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RESUMO GERAL 

ALMEIDA, G. P. S. de. Sistemas inteligentes embarcados em dispositivos moveis e 

baseados em deep learning para detecção e monitoramento espacial de pragas 

agrícolas. 2025. 114p. Tese (Doutorado em Ciências Agrárias – Agronomia). Instituto 

Federal Goiano – Campus Rio Verde – GO, Brasil. 

A detecção precisa e o monitoramento oportuno de pragas agrícolas são desafios centrais 

para a agricultura moderna, especialmente em sistemas produtivos de soja e milho em 

larga escala. Práticas ineficientes de monitoramento frequentemente levam à aplicação 

tardia de medidas de controle e à consequente redução da produtividade. Os recentes 

avanços em deep learning e computação móvel criaram possibilidades para a 

identificação automática de insetos em campo por meio de modelos leves de visão 

computacional. Nesse contexto, esta tese apresenta um framework integrado para 

detecção inteligente e monitoramento espacial de pragas agrícolas, baseado em deep 

learning, métodos geoestatísticos e aplicações móveis. Inicialmente, foram construídos e 

avaliados dois conjuntos de dados: um dataset robusto de imagens de alta resolução, 

curado por meio de validação dupla por especialistas, e um dataset reduzido para fins 

comparativos. Arquiteturas de detecção de última geração (YOLO e Detectron2) foram 

treinadas em ambos os datasets e posteriormente convertidas para os formatos 

TensorFlow Lite (TFLite) e ONNX, possibilitando a execução em dispositivos com 

recursos computacionais limitados. Mesmo no cenário menos favorável e utilizando o 

dataset reduzido e o modelo ONNX mais leve — os resultados foram satisfatórios, com 

precisão de 87,3% e acurácia de 95,0%. Com base nestes resultados, foi desenvolvido o 

aplicativo móvel AgroInsect, capaz de realizar detecção em tempo real, diretamente no 

dispositivo, de quatro espécies-chave de pragas relevantes para a agricultura brasileira 

(Diabrotica speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda). O 

sistema extrai automaticamente a geolocalização das imagens, valida a consistência 

espacial das detecções a partir dos limites da propriedade e sincroniza os dados com base 

em nuvem. A visualização espacial é realizada por meio de mapas de calor e interpolações 

via Krigagem Ordinária (PyKrige), permitindo mapear a incidência das pragas com alta 

resolução. Ensaios de campo confirmaram o alto desempenho do sistema, com acurácia 

global de 95,1%, F1-scores superiores a 0,94 para todas as espécies e apenas 1,1% de 

falsos positivos. O modelo geoestatístico apresentou elevado poder preditivo (R² > 0,94) 

sob amostragem densa, reproduzindo padrões espaciais consistentes com o 

comportamento ecológico das pragas. Além disso, esta tese apresenta o AgroLabIA, um 

ambiente digital criado para armazenamento, anotação e disponibilização de datasets 

agrícolas. A plataforma oferece imagens validadas, permite exportação em múltiplos 

formatos e está preparada para receber novas classes de insetos e plantas daninhas, 

contribuindo para o avanço da pesquisa em visão computacional aplicada ao manejo de 

pragas. O ecossistema integrado composto pela geração de datasets, detecção móvel, 

validação espacial e mapeamento geoestatístico demonstra solução escalável e 

operacionalmente robusta para o monitoramento de pragas em sistemas agrícolas. Os 

resultados evidenciam o AgroInsect como uma ferramenta prática e eficaz para apoiar a 

tomada de decisão no manejo integrado de pragas, especialmente em regiões com baixa 

conectividade, fortalecendo os pilares da Agricultura 4.0. 

 

Palavras-chave:  Visão computacional; Deep learning; YOLO; Detecção de insetos; 

Monitoramento de pragas; Agricultura de precisão; Krigagem ordinária; Geoestatística; 

Aplicativos móveis; TFLite; Agricultura 4.0.  



ABSTRACT 

REZENDA, A. G. Soil physical quality in the diagnosis of compaction and in the 

assessment of regenerative agriculture. 2025. 114p. Thesis (Doctorate in Agricultural 

Sciences – Agronomy. Instituto Federal Goiano – Campus Rio Verde – GO, Brazil. 

 

Accurate and timely detection of insect pests remains one of the major challenges in 

modern agriculture, especially in large-scale soybean and maize production systems. 

Inefficient monitoring practices often result in delayed control interventions and 

significant yield losses. Recent advancements in deep learning and mobile computing 

have opened new opportunities for in-field pest identification using lightweight computer 

vision models. In this context, this thesis presents an integrated framework for intelligent 

pest detection and spatial monitoring based on deep learning, geostatistical analysis, and 

mobile applications. First, two datasets of insect pests were constructed and evaluated: a 

comprehensive high-resolution dataset curated through double-expert validation, and a 

smaller sample designed for comparative analysis. State-of-the-art detection architectures 

(YOLO and Detectron2) were trained on both datasets and subsequently converted into 

TensorFlow Lite (TFLite) and ONNX formats to enable deployment on resource-

constrained devices. Even under the least favorable conditions using the reduced dataset 

and the lightest ONNX model the results reached a precision of 87.3% and accuracy 

95.0%, demonstrating the robustness of the pipeline. Building upon these results, a mobile 

system named AgroInsect was developed. The application performs real-time, on-device 

detection of four key pest species relevant to Brazilian soybean and maize production 

(Diabrotica speciosa, Dalbulus maidis, Diceraeus spp., and Spodoptera frugiperda), 

automatically extracts geolocation metadata, validates spatial consistency based on field 

boundaries, and synchronizes detections with a cloud database. Spatial visualization is 

generated through heatmaps and Ordinary Kriging (PyKrige), enabling high-resolution 

incidence maps. Field evaluations confirmed strong model performance, with overall 

accuracy of 95.1%, F1-scores above 0.94 for all species, and only 1.1% false detections. 

The kriging model achieved R² > 0.94 under dense sampling, accurately reproducing 

ecological spatial patterns. Additionally, this thesis introduces AgroLabIA, a digital 

platform designed for the storage, annotation, and dissemination of agricultural pest 

datasets. It provides curated, multi-format datasets suitable for training machine learning 

models and supports the continuous expansion of new insect and weed classes. The 

integrated environment that encompasses dataset generation, mobile detection, spatial 

verification, and geostatistical mapping demonstrate a scalable and operationally robust 

solution for precision pest monitoring. The results position the AgroInsect database as an 

effective tool for accelerating decision-making in integrated pest management, 

particularly in regions with limited connectivity, thus contributing to the consolidation of 

Agriculture 4.0.  

 

Keywords: Computer vision; Deep learning; YOLO; Insect detection; Pest monitoring; 

Precision agriculture; Ordinary Kriging; Geostatistics; Mobile applications; TFLite; 

Agriculture 4.0. 
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INTRODUÇÃO GERAL 

 

A presente tese está estruturada no formato de artigos científicos, organizados de 

maneira sequencial, complementar e interdependente, com o objetivo de propor, avaliar 

e validar um sistema inteligente integrado para a detecção e o monitoramento espacial de 

pragas agrícolas em lavouras de soja e milho. O trabalho articula três eixos centrais: (i) o 

desenvolvimento e a avaliação de modelos de visão computacional baseados em deep 

learning; (ii) a construção e disponibilização de um dataset agrícola curado e validado 

por especialistas; e (iii) a implementação de uma aplicação móvel embarcada, capaz de 

realizar detecção em tempo real e apoiar análises espaciais das ocorrências. 

O Capítulo I, intitulado “Performance Analysis of YOLO and Detectron2 Models 

for Detecting Corn and Soybean Pests Employing Customized Dataset”, apresenta uma 

análise comparativa do desempenho de diferentes arquiteturas de detecção de objetos 

amplamente consolidadas na literatura, com destaque para os modelos YOLO (v5, v7, v8 

e v9) e o framework Detectron2. São avaliados dois cenários de treinamento distintos — 

um dataset completo e um dataset reduzido — permitindo investigar de forma sistemática 

o impacto do tamanho da base de dados na acurácia, precisão, recall e capacidade de 

generalização dos modelos. Adicionalmente, os modelos com melhor desempenho são 

convertidos para os formatos ONNX e TensorFlow Lite (TFLite), possibilitando a análise 

do impacto dessas conversões na eficiência das inferências quando executadas em 

dispositivos com recursos computacionais limitados. Os resultados evidenciam que, 

mesmo em condições menos favoráveis, os modelos mantêm desempenho robusto, 

reforçando a viabilidade para aplicações embarcadas. 

O Capítulo II, intitulado “AgroInsect: A Curated Dataset for the Identification of 

Agricultural Insects of Interest in Corn and Soy”, dedica-se à apresentação do dataset 

AgroInsect, desenvolvido especificamente para atender às demandas de aplicações de 

visão computacional no contexto da agricultura brasileira. O capítulo descreve 

detalhadamente o processo de aquisição das imagens, a curadoria realizada com validação 

dupla por especialistas em entomologia, a padronização das classes e a organização das 

anotações em formatos compatíveis com diferentes frameworks de deep learning. O 

dataset contempla quatro espécies de insetos-praga de elevada relevância econômica — 

Diabrotica speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda — e é 

disponibilizado como um recurso aberto, com potencial de reutilização, reprodutibilidade 

científica e expansão futura. A principal contribuição deste capítulo reside na mitigação 
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da lacuna existente na literatura quanto à disponibilidade de bases de dados agrícolas 

robustas, representativas e devidamente anotadas. 

O Capítulo III, intitulado “Monitoramento de Pragas Agrícolas via Smartphone 

com IA Embarcada e Mapeamento Geoestatístico”, integra os resultados metodológicos 

e experimentais apresentados nos capítulos anteriores em uma solução aplicada e 

operacional. Neste capítulo é descrito o desenvolvimento do aplicativo móvel AgroInsect, 

capaz de realizar a detecção automática de insetos diretamente no smartphone, sem 

dependência contínua de conectividade com a internet. O sistema contempla a captura de 

imagens em campo, a execução local das inferências por meio de modelos otimizados, a 

extração de metadados geoespaciais e a sincronização das informações com base de dados 

em nuvem quando disponível. Complementarmente, os dados coletados são utilizados 

para a geração de mapas de calor e mapas interpolados por Krigagem Ordinária, 

permitindo a análise da distribuição espacial das pragas. Avaliações conduzidas em 

cenários simulados e em condições reais de campo demonstram a robustez do sistema, 

bem como a aplicabilidade prática no suporte à tomada de decisão no manejo integrado 

de pragas. 

