnologia Nuclear), Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo. Disponível em: <www.teses.usp.br>. MARGIOTTA-CASALUCI, L. et al. Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine. PLoS ONE, v. 9, n. 10, 2014. MARTÍNEZ BUENO, M. J. et al. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Analytical Chemistry, v. 79, n. 24, p. 9372–9384, 15 dez. 2007. MAXIMINO, C. et al. Scototaxis as anxiety-like behavior in fish. Nature Protocols, v. 5, n. 2, p. 221–228, 2010a. MAXIMINO, C. et al. Parametric analyses of anxiety in zebrafish scototaxis. Behavioural Brain Research, v. 210, n. 1, p. 1–7, 2010b. MAXIMINO, C. et al. Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 35, n. 2, p. 624–631, 2011a. MAXIMINO, C. et al. Possible role of serotoninergic system in the neurobehavioral impairment induced by acute methylmercury exposure in zebrafish (Danio rerio). Neurotoxicology and Teratology, v. 33, n. 6, p. 727–734, 2011b. MAXIMINO, C. et al. A comparison of the light/dark and novel tank tests in zebrafish. Behaviour, v. 149, p. 1099–1123, 2012. MAXIMINO, C. et al. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology, v. 71, p. 83–97, 2013. MAXIMINO, C. et al. Fluoxetine and WAY 100,635 dissociate increases in scototaxis and analgesia induced by conspecific alarm substance in zebrafish (Danio rerio Hamilton 1822). Pharmacology Biochemistry and Behavior, v. 124, p. 425–433, 2014. MCDONALD, M. D.; GONZALEZ, A.; SLOMAN, K. A. Higher levels of aggression are observed in socially dominant toadfish treated with the selective serotonin reuptake inhibitor, fluoxetine. Comparative Biochemistry and Physiology, Part C, v. 153, p. 107112, 2011. MENNIGEN, J. A. et al. Waterborne fluoxetine disrupts feeding and energy metabolism in the goldfish Carassius auratus. Aquatic Toxicology, v. 100, p. 128–137, 2010. MESHALKINA, D. A. et al. Understanding zebrafish cognition. Behavioural Processes, v. 141, p. 229–241, 2017. MEZZOMO, N. J. et al. The role of taurine on anxiety-like behaviors in zebrafish: A comparative study using the novel tank and the light-dark tasks. Neuroscience Letters, v. 613, p. 19–24, 2016. MUSTAFA, A. et al. The aggressive spiegeldanio, carrying a mutation in the fgfr1a gene, has no advantage in dyadic fights with zebrafish of the AB strain. Behavioural Brain Research, v. 370, n. February, p. 111942, 2019. NEWMAN, M. et al. Zebrafish as a tool in Alzheimer’s disease research. Biochimica et Biophysica Acta - Molecular Basis of Disease, v. 1812, n. 3, p. 346–352, 2011. NORTON, W. H. J. et al. Modulation of fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. Journal of Neuroscience, v. 31, n. 39, p. 13796–13807, 2011. OECD (2017), Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris. http://dx.doi.org/10.1787/health_glance-2017-em OECD (2014), Fit Mind, Fit Job: From Evidence to Practice in Mental Health and Work, OECD Publishing. doi: 10.1787/9789264228283-en PANLILIO, J. M. et al. Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Scientific Reports, v. 6, n. June, p. 1–12, 2016. PARK, J. S. et al. Innate color preference of zebrafish and its use in behavioral analyses. Molecules and Cells, v. 39, n. 10, p. 750–755, 1 out. 2016. PERREAULT, H. A. N.; SEMSAR, K.; GODWIN, J. Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiology and Behavior, v. 79, n. 4–5, p. 719–724, 2003. PHAM, M. et al. Zebrafish Protocols for Neurobehavioral Research. v. 66, n. June, 2012. QUADROS, V. A. et al. Strain- and context-dependent behavioural responses of acute alarm substance exposure in zebrafish. Behavioural Processes, v. 122, p. 1–11, 2016. RAND-WEAVER, M. et al. The read-across hypothesis and environmental risk assessment of pharmaceuticals. Environmental Science and Technology, v. 47, n. 20, p. 11384–11395, 2013. RICHENDRFER, H. et al. On the edge: Pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behavioural Brain Research, v. 228, p. 99–106, 2012. ROSEMBERG, D. B. et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS ONE, v. 6, n. 5, 2011. SCHNÖRR, S. J. et al. Measuring thigmotaxis in larval zebrafish. Behavioural Brain Research, v. 228, n. 2, p. 367–374, 17 mar. 2012. SCHULTZ, M. M. et al. Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, v. 104, p. 38–47, 2011. STEWART, A. M. et al. Aquatic toxicology of fluoxetine: Understanding the knowns and the unknowns. Aquatic Toxicology, v. 156, p. 269–273, 2014. STEWART, A. M. et al. Molecular psychiatry of zebrafish. Molecular Psychiatry, v. 20, n. 1, p. 2–17, 2015. STYRISHAVE, B.; HALLING-SØRENSEN, B.; INGERSLEV, F. Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: A case study including a cocktail scenario. Environmental Toxicology and Chemistry, v. 30, n. 1, p. 254–261, 2011. SUMPTER, J. P.; DONNACHIE, R. L.; JOHNSON, A. C. The apparently very variable potency of the anti-depressant fluoxetine. Aquatic Toxicology, v. 151, p. 57–60, 2014. SUMPTER, J. P.; MARGIOTTA-CASALUCI, L. Are some invertebrates exquisitely sensitive to the human pharmaceutical Fluoxetine? Aquatic Toxicology, v. 146, p. 259–260, 2014. THEODORIDI, A.; TSALAFOUTA, A.; PAVLIDIS, M. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation. Frontiers in Neuroscience, v. 11, n. April, p. 1–9, 2017. TRAN, S.; GERLAI, R. The Novel Tank Test: Handling Stress and the Context Specific Psychopharmacology of Anxiety. Current Psychopharmacology, v. 5, n. 2, p. 169–179, 3 jun. 2016. VERLICCHI, P.; AL AUKIDY, M.; ZAMBELLO, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Science of the Total Environment, 1 jul. 2012. VYSTAVNA, Y. et al. Pharmaceuticals in rivers of two regions with contrasted socio-economic conditions: Occurrence, accumulation, and comparison for Ukraine and France. Water, Air, and Soil Pollution, v. 223, n. 5, p. 2111–2124, jun. 2012. WANG, J. et al. Using a targeted ecopharmacovigilance intervention to control antibiotic pollution in a rural aquatic environment. Science of the Total Environment, v. 696, p. 134007, 2019. WOLKERS, C. P. B. et al. Acute fluoxetine treatment increases aggressiveness in juvenile matrinxã (Brycon amazonicus). Fish Physiology and Biochemistry, v. 43, n. 3, p. 755–759, 2017. WONG, K. et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behavioural Brain Research, v. 208, n. 2, p. 450–457, 2010. ZABEGALOV, K. N. et al. Understanding zebrafish aggressive behavior. Behavioural Processes, v. 158, n. April 2018, p. 200–210, 2019. ZAHID, H. et al. Diazepam fails to alter anxiety-like responses but affects motor function in a white-black test paradigm in larval zebrafish (Danio rerio). Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 83, n. January, p. 127–136, 2018.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAnsiedadept_BR
dc.subjectAgressividadept_BR
dc.subjectDanio reriopt_BR
dc.subjectEcotoxicidadept_BR
dc.subjectFármacopt_BR
dc.subject.cnpqCIENCIAS BIOLOGICAS::ZOOLOGIA::COMPORTAMENTO ANIMALpt_BR
dc.titleEFEITOS COMPORTAMENTAIS DE CONCENTRAÇÃO AMBIENTAL DE FLUOXETINA EM ZEBRAFISHpt_BR
dc.title.alternativeBehavioral effects of environmental concentration of fluoxetine in zebrafishpt_BR
dc.typeDissertaçãopt_BR
Aparece nas coleções:Mestrado Profissional em Conservação dos Recursos Naturais do Cerrado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertacao_Juliene Ferreira.pdf2,75 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.