De forma integrada, os três capítulos estabelecem um fluxo completo que abrange 

desde a geração e validação dos dados, passando pelo treinamento, otimização e 

conversão de modelos de deep learning, até a implementação de uma solução embarcada 

associada à análise geoestatística das ocorrências. Essa abordagem evidencia o potencial 

da inteligência artificial embarcada e das geotecnologias como ferramentas estratégicas 

para a consolidação da Agricultura 4.0, especialmente em contextos caracterizados por 

limitações de infraestrutura e conectividade. Ao final, a tese contribui simultaneamente 

com avanços metodológicos, científicos e tecnológicos, apresentando solução escalável, 

robusta e alinhada às demandas reais da agricultura brasileira. 
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OBJETIVOS 

Geral 

Desenvolver e validar um sistema inteligente para detecção e monitoramento 

espacial de insetos-praga em lavouras de soja e milho, integrando um modelo de deep 

learning otimizado para dispositivos móveis, um aplicativo embarcado em smartphone 

para coleta georreferenciada e uma infraestrutura computacional capaz de armazenar, 

sincronizar e analisar espacialmente a incidência das pragas por meio de técnicas de 

geoestatística. 

 

Objetivos Específicos 

- Construir, organizar e validar o conjunto de dados AgroInsect, incluindo a curadoria das 

imagens, a anotação individual dos insetos e a padronização das classes Diabrotica 

speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda; 

- Treinar e avaliar modelos de detecção de objetos baseados em YOLO, utilizando tanto 

o conjunto de dados completo (AgroInsect) quanto o conjunto reduzido, a fim de 

comparar o impacto do tamanho da base na acurácia e na capacidade de generalização; 

- Converter os modelos treinados para os formatos TFLite e ONNX, otimizados para 

execução em dispositivos de baixo poder computacional, avaliando o desempenho, 

consumo de recursos e a eficiência das inferências embarcadas em smartphone; 

- Desenvolver o aplicativo móvel AgroInsect, responsável por capturar imagens em 

campo, realizar a detecção localmente no dispositivo, extrair metadados (coordenadas 

GNSS, horário, informações contextuais) e registrar automaticamente cada ocorrência; 

- Implementar um mecanismo de sincronização com banco de dados na nuvem, 

garantindo armazenamento seguro, escalável e estruturado das imagens, detecções e 

metadados, permitindo análise temporal e espacial das ocorrências; 

- Aplicar técnicas de geoestatística, especialmente a Krigagem Ordinária, para gerar 

mapas de calor e mapas interpolados da incidência dos insetos-praga, possibilitando 

identificar padrões de distribuição espacial e auxiliar na tomada de decisão no manejo 

integrado de pragas; 

- Avaliar o sistema embarcado em condições reais de campo, analisando robustez, 

usabilidade, eficiência operacional, latência de inferência, estabilidade do aplicativo, 

impacto das condições ambientais e confiabilidade das detecções; 
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- Integrar todo o fluxo operacional em um pipeline automatizado, envolvendo captura, 

detecção, validação, sincronização, interpolação espacial e visualização, demonstrando a 

aplicabilidade do sistema para monitoramento em tempo real mesmo em áreas com 

conectividade limitada. 
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 3 CAPÍTULO 1 

PERFORMANCE ANALYSIS OF YOLO AND DETECTRON2 MODELS FOR 

DETECTING CORN AND SOYBEAN PESTS EMPLOYING CUSTOMIZED 

DATASET  

(AGRONOMY – ISNN-2073-4395) 

Abstract: One of the most challenging aspects of agricultural pest control is accurate 

detection of insects in crops. Inadequate control measures for insect pests can seriously 

impact the production of corn and soybean plantations. In recent years, artificial 

intelligence (AI) algorithms have been extensively used for detecting insect pests in the 

field. In this line of research, this paper introduces a method to detect four key insect 

species that are predominant in Brazilian agriculture. Our model relies on computer vision 

techniques, including You Only Look Once (YOLO) and Detectron2, and adapts them to 

lightweight formats—TensorFlow Lite (TFLite) and Open Neural Network Exchange 

(ONNX)—for resource-constrained devices. Our method leverages two datasets: a 

comprehensive one and a smaller sample for comparison purposes. With this setup, the 

authors aimed at using these two datasets to evaluate the performance of the computer 

vision models and subsequently convert the best-performing models into TFLite and 

ONNX formats, facilitating their deployment on edge devices. The results are promising. 

Even in the worst-case scenario, where the ONNX model with the reduced dataset was 

compared to the YOLOv9-gelan model with the full dataset, the precision reached 87.3%, 

and the accuracy achieved was 95.0%. 

 

Keywords:  Spodoptera frugiperda; Diceraeus ssp.; Dalbulus maidis; Diabrotica 

speciosa; deep learning; computer vision; pest control; agronomy; grain production; 

ONNX; TFLite 

 

3.1. Introduction 

Securing enough food to satisfy the growing needs of the global population will 

be one of the most critical challenges facing humanity in the future. The world population 

is expected to reach 9 billion by 2050 [1], imposing on global leaders the challenge of 

increasing agricultural production sustainably. However, there are several factors that 

have impacted food production to meet global demand, such as forest preservation, 

scarcity of productive areas, soil degradation in cultivated areas [2,3], decrease in water 

resources [4], resistance to agricultural pesticides [5] and attack by insect pests [6]. 

In Brazil, agriculture contributed 25% to the gross domestic product (GDP) [7], 

with a production in the 2022/2023 harvest season of 320 million tons of grains [8]. 

Notably, soybean and corn production plays a pivotal role, and they are cultivated across 

several regions [7]. Historically, soybean production in the 2000s was 41.9 million tons, 

but currently, these numbers have more than tripled, reaching 154.6 million tons. 

Meanwhile, corn production during the same period increased from 35.2 to 131.9 million 

tons [8]. 
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For example, agribusiness in Mato Grosso state represents 56.6% of the state’s 

GDP, and so, it is crucial to maintain or increase productivity. The 2022/2023 corn harvest 

yielded 50,731.2 tons [9], while during the same period, soybean production reached 

45,316,887 tons [10]. The production of these grains is important for the state’s economy 

and the entire production chain. 

Given the above figures, it is evident that Brazil has established itself in the 

international market as one of the largest producers and exporters of agricultural products 

[11,12]. Therefore, it is necessary to invest in new technologies to maintain productivity 

and maximize profits. The major challenge is to achieve higher production per planted 

hectare and reduce the use of agricultural inputs for weed and pest control [13]. 

To maintain Brazil’s status as one of the world’s leading agricultural producers 

and enhance profitability for farmers, the integration of computing technology in 

agriculture is essential. Leveraging such technology can provide valuable information to 

support informed decision making and drive efficiency in farming practices [14,15,16]. 

Within the technological realm, computer vision is a highly promising technology [17] 

that has been applied in various areas of the production process to solve different 

problems, such as yield prediction [18,19,20,21,22], disease detection [23,24,25,26], 

weed detection [27,28,29], pest insect detection [30,31,32,33,34,35,36,37], species 

recognition [38,39,40], crop improvement [41,42], water resource utilization [43,44,45] 

and soil management [46,47]. 

In recent years, studies have advanced in the use of deep-learning techniques in 

conjunction with computer vision technologies applied to agriculture [48,49,50,51]. 

Among the available systems, You Only Look Once (YOLO) and Detectron2 stand out, 

with advanced capabilities for real-time target detection, efficiency, accuracy and speed 

[52,53,54]. These technologies have been utilized for pest control, which can result in 

decreased production and increased prices of the product and its derivatives [55,56,57]. 

Using such technologies to develop automated systems or platforms toward detecting and 

identifying insect species in crops in real time, before populations escalate, could offer 

significant advantages. 

Deep learning (DL)-based solutions excel at object detection and identification 

with high precision and speed. These solutions leverage the knowledge gained from 

previously trained neural networks to expedite the training process for new applications 

[58,59,60,61]. To achieve this, however, a proper, structured dataset containing images 
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of the objects to be detected is essential, which demands a great deal of effort and 

knowledge to be accomplished [62]. 

Driven by the need for more shared and categorized datasets for agricultural 

research, Yuzhen Lu et al. [48] address a significant gap in the precision agriculture 

literature by compiling publicly available image datasets used in computer vision 

applications since 2015. A total of 34 public image datasets were identified and 

categorized into three groups based on their purposes: 15 datasets related to weed control, 

10 dedicated to fruit detection and the remaining 9 for other applications. 

Considering effective approaches that use computer vision to detect insects in 

crops, YOLO versions 3, 4 and 5 were used by S. Verma et al. [49] for the detection of 

five other insect species (distinct from the ones addressed here) that also attack soybeans. 

They concluded that YOLO v4 and YOLO v5 can be applied for the automatic 

identification of insects in different agricultural crops. Park et al. [30] developed a deep-

learning prediction platform on unmanned ground vehicles with three different models 

for object detection: MRCNN, YOLO v3 and Detectron2. All models achieved 

satisfactory results in detecting Riptortus pedestris (R. pedestris). The three models 

showed a mean average precision (mAP) performance of 0.95797, 0.97541 and 0.94435, 

respectively. 

A two-stage classification model, named MaizePestNet, was developed based on 

EfficientNet-B0 and the Grad-CAM algorithm to locate targets and minimize background 

interference, thus achieving improved classification performance [50]. A dataset was 

created that includes 36 common maize pests, such as Spodoptera frugiperda, covering 

both adult and larval stages. The models proposed by the authors achieved the lowest 

average accuracy of 83.18%, while the highest average accuracy was 94.22%. This 

performance surpassed that of the control models ResNet101 and DenseNet161, which 

had average accuracies of 88.2% and 84.81%, respectively. 

Another key issue in this area is the deployment of the aforementioned computer 

vision models on resource-constrained (edge) devices. This is crucial because such 

devices offer advantages like lower costs, reduced energy consumption and portability. 

However, deploying insect detection systems on resource-constrained devices poses a 

significant challenge due to the limited computational capacity of the equipment and the 

complexity of the application scenarios. Rustia et al. [40] developed a remote system for 

continuous monitoring of insect pests in an outdoor mango orchard. The proposed deep-
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learning algorithm succeeded in recognizing pest insects of various sizes, achieving an 

F1-Score of 0.96% and an average processing time of 10.93 s on a Raspberry Pi Zero W. 

To enable the deployment of large computer vision models on edge devices, 

frameworks such as ONNX and TFLite [63] have been developed. These frameworks 

optimize the mathematical functions of the models to fit the constraints of limited 

hardware. For instance, Lim et al. [64] utilized ONNX to effectively convert models for 

compatibility with specific frameworks. An integrated framework was developed that 

allows for exploring and customizing the inference operations of various convolutional 

neural network (CNN) models on embedded edge devices. 

Although the above studies show promising results, there is still a gap to be 

addressed regarding the size of the dataset required for training the models and the 

detection capabilities of models converted to ONNX and TFLite formats [63]. 

In this paper, we created a dataset called AgroInsect, which includes existing 

images of the following insect species: Diabrotica speciosa, Dalbulus maidis, Diceraeus 

spp. and Spodoptera frugiperda. From this image collection, we derived a Reduced 

dataset containing 100 images of each such species. To assess the detection capability of 

the models according to the dataset size, we utilized Detectron2 and YOLO models 

(versions v5, v7, v8 and v9 (c and gelan)). The best results from each model combined 

with the dataset were converted to ONNX and TFLite formats to evaluate detection 

performance. Effective detection with these converted models paves the way for their use 

in devices with limited computational resources, such as smartphones and 

microcontrollers, and facilitates the development of low-cost applications capable of 

autonomous operation. Compared to previous studies, our research delves into the 

challenges of testing models with reduced datasets, allowing for the incorporation of new 

insect species into detection models with a limited number of samples. This study is 

expected to advance the development of insect detection applications on resource-

constrained devices. 

The remainder of this paper is organized as follows. The Section 2 details the 

development process, including dataset creation, model selection, model conversion and 

evaluation metrics. Section 3 provides the evaluation results. In Section 4, we present and 

discuss the main findings. Finally, the Section 5 outlines the key insights and suggests 

directions for future research. 
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3.2. Materials and methods 

3.2.1. Dataset Acquisition 

Four economically significant pest insects found in corn and soybean crops in the 

State of Mato Grosso were selected for this study, as presented in Figure 1: Diabrotica 

speciosa [65,66,67], Dalbulus maidis [68,69], Diceraeus spp. [67,70,71,72,73], 

Spodoptera frugiperda [55,67,74,75,76]. 

 

 

Figure 1. Insects selected for the dataset. (a) Diabrotica Speciosa; (b) Dalbulus Maidis; (c) Diceraeus ssp.; (d) 
Spodoptera Frugiperda. 

To ensure the reliability of the data used and the four evaluated species, a total of 

1510 images were gathered. One part of these images was sourced from the iNaturalist 

database (inaturalist.org) [77,78], and another part was captured in the field by the authors 

themselves and validated by entomology experts. 

 

3.2.2 Compilation of the AgroInsect Dataset 

 

The object detection methods used in the experiments conducted in this work 

require image annotations for supervised learning. These annotations include information 

about the region of interest (ROI), classification target and class information [79,80]. 

To test the efficiency of Detectron2 and the YOLO family, the AgroInsect dataset 

was created, encompassing 1510 images. From this dataset, a subset of images for training 

was extracted and is referred to in this work as the Reduced dataset. Many existing works 

use random selection of the images in the dataset for training, validation and test images 

[38,49,67]. However, one of the goals of this work was to measure the detection capability 

of different models. To ensure that all models were trained under the same conditions, the 

first one hundred images from each class were selected for use in all training sessions 

with the Reduced dataset. Training with the AgroInsect dataset was performed using all 

available images, except those selected for validation and testing. The same 

predetermined selection criterion was applied to the choice of the fifteen validation 
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images and the twenty-five test images. All models trained with both datasets were tested 

with the same images to avoid any results being influenced by image complexity or other 

factors. All the evaluated models were able to make successful inferences on images 

featuring multiple insects or different classes. However, to simplify the interpretation of 

test results for each class in the confusion matrix, we used only images containing a single 

insect. Table 1 presents the number of images and annotations for each class in the 

AgroInsect and Reduced datasets, respectively. The difference between the number of 

images and annotations is due to some images containing more than one insect of the 

same species (one annotation per insect); however, this situation did not occur with the 

images and annotations used for validation and testing, since we chose here only images 

with a single insect. 

Annotations for the 1510 images were created using Label Studio version 0.9.1, 

an open-source software that stores annotations in JSON format within an SQLite or 

PostgreSQL database. The software allows exporting to different formats [81]. After 

annotating and labeling all images, they were exported to the YOLO format with the 

configuration [class_id x, y, w, h]. These parameters are used to represent an object in a 

computer vision system. The annotation files were saved with the same names as the 

images, and the configurations for the file paths that feed the model 

(training/validation/test) were saved in a YAML file. 

 

Table 1. Division of datasets for each insect class and their annotations for training and evaluation of deep-learning 
models. 

 

Dataset 

Classes 

Diabrotica 

speciosa 

Dalbulus 

maidis  

Diceraeus 

ssp.  

Spodoptera 

frugiperda 

Total 

 

 

AgroInsect 

591  177 248 334 1350 

599 280 257 358 1496 

 

Reduced 

100 100  100 100 400 

100 156 104 102 462 

 

Validation 

15 15 15 15 60 

15 15 15 15 60 
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Test 

25 25 25 25 100 

25 25 25 25 100 

 

3.2.2. Training Methods 

 

The Detectron2 used in this research is an updated version of the original 

Detectron framework, developed and presented by Facebook AI Research on 9 October 

2019. This new version focuses primarily on object detection and instance segmentation 

tasks. The deep-learning library used was PyTorch, enabling integration with other neural 

network architectures. Detectron2 utilizes pretrained models with large image datasets 

[82,83]. 

YOLO emerges as an innovative model for object detection, offering a unified 

and efficient solution for use in computer vision. Its simplicity in construction and direct 

training on complete images set it apart from traditional approaches, making it ideal for 

real-time applications. Unlike classifier-based methods, which operate in separate stages, 

YOLO stands out with its unique architecture. The model is trained on a single loss 

function directly related to detection performance, optimizing the process and ensuring 

accurate results. It is recognized as the fastest general-purpose object detector in the 

literature, paving the way for a range of innovative applications. Its ability to operate in 

real time and adapt to different scenarios makes it ideal for a wide range of applications 

in areas such as security, industry, medicine, agriculture and transportation [52]. 

The models were tested using the two datasets created (AgroInsect and Reduced) 

and included YOLO models (v5, v7, v8 and v9, both c and gelan versions). The models 

that demonstrated the best precision were then converted to ONNX and TFLite formats, 

which are optimized for deployment on devices with limited computational resources. As 

the algorithms to convert YOLO version 9 (c and gelan) to the TFLite and Detectron2 to 

ONNX and TFLite are not yet publicly available, they were not converted. 

The training of the models was conducted using Google Colab [84,85], a cloud-

based notebook service provided by Google, which allows writing and executing Python 

code directly in the browser and provides graphics processing units (GPUs) and tensor 

processing units (TPUs) to accelerate machine-learning and deep-learning tasks. Using 

Google Colab enables researchers to conduct evaluations without the need to purchase 

acceleration hardware. The configuration used for training and inference in this research 
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included a T4 GPU accelerator (Nvidia, Santa Clara, CA, USA), with data integration 

saved in Google Drive. 

 

3.2.3.Conversion Methods to ONNX and TFLite 

 

The conversion of YOLO models to ONNX or TFLite formats offers several 

advantages, including portability, efficiency and integration with a wide range of 

platforms and devices [64,86,87]. Given these benefits, the models were converted to 

ONNX and TFLite formats after the initial training with the selected datasets. It is 

noteworthy that version 7 required more effort during the conversion process, as it did 

not have a standard implementation in the file available on the GitHub repository. 

Additionally, versions 9 were converted only to ONNX, as TFLite was not available at 

the time of this research work. 

 

3.2.4. Models’ Parameters and Evaluation Metrics 

 

The models used in this paper involve numerous hyperparameter settings. 

However, the aim of the research was not to evaluate the effectiveness of different 

configurations but to assess the model’s ability to correctly detect pest insects. To this 

end, some adjustments were made to the default settings of the models, as detailed in 

Table 2, which also provides information on several important parameters for the 

networks. It is worth noting that Detectron2 works with a very small learning rate to 

converge efficiently. 

Table 2. Some important hyperparameters for configuring the Detectron2 and YOLO models. 

Model Detectron2 YOLOv5n YOLOv7

  

YOLOv8 YOLOv9-c

  

YOLO

V9-

gelan 

 

Layers 50 168 106  25 70 42 

Activation 

Function

  

ReLu¹ ReLu  ReLu  Leaky R⁴ Leaky R

  

ReLu 

 

Loss 

Function

  

Cross-

entropy

  

BCE³ Cross-

entropy

  

Combine

d loss  

DFL  DFL⁵ 
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Optimizer SGD²  Adam SGD Adam Adam SGD 2 

Learning 

Rate  

0.00005 0.01 0.01 0.001 0.01 0.01 

Batch Size

  

2 16 16 16 16 16 

Epochs  10.000 300 300 300 300 300 

Regulariza

tion 

L2  L2 L2 L2 L2 L2 

¹ Rectified Linear Unit, ² Stochastic Gradient Descent, ³ Binary Cross-Entropy, ⁴ Leaky Rectified Linear 

Unit, ⁵ Distillation-Augmented Feature Loss. 

 

In this research, precision (P), accuracy (A), recall (R), F1-Score (f1) and 

confusion matrix are useith additional Python scripts in Visual Studio Code. The metric 

results were saved in spreadsheets for discussion. 

To understand the results, it is important to understand the variables: true positive (TP) 

represents what was correctly predicted; true negative (TN) indicates that the model 

correctly predicted that a class is not present; false positive (FP) occurs when the model 

makes an incorrect detection; false negative (FN) occurs when the model fails to predict 

an object in the image. 

The model’s precision is calculated by Equation (1), which is the ratio of the number of 

true positive examples predicted to the total of true positive and false positive predictions. 

 

Precision (P) = TP/TP + FP                               (1) 

 

The model’s accuracy is the product of all true predictions divided by the total 

number of predictions, as follows: 

 

Accuracy = (TP + TN)/(TP + FN + TN + FP)           (2) 

 

Equation (3) presents the recall, which measures the proportion of true positives 

correctly identified. 

 

Recall = TP/TP + FN                                            (3) 
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The F1-Score is a metric that combines precision and recall, expressed in Formula 

(4). 

 

F1 = 2 × (P × R)/(P + R)                                   (4) 

 

In addition to the metrics presented above, an important tool used in this work to 

visualize and analyze the performance of neural network models in object detection is the 

confusion matrix [91,92,93,94]. According to Markoulidakis et al. [95] and Farhadpour 

et al. [96], this is a powerful tool for analyzing the performance of classification 

algorithms. Figure 2a,b show the confusion matrix used for binary and multiclass 

classification problems. Figure 2a displays a confusion matrix for binary classification 

with dimensions of 2 × 2, having the actual class labels ‘Positive’ and ‘Negative’, and the 

predicted elements (positive and negative) compared with the actual class labels, resulting 

in true positives (TPs), true negatives (TNs), false positives (FPs) and false negatives 

(FNs). On the other hand, the multiclass confusion matrix (Figure 2b) is a structure with 

dimensions N × N, where N is the number of classes. The predicted values are compared 

with the actual values and summed at the position (actual class, predicted class). The 

higher the values of Xn = Yn, the more efficient the model. 

 

 

Figure 2. Examples of confusion matrices. (a) Confusion matrix for binary classification problem. (b) Confusion 
matrix for multiclass classification problem. 

 

3.3 Results 

3.3.1.Evaluation of the Detectron2 Model in Insect Detection 

 

Figure 3 presents the loss function of Detectron2 trained with both datasets. The 

value of the loss function gradually decreased as the iterations progressed. 

 

https://www.mdpi.com/2073-4395/14/10/2194#fig_body_display_agronomy-14-02194-f003
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Figure 3. Evolution of the loss function of Detectron2 over iterations with training executed on the Reduced dataset 
(a) and on the AgroInsect dataset (b). 

 

Despite different amounts of data, both models showed a sharp decline in error 

rate before 2000 epochs, with a less pronounced decline starting around epoch 4000. 

Figure 3a, which represents training on the Reduced dataset, exhibited a more continuous 

decline compared to the graph of the AgroInsect dataset. 

The decrease in loss score with increasing iterations indicates that the model is 

learning and improving its object detection performance. The point where the decline 

slows down signals a decrease in the model’s generalization ability. 

The results of the inferences made with the Detectron2 model are presented in 

Table 3. 

Table 3. Metrics per class after inference of test images using the Reduced and AgroInsect datasets with the 
Detectron2 model 

Dataset Classes Precision Recall F1-Score Accuracy 

 

 

 

Agroinsect 

Diabrotica Speciosa  92.31 96 94.12 97.12 

Dalbulus  96.15  100 98.04 99.04 

Diceraeus  100 96 97.96  99.04 

Spodoptera Frugiperda 96.15  100 98.04  99.04 

General 94.23 94.23 94.23 97.69 

 

 

Diabrotica Speciosa 92.31  96 94.117  97.0874 
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Reduced 

Dalbulus 96.15 100 98.0392 99.0291 

Diceraeus 100  92 95.83  98.06 

Spodoptera Frugiperda 100 100 100 100 

General 94.17 94.17

  

94.17 97.67 

 

The consistency in these values (94.23% for precision, recall and F1-Score) 

suggests that the model is well balanced in its ability to correctly identify positive and 

negative classes. The high accuracy of 97.69% indicates that, in addition to being good 

at correctly predicting the positive class, the model also classifies samples from the 

negative classes correctly. The decrease from 94.23% to 94.17% in precision, recall and 

F1-Score metrics was minimal, indicating that the model’s performance remained almost 

unchanged even with the dataset reduction. Similarly, the accuracy variation was also 

very small, decreasing from 97.69% to 97.67%. 

Figure 4 illustrates the performance of the inference conducted using the 

Detectron2 model applied to the four types of insects investigated in this study. The figure 

clearly demonstrates the model’s ability to accurately identify and classify the insects in 

the images from the datasets used. It was observed that the model was able to accurately 

predict the presence of insects in both training datasets, highlighting its robustness and 

reliability. Additionally, the analysis revealed that the model performed consistently 

across all variations in these insect images. These observations suggest that Detectron2 is 

effective for insect detection tasks, underscoring its utility for practical applications in 

pest monitoring. 

 

 

Figure 4. Prediction with Detectron2 and custom dataset. (a) contains the resulting images from the model trained 
with the Reduced dataset, and in (b), the images are from the AgroInsect dataset. 
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The confusion matrix (Figure 5) for Detectron2 with the two datasets shows high 

performance. The model had no difficulty in locating the insects; however, the best results 

were obtained for the Dalbulus and Spodoptera frugiperda classes, with all samples being 

detected. 

 

3.3.2.Evaluation of the YOLO Model for Insect Detection 

 

Table 4 presents the versions of the YOLO model used in this study along with 

the sizes of the original model and the sizes after training with the datasets 

(AgroInsect/Reduced).  

 

 

Figure 5. Confusion matrix of the Detectron2 model trained with the Reduced dataset (a) and the AgroInsect dataset 
(b). The background includes insects detected where none existed. 

The reduction in model complexity, fewer parameters to adjust, more effective 

regularization and reduction in data diversity contribute to the model size reduction. After 

training with the Reduced dataset, the YOLOv5, YOLOv8 and YOLOv9-c versions 

showed a decrease in size compared to the original model. The increase in the size of the 

YOLOv7 and YOLOv9-gelan models following training may be due to a combination of 

factors, including modifications to the model architecture, more detailed storage of 

weights and parameters and the complexity of the training data. The models might have 

stored weights with higher precision or in different formats, leading to a larger file size. 

When models use higher precision for weight representation, this can significantly 

contribute to increasing the final model size. 

Table 5 shows the performance metrics, including precision, recall, F1-Score and 

accuracy, for different versions of YOLO models evaluated on the two distinct datasets. 

The results show that the YOLOv5 model achieved precision, recall and F1-Score of 

85.58% with the Reduced dataset. However, with the AgroInsect dataset, these metrics 
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significantly improved to 98.04%. Accuracy specifically increased from 94.23% to 

99.22% when using the complete dataset. YOLOv7 showed similar performance, with 

precision, recall and F1-Score of 86.67% on the Reduced dataset and 96.12% on the 

AgroInsect dataset. Accuracy also increased from 94.67% to 98.45% on the AgroInsect 

dataset. YOLOv8 obtained values of 86.54% for precision, recall and F1-Score with the 

Reduced dataset and 96.08% with the AgroInsect dataset. The accuracy for this model 

increased from 94.62% to 98.43% between the two datasets. 

 

Table 4. Different versions of YOLO and the size of each model after training with specific datasets. 

YOLO 

version 

Model Dataset Original Size 

(MB)  

Training Size 

(MB) 

YOLOv5 YOLOv5n 

  Reduced 

3.9  

3.7 

AgroInsect  13.8 

YOLOv7 YOLOv7 

  Reduced 

72.1  

284.7 

AgroInsect  284.7 

YOLOv8 YOLOv8n 

  Reduced 

6.2  

6 

AgroInsect  35 

  YOLOv9 

YOLOv9-c 

  Reduced 

98.4  

98 

AgroInsect  98 

YOLOv9-gelan 

  Reduced 

49.1  

195.2 

AgroInsect  195.2 

 

The YOLOv9-c model exhibited a slight variation in accuracy from 98.81% to 

98.82%, with precision, recall and F1-Score of 97.03% on the Reduced dataset, 

improving slightly to 97.06% on the AgroInsect dataset. 

Finally, YOLOv9-gelan achieved 96.08% in precision, recall and F1-Score with 

the Reduced dataset and 98.04% with the AgroInsect dataset, with accuracy increasing 

from 98.43% to 99.22%. Overall, the performance metrics for all YOLO models showed 
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a significant improvement when evaluated with the AgroInsect dataset compared to the 

Reduced dataset. However, it is important to note that the smaller dataset also yielded 

satisfactory results, paving the way to its use in resource-constrained devices. 

Figure 6 shows the learning curves that outline the training processes of the 

models over epochs. The optimizer updated the model weights, reducing losses and 

improving their performances. It is possible to see the model’s learning capacity and 

potential overfitting or underfitting. Figure 6(a-1) presents the learning curves (total loss) 

for all YOLO models trained with the Reduced dataset, while Figure 6(a-2) highlights the 

class loss. Similarly, Figure 6(b-1) illustrates the box loss, and Figure 6(b-2) shows the 

class loss for the models trained with the AgroInsect dataset. It can be observed that box, 

class and objectivity loss decreased over the training time (epoch) as the model learned 

to locate, identify and detect insects with greater confidence. 

 

Table 5. Comparison of model performance metrics based on different training datasets and YOLO versions. 

YOLO Version Dataset Precision % Recall % F1-Score % Accuracy % 

YOLOv5 
Reduced 85.58 85.58 85.58 94.23 

AgroInsect 98.04 98.04 98.04 99.22 

YOLOv7 
Reduced 86.67 86.67 86.67 94.67 

AgroInsect 96.12 96.12 96.12 98.45 

YOLOv8 
Reduced 86.54 86.54 86.54 94.62 

AgroInsect 96.08 96.08 96.08 98.43 

YOLOv9-c 
Reduced 97.03 97.03 97.03 98.81 

AgroInsect 97.06 97.06 97.06 98.82 

YOLOv9-gelan 
Reduced 96.08 96.08 96.08 98.43 

AgroInsect 98.04 98.04 98.04 99.22 

 

 The YOLOv8, YOLOv9-c and YOLOv9-gelan versions experienced early 

stopping, halting training when the model showed no sign of improvement in the last 

epochs with the AgroInsect dataset, and with the Reduced dataset, only the YOLOv9 

versions experienced this early stopping. This early stopping parameter can be 

configured, but in this research, the versions used the default setting, considering the last 
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100 epochs. With the AgroInsect dataset, the selected models performed well in 

training/learning with faster convergence, without reaching the 300 epochs used in 

training, except for the YOLOv5s and YOLOv7 models, which went up to the end of the 

300 epochs for the insect datasets. 

 

Figure 6. Loss curves for YOLO models trained on two different datasets (Reduced dataset and AgroInsect dataset, 
respectively), where (a-1,b-1) represent the total loss, and (a-2,b-2) represent the class loss. 

Figure 7a, b present the precision curve during the training of the YOLO models 

used in this research. The YOLOv7 model, during training on both datasets, showed a 

later convergence; however, before 100 epochs, it managed to stabilize the precision 

result. The other models had a faster convergence around epoch number 40, with the 

result stabilizing until the end of the training, which is very similar to the results presented 

by Badgujar et al. [62] in a study on insect identification. 

Figure 8 illustrates the training graph of the YOLOv5 model over 300 epochs with 

the Reduced dataset. Despite showing the lowest Precision value among all the values in 

Table 5, it is observed that the model converged without much fluctuation in box_loss 

and cls_loss. The Recall values, which measure the model’s ability to find all objects 

present in the image, reached 80% before 100 epochs. 
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Figure 7. Precision curve of YOLO model training: (a) Reduced dataset; (b) AgroInsect dataset. 

 

The YOLOv9-gelan achieved the highest precision among all models and 

datasets. Figure 9 presents the training results of the model, with a significant drop in 

box_loss, reaching an mAP@[0.50] above 90% and a Recall metric above 80%. The 

mAP@[0.50] and Recall are important metrics for evaluating the performance of object 

detection models, as they measure precision and coverage of detection, respectively. 

Figure 10 illustrates the confusion matrix for five YOLO models used in the 

experimental study, trained with a Reduced dataset to classify four insect classes. It is 

observed that even in YOLOv5, YOLOv7 and YOLOv8 versions, which did not achieve 

a precision higher than 90% (Table 5), the false negatives in the last column of each model 

and false positives in the last row were low. 

The YOLOv5s model had the lowest overall precision; however, it correctly 

classified 22 out of 25 Diabrotica speciosa images used in the test, 1 image as Dalbulus, 

and it failed to detect 2 images. In the Dalbulus class, 24 images were correctly classified, 

with four false positives and one false negative, while the other two classes followed a 

similar pattern with good precision. The standout among the models using the Reduced 

dataset was the YOLOv9-gelan version, which, out of 100 images used for testing, failed 

to predict only 2 images and had two false positives for the Dalbulus and Diceraeus 

classes. 
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Figure 8. Metric curve of YOLOv5s trained with the Reduced dataset. 

 

 

Figure 9. Training metrics curve of YOLOv9-gelan: AgroInsect dataset with the best result among model/dataset 
combinations. 

 

Figure 10 illustrates the confusion matrix for five YOLO models used in the 

experimental study, trained with a Reduced dataset to classify four insect classes. It is 

observed that even in YOLOv5, YOLOv7 and YOLOv8 versions, which did not achieve 

a precision higher than 90% (Table 5), the false negatives in the last column of each model 

and false positives in the last row were low. 
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Figure 10. Confusion matrix of YOLO models with Reduced dataset. 

 

The YOLOv5s model had the lowest overall precision; however, it correctly 

classified 22 out of 25 Diabrotica speciosa images used in the test, 1 image as Dalbulus, 

and it failed to detect 2 images. In the Dalbulus class, 24 images were correctly classified, 

with four false positives and one false negative, while the other two classes followed a 

similar pattern with good precision. The standout among the models using the Reduced 

dataset was the YOLOv9-gelan version, which, out of 100 images used for testing, failed 

to predict only 2 images and had two false positives for the Dalbulus and Diceraeus 

classes. 

The confusion matrix presented in Figure 11 was used to demonstrate the 

excellent capability of the YOLO models trained with the AgroInsect dataset. During the 

evaluation of the YOLOv5s and YOLOv9-gelan models on a test set, a low error rate was 

observed, with only two false positives recorded. The Dalbulus class presented greater 

difficulty for all tested models, with two false positives in each case. In summary, the 

visualization of the confusion matrix provides a more comprehensive understanding of 

the performance of the object detection models, highlighting the areas of success and 

opportunities for improvement. Identifying specific error patterns, such as those observed 

in the Dalbulus class, is crucial for guiding future adjustments and refinements in 

detection algorithms. 
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Figure 11. Confusion matrix of YOLO models with AgroInsect dataset. 

 

Figure 12 illustrates the performance of YOLOv9-gelan in insect detection, 

showcasing inference results on eight images from the AgroInsect dataset. Each insect 

class is represented by two images, highlighting YOLOv9-gelan’s ability to accurately 

identify insects across various colors and textures. 

 

 

Figure 12. Insect detection with YOLOv9-gelan: (a) Diabrotica speciosa; (b) Dalbulus maidis; (c) Diceraeus ssp.; (d) 
Spodoptera frugiperda. 

 

Table 6 presents a detailed comparison of the performance parameters for five 

YOLO models after conversion to ONNX and TFLite formats. The models were trained 

on the two datasets used in this work. The table shows the comparison of precision, recall, 

F1-Score and accuracy for each model and format combination across both datasets. This 

comparison highlights variations in model performance based on the dataset and 

conversion format. Understanding these variations is essential for evaluating the 

effectiveness of each YOLO version. 
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Table 6: Comparison of performance parameters for models converted to ONNX and TFLite. 

Model Dataset Conversion Precision % Recall % F1-Score % Accuracy % 

YOLOv5 

Reduced ONNX 94.23 94.23 94.23 97.69 

Reduced TFLite 94.23 94.23 94.23 97.69 

AgroInsect ONNX 96.15 96.15 96.15 98.46 

AgroInsect TFLite 96.15 96.15 96.15 98.46 

YOLOv7 

Reduced ONNX 94.23 94.23 94.23 97.69 

Reduced TFLite 94.23 94.23 94.23 97.69 

AgroInsect ONNX 96.15 96.15 96.15 98.46 

AgroInsect TFLite 96.15 96.15 96.15 98.46 

YOLOv8 

Reduced ONNX 86.54 86.54 86.54 94.62 

Reduced TFLite 86.54 86.54 86.54 94.62 

AgroInsect ONNX 96.12 96.12 96.12 98.45 

AgroInsect TFLite 96.12 96.12 96.12 98.45 

YOLOv9-c 
Reduced ONNX 96.97 96.00 96.48 98.25 

AgroInsect ONNX 97.09 97.09 97.09 98.84 

YOLOv9-gelan 
Reduced ONNX 97.03 97.03 97.03 98.81 

AgroInsect ONNX 98.04 98.04 98.04 99.22 

 

The results presented in Table 6 demonstrate that for the Reduced dataset, both 

YOLOv5 and YOLOv7 achieve consistent performance, with precision, recall and F1-

Score of 94.23% and accuracy of 97.69% across ONNX and TFLite formats. In contrast, 

YOLOv8 shows reduced metrics, with precision, recall and F1-Score of 86.54% and 

accuracy of 94.62% in the same formats. For the AgroInsect dataset, all models perform 

better, with YOLOv5 and YOLOv7 reaching 96.15% in precision, recall and F1-Score 

and accuracy of 98.46%. YOLOv8 also maintains high metrics at 96.12% for precision, 

recall and F1-Score, with an accuracy of 98.45%. Notably, YOLOv9-c and YOLOv9-

gelan exhibit superior results, with YOLOv9-gelan achieving the highest metrics of 

98.04% for precision, recall and F1-Score and accuracy of 99.22% on the AgroInsect 

dataset. 

The results of the inferences made with the converted models applied to the test 

data are presented in Table 6. It is important to note that all metrics for the model/dataset 

combinations achieved results above 94%, except for the YOLOv8 model applied to the 
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Reduced dataset, which reached 86.54% precision, recall and F1-Score and 94.62% 

accuracy. 

The results for the YOLOv5s model trained with the Reduced dataset and 

converted to TFLite, and the YOLOv9-gelan model with the AgroInsect dataset and 

converted to ONNX, can be observed in the confusion matrix (Figure 13). 

 

 

Figure 13. Confusion matrix of YOLO models: (a) Detection result for YOLOv5s–TFLite with Reduced dataset; (b) 
Detection result for YOLOv9-gelan–ONNX with AgroInsect dataset. 

 

Figure 14 displays a selection of detection results from the YOLOv5s–TFLite and 

YOLOv9-gelan–ONNX models, illustrating successful detection across all four 

challenging categories. 

 

Figure 14. Inferences with ONNX and TFLite: (a) YOLOv5s–TFLite result; (b) YOLOv9-gelan–ONNX result. 

3.4. Discussion 

 

Data processing is a critical step in supervised deep learning, as feeding irrelevant 

or incorrect data can significantly affect model performance, as noted by Badgujar et al. 

https://www.mdpi.com/2073-4395/14/10/2194#fig_body_display_agronomy-14-02194-f014
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[62]. Y. Lu and S. Young [48] reported the scarcity of public image datasets, describing 

this situation as a crucial bottleneck for rapid prototyping and evaluation of computer 

vision and machine-learning algorithms applied to agriculture, thus justifying the need 

for evaluations with smaller datasets, which could facilitate the development of 

applications without requiring a large dataset. Good precision and accuracy using a 

dataset with few images pave the way for incorporating new insects into the model 

without the need for extensive efforts to collect many images and annotations. 

During the development of this work, no other dataset with the same insect classes 

evaluated here was found in the literature. However, to get an idea of the performance of 

YOLO and Detectron2 algorithms, we compared our results with other papers that we 

found sufficiently close to our approach, and we summarized them in Table 7. The 

approach by S. Verma et al. [49] used YOLO versions 4 and 5 for detecting five insects 

and achieved precisions of 99% and 93.20%, respectively. Considering that our best 

results were achieved with YOLOv5s and YOLOv9-gelan versions with a precision of 

98.04% in both cases, the 0.96% difference between the two evaluations may be 

associated with the number of images used in training. They used 3710 images, while we 

only used 1510 images. 

 

Table 7: Comparison of results obtained with the models proposed in this work and those available in the literature, 
including the number of classes, dataset and metrics. 

Model Classes Dataset Precision Recall F1-Score Accuracy 

YOLOv5s 4 AgroInsect 98.04% 98.04% 98.04% 99.22% 

YOLOv5s 4 Reduced 85.58% 85.58% 85.58% 94.23% 

YOLOv7 4 Reduced 86.67% 86.67% 86.67% 94.67% 

YOLOv8 4 Reduced 86.54% 86.54% 86.54% 94.62% 

YOLOv9-gelan 4 AgroInsect 98.04% 98.04% 98.04% 99.22% 

Detectron2 4 AgroInsect 94.23% 94.23% 94.23% 97.69% 

YOLOv5s [49] 5 - 93.20% 99.60% 96% - 

YOLOv4s [49] 5 - 99% 93% 96% - 

YOLOv7-Adam [97] 3 - 99.95% - - - 

Maize-YOLO [98] 13 - 73.30% 77.30% 75.10% - 

New Version-5x [99] 7 - 86.80% 88.60% 87.80% - 
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YOLOv3/5 [100] 6 - 92.70% 93.90% 93.20% - 

EfficientNet-Br [50] 36 - 93.51% 97.14% 94.68% - 

YOLOv3 [67] 12 - 95.15% 75.79% 84.35% 72.96% 

YOLO-MPNET—OSW [101] 3 - 94.14% 91.99% 93.05% - 

YOLOv5-Modificado [102] 2 - 86.84% 84.58% 85.69% - 

CNN [51] 5 - 97.00% - - - 

InceptionV3 [51] 5 - 97.00% - - - 

YOLOv5 [51] 5 - 98.75% - - - 

 

The authors Zhang et al. [97], using the YOLOv7 model and the Adam optimizer, 

achieved a precision of 99.95% for the classification of Diabrotica virgifera, Zea mays, 

Spodoptera frugiperda and Helicoverpa zea, which is higher than the 98.04% precision 

obtained by the best models proposed in this study. 

As mentioned, good efficiency using a reduced dataset paves the way for 

incorporating new insects into the model without the need for many samples. The results 

achieved with the models using the Reduced dataset were superior to those obtained by 

Yang et al. [98], who achieved a precision of 73.30%, recall of 77.30% and F1-Score of 

75.10% in detecting 13 insects. YOLO models (v5, v7, v8) combined with the Reduced 

dataset achieved precision results close to the 86.8% obtained by Kumar et al. [99] and 

Slim et al. [102]. 

Among the training combinations with YOLO versions and the AgroInsect 

dataset, YOLOv8 provided the worst results, with 96.08% precision, recall and F1-Score 

and an accuracy of 98.43%. However, these values are higher than those achieved by 

Bjerge et al. [100], who, among ten models, achieved the best precision at 92.7%, recall 

at 93.9% and F1-Score at 93.2%. 

The results generated with the models applied in this work are consistent with the 

values from a study on corn earworm (Spodoptera frugiperda) in Chinese cornfields for 

detection from larval to adult stages presented by Zhang et al. [50], who achieved a good 

balance between precision and cost, with a precision of 93.51%, recall of 97.14% and F1-

Score of 94.68%. 
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This study is relevant compared to other studies on pest insects attacking soybean 

crops. In a recent work published by Tetila et al. [67], which aimed to identify 12 different 

classes, including 2 at two stages (nymph and adult) in the State of Mato Grosso do Sul 

in Brazil, the best precision achieved was 95.15%. 

Another insect detection study with three classes achieved the best precision of 

94.14%, recall of 91.99% and F1-Score of 93.05% for the C. medinalis class using 

YOLO-MPNET with OSW, as reported by Sun et al. [101]. Using the YOLOv5 model, 

they achieved the best precision of 71.26%, while our work achieved a precision of 

85.58% using the same model with a reduced dataset. 

With a precision of 94.23% for Detectron2 and 98.04% for YOLOv5s, the models 

evaluated here demonstrated more consistent results than those presented by Slim et al. 

[102], who achieved a precision of 86.84% in detecting the Mediterranean fruit fly 

Ceratitis capitata and the peach fruit fly Bactrocera zonata. 

A study conducted for the detection of five classes of insects that attack soybeans 

in India yielded excellent results, with an accuracy of 97% using CNN and Inceptionv3 

models and 98.75% using YOLOv5 in the work presented by Trikey et al. [51]. However, 

the results achieved in our studies were superior, with YOLOv5s and YOLOv9-gelan 

models achieving 98.04% accuracy. 

The equal value observed in this paper regarding the precision, recall and F1-

Score metrics can be explained by the presence of a balanced test set, coupled with the 

model’s ability to generalize consistently across all classes. This pattern reflects a robust 

and balanced model performance, suggesting an absence of bias toward any specific class 

and the ability to make accurate predictions across all categories. 

As presented in Figure 5, the confusion matrix demonstrates the models’ ability 

to correctly detect classes with few false positives and negatives. 

To run on edge devices with limited computational resources, the model size can 

be a determining factor. After analyzing the results of the research published by Ye et al. 

[103] with a 12 MB model and the data in Table 4, it is evident that there is room for 

improvement in reducing our model sizes, as our results showed that the YOLOv9-gelan 

model had a size of 195.2 MB. 

As shown in Table 6, with the conversion of the models, YOLO v5, v7 and YOLO 

9-gelan with a reduced dataset showed improved accuracies, while v8 maintained results 

for the smaller dataset and improved with the full dataset. The YOLO 9-c model did not 

show much variation. Once converted to standard formats, such as ONNX or TFLite, the 



47 

models can be run on a variety of platforms and devices, including mobile devices, 

embedded systems and servers. This provides greater flexibility for deploying YOLO 

models in different environments. 

 

3.5. Conclusions 

 

This paper presents an approach based on deep-learning models to detect four 

species of insects found in corn and soybean crops. Our technique evaluates various 

setups with YOLO and Detectron2 models. In order to render our method deployable in 

resource-constrained devices, we compared the two mentioned computer vision models 

on a full (AgroInsect) and a smaller subset (Reduced) dataset and finally converted the 

best-performing models into TFLite and ONNX formats. 

The Detectron2 and YOLO models demonstrated strong performance in detecting 

and classifying insect species, even when trained with the Reduced dataset. As 

anticipated, the models performed better with the AgroInsect dataset, but the results with 

the Reduced dataset were still notable. YOLOv5 achieved an accuracy of 85.58%, 

YOLOv7 86.67%, YOLOv8 86.54%, YOLOv9-gelan 96.08% and YOLOv9-c 97.03%. 

For the YOLOv9-c and YOLOv9-gelan models, the accuracy difference between the 

AgroInsect and Reduced datasets was just 0.03% and 1.96%, respectively. A key finding 

of this study is that even with a limited number of images for a specific insect, a model 

can maintain high efficiency and accuracy. 

Additionally, YOLOv5 models with a Reduced dataset performed better when 

converted to TFLite, with a 2.19% decrease in accuracy in comparison to the results with 

the AgroInsect dataset. For YOLOv7, there was an improvement with the Reduced 

dataset, while YOLOv8 showed no significant variations. Similarly, the YOLOv9-c and 

YOLOv9-gelan versions also exhibited minimal variations in results. These outcomes 

demonstrate that converting YOLO results into TFLite and employing a reduced dataset 

is a practical and effective approach for deploying insect pest detection on resource-

constrained devices. 

For future work, we plan to further investigate the effects of varying reduced 

dataset sizes on model performance and tailor our approach for effective deployment and 

evaluation on mobile devices. This will involve optimizing our method to perform 

efficiently on mobile platforms and evaluating its effectiveness in practical, real-world 

scenarios. We also intend to integrate images from yellow traps, light traps and 
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pheromone traps into our datasets toward evaluating the models’ ability to detect and 

classify in visually noisier images with other insects. 
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Abstract 

Agriculture 4.0 relies on the integration of advanced digital technologies to increase the 

efficiency, speed, and reliability of agricultural processes. In this context, the AgroInsect 

dataset was developed to support research in machine learning and computer vision 

applied to pest management. The dataset consists of high-resolution images and their 

corresponding annotations, enabling the use of deep learning approaches, such as 

convolutional neural networks, for object detection tasks and classification of insect pests. 

Initially, the AgroInsect dataset includes four economically relevant species for soybean 

and maize crops (Spodoptera Frugiperda, Diceraeus spp., Dalbulus Maidis, and 

Diabrotica Speciosa), with potential for expansion in future versions. The dataset is 

integrated into the AgroLabIA web application, which enables the creation and storage 

of annotations, as well as the export of images and their corresponding labels in multiple 
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formats, providing flexibility for training a wide range of artificial intelligence models 

and contributing to advances in applied agricultural pest management. 

SPECIFICATIONS TABLE 

 

Subject Computer Sciences 

Specific subject 

area 

Computer Vision, Deep Learning, and Precision Agriculture for Insect 

Pest Detection 

Type of data The dataset is distributed as a .rar archive containing .jpg images and 

corresponding .txt annotation files in YOLO format 

Data collection The AGROINSECT dataset was collected from three sources: public 

images obtained from the iNaturalist [1,2] and GBIF databases, and 

field images captured by the authors using digital cameras under natural 

lighting conditions. Images were selected based on visual quality and 

confirmed species identification. Only insect species with economic 

relevance to maize and soybean crops were included. All images were 

manually annotated using Label Studio software, generating bounding-

box labels in YOLO format. No data normalization was applied. 

Data source 

location 

Fazenda Serra Azul, Manzagão, Nobres, MT, Brazil, Global 

(iNaturalist and GBIF databases 

Data 

accessibility 

Repository name: Mendeley Data 

Data identification number: 10.17632/4jyp4m9gxj.1 

Direct URL to data: https://data.mendeley.com/datasets/4jyp4m9gxj/2 

Direct URL to data: https://agrolabia.com.br  

Related 

research article 

de Almeida, G.P.S.; dos Santos, L.N.S.; da Silva Souza, L.R.; da 

Costa Gontijo, P.; de Oliveira, R.; Teixeira, M.C.; de Oliveira, M.; 

Teixeira, M.B.; do Carmo França, H.F. Performance Analysis of 

YOLO and Detectron2 Models for Detecting Corn and Soybean Pests 

Employing Customized Dataset. Agronomy 2024, 14(10), 2194. 

https://doi.org/10.3390/agronomy14102194 

 

VALUE OF THE DATA 

 

The availability of high-quality public datasets remains a major challenge in 

digital agriculture, limiting the development and validation of computer vision models 

for pest detection. The AGROINSECT dataset addresses this gap by providing curated 

images and corresponding annotations suitable for training deep learning models, 

https://data.mendeley.com/datasets/4jyp4m9gxj/2
https://agrolabia.com.br/
https://doi.org/10.3390/agronomy14102194
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particularly those from the YOLO family, widely adopted in agricultural monitoring 

applications. 

The dataset has already supported peer-reviewed scientific research, 

demonstrating its applicability in real-world agricultural scenarios. Its annotations were 

produced through a structured curation process, ensuring consistency and reliability for 

machine learning tasks. The dataset is distributed in formats compatible with multiple 

computer vision frameworks, enabling its reuse in studies focused on object detection, 

classification, and real-time monitoring systems. 

By focusing on insect pests of high economic relevance to maize and soybean 

crops in Brazil, the dataset contributes to the development of practical and scalable 

solutions for pest management, with potential benefits for precision agriculture research 

at both local and global scales. 

BACKGROUND 

 

The dataset was compiled as a research on image-based detection of insect pests 

in agricultural environments, where the availability of annotated datasets remains limited, 

particularly for crops of high economic importance such as maize and soybean. Advances 

in deep learning and computer vision, especially object detection architectures including 

YOLO and Detectron2, increased the need for datasets that represent real field conditions 

and support method development and evaluation.  

The images were collected to support methodological studies focused on training 

and benchmarking deep learning models for insect pest detection. Data acquisition 

combined images obtained from public biodiversity repositories with images captured in 

agricultural fields, aiming to represent variations in lighting conditions, backgrounds, 

insect poses, and image quality commonly observed in crop monitoring scenarios. 

This data article is related to a previously published research article that 

investigated the performance of object detection models for identifying insect pests in 

maize and soybean crops. While the research article focused on model training, 

evaluation, and deployment aspects, the present data article provides a detailed and 

standalone description of the dataset, including data sources, organization, and annotation 

procedures, thereby supporting transparency, reproducibility, and reuse of the data in 

future studies [3]. 
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DATA DESCRIPTION 

 

The AGROINSECT dataset contains 1,510 RGB images of agricultural insect 

pests stored in .jpg format, along with 1,510 corresponding annotation files stored in .txt 

format following the YOLO bounding-box annotation scheme. Across the entire dataset, 

a total of 1,654 insect objects were annotated. Each annotation file may contain one or 

more object entries when multiple insect individuals are present in a single image. 

All image and annotation files were stored within a single directory structure in 

the repository. Image files and annotation files share identical filenames to ensure a direct 

correspondence between images and their labels. 

The dataset includes four insect species of agricultural relevance: Diabrotica 

speciosa, Dalbulus maidis, Diceraeus spp., and Spodoptera frugiperda. Figure 1 presents 

representative examples of the four species included in the dataset. 

 

 

Figure 1. Representative insect species included in the AGROINSECT dataset: (a) Diabrotica speciosa, (b) Dalbulus 
Maidis, (c) Diceraeus spp., and (d) Spodoptera Frugiperda. 

 

Annotations were manually created using the open-source software Label Studio 

[4], where each visible insect individual was treated as a separate object and delineated 

using a bounding box. The annotation files encode the class label and normalized 

bounding-box coordinates according to the YOLO format specification. 

Table 1 summarizes the distribution of images, annotation files, and annotated 

insect objects across the four species. When more than one insect individual appears in a 

single image, each individual is represented as an independent object within the 

corresponding annotation file. 

 



66 

Tabela 1. Division of datasets for each insect class and their annotations for training and evaluation of deep-learning 
models. 

Dataset Classes 

  Diabrotica 

speciosa 

Dalbulus 

maidis 

Diceraeus 

ssp. 

Spodoptera 

frugiperda 

Total 

Agroinsect  Image 591 177 248 334 1350 

Annotation 599 280 257 358 1494 

Reduced Image 100 100 100 100 400 

Annotation 100 156 104 102 462 

Validation Image 15 15 15 15 60 

Annotation 15 15 15 15 60 

Test Image 25 25 25 25 100 

Annotation 25 25 25 25 100 

Source: Adapted from Almeida et al. (2024). 

   

EXPERIMENTAL DESIGN, MATERIALS AND METHODS 

 

The AGROINSECT dataset was compiled from a combination of field-collected 

images acquired in agricultural areas and publicly available images obtained from the 

iNaturalist and GBIF databases [2]. Field images were collected in commercial crop fields 

and experimental farms located in the state of Mato Grosso, Brazil. All images were 

captured under natural field conditions using RGB cameras, preserving variations in 

background, illumination, insect pose, and scale [5,6]. 

Following data acquisition, all images were manually annotated using the open-

source software Label Studio. Each insect individual visible in an image was treated as a 

separate object and delineated using a bounding box, with annotations exported according 
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to the YOLO format specification [7]. Images containing multiple insect individuals were 

annotated with multiple object entries within a single annotation file. 

After the annotation process, the labeled images and corresponding annotation 

files were imported into a dedicated dataset management platform named LabAgroIA, a 

robust software application developed to support image submission, curation, validation, 

and controlled access under a client–server architecture. The back end of LabAgroIA was 

implemented using Node.js [8], with authentication based on JSON Web Token (JWT) 

[9] to ensure secure access, data integrity, and traceability. The MVVM (Model–View–

ViewModel) [10] architectural pattern was adopted to promote modularity and 

scalability. 

The front end was developed using the React framework, with Redux [11] 

employed for state management to ensure consistent interaction with data throughout the 

curation workflow. Data storage is managed using a MySQL [12] relational database 

hosted on a Linux server, ensuring robustness and availability for large volumes of image 

data and metadata. 

A structured curation and validation workflow was applied to ensure dataset 

quality. Each annotated image was independently reviewed by two specialists with 

expertise in the respective insect species. Only images and annotations approved by both 

evaluators were incorporated into the final dataset and released for research use. This 

dual-review strategy reduces labeling errors and improves annotation consistency for 

computer vision applications. 

The AGROINSECT dataset has been employed in peer-reviewed studies 

investigating deep learning–based object detection approaches for agricultural pest 

monitoring. However, the present data article focuses exclusively on describing the data 

acquisition procedures, annotation methodology, curation workflow, and dataset 

organization, without reporting experimental results or model performance evaluations. 

LIMITATIONS 

 

Although the AGROINSECT dataset constitutes a relevant resource for research 

in digital agriculture, some limitations should be acknowledged. First, the dataset is 

currently restricted to four insect species of agricultural importance, which may limit its 

applicability for studies targeting a broader range of pests or different taxonomic groups. 



68 

Second, the images were collected from heterogeneous sources, including field 

acquisitions and public repositories, resulting in variability in the image characteristics 

such as illumination conditions, background complexity, insect scale, and camera 

perspective. While this variability reflects realistic field scenarios, it may introduce class 

imbalance and visual heterogeneity that can affect downstream use. 

Additionally, the dataset is geographically concentrated in Brazilian agricultural 

regions, particularly in the state of Mato Grosso. As a result, environmental and crop-

specific characteristics may not fully represent other agricultural contexts or climatic 

conditions. 

Finally, although a dual-review curation process was adopted to ensure annotation 

quality, the dataset size remains limited when compared to large-scale benchmarks 

commonly used in computer vision research. Future extensions incorporating additional 

species, regions, and acquisition conditions could further enhance the generalizability and 

reuse potential of the dataset. 
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5 CAPÍTULO III 

 

MONITORAMENTO DE PRAGAS AGRÍCOLAS VIA SMARTPHONE COM IA 

EMBARCADA E MAPEAMENTO GEOESTATÍSTICO 

 

Resumo: A rápida disseminação de pragas agrícolas e a falta de informações de campo 

em tempo oportuno continuam sendo grandes obstáculos para um manejo integrado de 

pragas eficiente. Este estudo apresenta o AgroInsect, um aplicativo para smartphone que 

integra um modelo de aprendizado profundo embarcado (YOLOv11n-TFLite) com 

mapeamento geoestatístico para apoiar o monitoramento em tempo real de pragas em 

lavouras de soja e milho. O sistema realiza a detecção diretamente no dispositivo para 

quatro espécies-chave de insetos-praga (Diabrotica Speciosa, Dalbulus Maidis, 

Diceraeus spp. e Spodoptera Frugiperda), extrai automaticamente metadados de 

geolocalização das imagens, valida a consistência espacial com base nos limites da 

propriedade agrícola e transmite as detecções para um banco de dados em nuvem. Mapas 

de calor e interpolações espaciais são gerados por meio da Krigagem Ordinária, 

implementada com a biblioteca PyKrige, permitindo visualizar a incidência das pragas ao 

longo da área monitorada. Os testes de campo demonstraram elevado desempenho de 

detecção, com acurácia global de 95,1%, F1-score superior a 0,94 para todas as espécies 

e apenas 1,1% de detecções falsas. O modelo de krigagem apresentou forte capacidade 

preditiva sob amostragem densa (R² > 0,94), reproduzindo padrões espaciais consistentes 

com o comportamento ecológico de cada espécie. O fluxo integrado, que combina 

detecção em tempo real, validação espacial e interpolação automatizada, mostrou-se 

robusto e operacionalmente viável em condições reais de campo. Os resultados destacam 

o AgroInsect como ferramenta prática e escalável para o monitoramento de pragas em 

agricultura de precisão, especialmente em áreas com conectividade limitada, contribuindo 

para tomada de decisão mais rápida e confiável no manejo integrado de pragas. 

 

Palavras-chave: YOLOv11; TFLite; aprendizado profundo; detecção de pragas; 

krigagem; agricultura de precisão; mapa de calor; aplicação móvel. 

 

5.1. Introdução 

De acordo com a Organização das Nações Unidas para Alimentação e Agricultura 

(FAO), aproximadamente 40% das culturas alimentares mundiais são perdidas todos os 

anos devido a pragas e doenças, resultando em prejuízos estimados a cerca de US$ 220 

bilhões anuais para a economia global [1]. Estima-se que existam 70.000 espécies de 

pragas que podem causar danos às culturas agrícolas mundialmente, incluindo insetos, 

patógenos e ervas daninhas, com poder de gerar perdas que podem variar de 35% a 42% 

do potencial de produção [2]. Os valores investidos no controle das pragas por meio da 

utilização de defensivos agrícolas, a contaminação do meio ambiente e os problemas de 

saúde humana, ressaltam a necessidade de abordagens mais eficazes e sustentáveis no 
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controle das pragas [3, 4]. Apesar da quantidade de espécies de pragas existentes, esse 

estudo se concentra em 4 insetos pragas [5], Diabrotica Speciosa, Dalbulus Maidis, 

Diceraeus ssp. e Spodoptera Frugiperda. Os avanços em inteligência artificial têm 

impulsionado a utilização da computação no manejo integrado de pragas, uma vez que o 

controle manual é desafiador, podendo consumir muitos recursos e tempo [6]. 

Impulsionados pelo acesso a grandes conjuntos de dados rotulados e pelo 

fortalecimento da computação paralela via GPU (Unidade de Processamento Gráfico), o 

aprendizado profundo proporcionou avanços na área da visão computacional, permitindo 

um treinamento mais eficiente de redes neurais profundas. Além disso, aprimoramentos 

como a mitigação do gradiente de desaparecimento, novas técnicas de regularização e o 

desenvolvimento de frameworks como TensorFlow, Theano e MXNet facilitaram a 

prototipagem e otimização dos modelos. Esses fatores possibilitaram avanços notáveis 

em tarefas como detecção de objetos, rastreamento de movimento, reconhecimento de 

ações, estimativa de pose humana, segmentação semântica e previsões de rendimento de 

culturas [7, 8]. 

É um desafio fornecer aos agricultores informações precisas e em tempo hábil 

sobre a prevenção e o controle eficaz de pragas e doenças. A escassez de dados detalhados 

sobre os tipos de pragas e doenças, a extensão dos danos causados e os métodos 

apropriados de prevenção e controle apresentam desafios na implementação de estratégias 

baseadas na previsão e no monitoramento das condições das culturas [9]. Essa limitação 

compromete a capacidade de mitigar efetivamente os impactos negativos nas lavouras. 

Além disso, a discrepância entre a percepção das pessoas sobre pragas e doenças de 

culturas e a disponibilidade de avaliadores qualificados para realizar diagnósticos 

precisos tem se intensificado, evidenciando uma lacuna crítica no suporte técnico 

oferecido ao setor agrícola. Diante desse cenário, torna-se imprescindível o 

desenvolvimento de novos métodos para a identificação e o manejo de pragas e doenças, 

capazes de superar essas barreiras e promover uma gestão agrícola mais eficiente e 

sustentável [10]. 

A visão computacional, uma subárea da IA (Inteligência Artificial), traz avanços 

tecnológicos para a agricultura moderna [11, 12, 13]. A utilização dessas tecnologias 

permite trabalhar em alguns domínios de problemas proeminentes nas fases de manejo da 

produção agrícola, no manejo do solo, plantio, controle de insetos pragas e ervas 

daninhas, crescimento das plantas, irrigação e colheita [14, 15, 16, 17, 18]. 
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Karar et al. (2021) desenvolveram um aplicativo móvel para detecção e 

classificação de pragas de colheitas com base no Faster R-CNN e no sistema de 

computação em nuvem, para classificar 5 pragas: Aphids, Flea Beetles, Cicadellidae e 

Flax budworm. O sistema criado conseguiu classificar com sucesso as pragas agrícolas 

[9], o processamento desse sistema ocorre remotamente, em um servidor na nuvem. 

Contudo, essa arquitetura de projeto pode gerar prejuízo na indisponibilidade das 

informações, quando a conexão com servidor falhar e não conseguir entregar para a 

aplicação o resultado processado. Essa problemática já foi relatada em outros sistemas de 

detecção [19]. Outro exemplo é o sistema de detecção de doenças em plantas, que buscou 

tratar essa indisponibilidade [20]. 

Wang et al.(2025) criaram o sistema chamado Insect-YOLO. Foi realizado uma 

pesquisa utilizando um modelo YOLOv8m de aprendizado profundo aprimorado com um 

módulo Convolutional Block Attention Module (CBAM), que permite refinar 

mapas de características para destacar regiões de interesse, melhorando a capacidade de 

detectar pragas pequenas ou oclusas em imagens de baixa resolução. Foi relatado 

limitações com relação às variações de tamanho, forma e cor de pragas da mesma 

espécie em imagens em tempo real, dificultando o processo de rotulagem. Apesar da 

vantagem de utilizar imagens de baixa resolução, fatores ambientais, como iluminação, 

condições climáticas e complexidade do fundo, impactam negativamente a 

acurácia do modelo [21]. Ainda utilizando o YOLOv8n, Kebei Qin et al. (2024) 

introduziram FasterNet e PConvGLU ao modelo alcançando melhoria eficaz ao reduzir a 

redundância computacional enquanto aprimorava a representação de recursos em 

cenários realistas. O cabeçalho de detecção empregado por meio das camadas Group 

Normalization e Scale ajudou o modelo a lidar com alvos de tamanhos diferentes com 

sobrecarga computacional reduzida [22]. Já Vilar-Andreu et al. (2024) realizaram uma 

nova proposta, buscando desenvolver um modelo para detectar a presença de insetos sem 

se preocupar em classificar qual classe ele pertence. Esse processo é uma perspectiva 

generalista que resolve o problema de saber se tem ou não inseto, mas não ajuda o 

produtor a identificar a incidência de determinada praga na lavoura [23].  

Verma et al. (2021) propuseram o uso dos algoritmos YOLO (v3, v4 e v5) para 

detectar insetos em plantações de soja, treinados com imagens coletadas em campo. Foi 

alcançado alta precisão, com o modelo YOLOv5 obtendo o melhor desempenho (mAP 

de 99,5%). Os obstáculos incluíram a falta de datasets amplos e rotulados, além da 

complexidade de identificar insetos em ambientes naturais variados, reforçando a 
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necessidade de mais dados e ajustes para cenários reais [24]. Tetila EC et al. (2024) 

utilizaram o YOLOv5 para detecção em tempo real de plantas daninhas em plantações de 

soja usando imagens de UAV. O modelo apresentou precisão de detecção com 93,99% 

sendo melhor que as versões mais modernas do YOLO v6 e v7, demonstrando a 

necessidade de mais estudos para esclarecer as razões para as precisões mais baixas desses 

dois modelos [4]. 

Em um estudo realizado para detectar 6 insetos pragas que atacam as lavoura de 

milho, os autores utilizaram o Iception-V3 modificado juntamente com um modelo de 

aprendizado profundo e aprendizado por transferência. Com os pesos do ImageNet o 

modelo alcançou 97,0% de precisão de validação, superando o Inception-V3 original 

(94,8%) e o AlexNet (96,3%) [25]. A aprendizagem por transferência foi identificada 

como uma estratégia eficaz para otimizar o treinamento do modelo [21].  

Nawoya et al. (2024) [26] fizeram uma revisão sobre o emprego da visão 

computacional e aprendizado profundo na criação de insetos, voltado a produção de 

alimentos e rações. Observaram que a integração de técnicas de visão computacional 

(CV) e Aprendizado Profundo (DL) são bastante promissoras, mesmo com os desafios 

tecnológicos, ambientais e a morfologia dos insetos com curto ciclo de vida metamórfico. 

Eles chamam a atenção para a necessidade de desenvolver técnicas baseadas em CV de 

baixo custo, não invasivas e não destrutivas, para medir características economicamente 

importantes, como tamanho, peso, níveis de proteína e gordura dos insetos. 

No contexto de inserir novas tecnologias na agricultura, ¸Sahin YS et al. (2025) 

integraram em uma solução de detecção em tempo real com YOLOv8 e suporte à decisão 

baseado em linguagem via ChatGPT-4. Conseguiram juntar precisão na detecção de 

pragas e recomendações específicas para os agricultores [27]. Não ficou claro se a API 

(Interface de Programação de Aplicativos) utilizada estava funcionando offline ou 

fazendo chamadas ao servidor na nuvem. Nesse última opção a falta de conexão 

impossibilita a entrega da informação gerada pelo Chatgpt4. O sistema poderia armazenar 

as imagens coletadas para serem utilizadas em novos treinamentos permitindo aumentar 

a base de dados para treinamento. 

Embora várias abordagens tenham avançado no campo da visão computacional e 

aprendizado por transferência (TL) na detecção e reconhecimento de insetos pragas no 

campo, muitos desafios ainda permanecem na precisão da classificação dos insetos, na 

confiabilidade dos modelos, na capacidade de rodar em dispositivos de baixo poder 

computacional, na autonomia de energia e comunicação de dados em trabalhos em campo 



75 

e no enfrentamento da escassez de dados rotulados de diferentes tipos de insetos que 

atacam as mais variadas culturas. Vencer essas limitações é fundamental para o 

desenvolvimento de ferramentas mais robustas e confiáveis para serem aplicadas no 

manejo integrado de qualquer produção agrícola. 

Este estudo tem como objetivo desenvolver um sistema embarcado em 

smartphone, suportado por um modelo de aprendizado de máquina (YOLOv11), para 

detectar automaticamente insetos-praga em plantações de soja e milho, armazenar os 

dados em nuvem e permitir análises espaciais da incidência desses insetos para apoiar o 

monitoramento agrícola. Os objetivos específicos são: (1) treinar e validar um modelo de 

detecção profundo (YOLOv11) para identificar de forma precisa os insetos Diabrotica 

speciosa , Dalbulus maidis , Diceraeus spp. e Spodoptera frugiperda, (2) desenvolver 

uma aplicação móvel para smartphones que capture imagens, execute o modelo 

YOLOv11 localmente e registre as detecções, associados a metadados, (3) implementar 

um mecanismo para sincronizar os dados coletados pelo aplicativo com um banco de 

dados na nuvem, garantindo armazenamento seguro e escalável das imagens e registros 

de detecção, (4) Utilizar os dados coletados para gerar mapas de calor e interpolação 

espacial que mostrem a distribuição e a incidência dos insetos nas lavouras ao longo do 

tempo [6]. 

 

5.2. Material e métodos 

5.2.1. Arquitetura e principais tecnologias utilizadas 

 

O aplicativo AgroInsect foi desenvolvido com foco na detecção de pragas 

agrícolas em tempo real, na anotação de imagens e na visualização geoespacial das 

ocorrências detectadas, integrando processamento embarcado, coleta de dados em campo 

e análise espacial. A aplicação foi construída utilizando o framework Flutter, no ambiente 

Android Studio, com suporte à biblioteca TensorFlow Lite (TFLite), que permite a 

execução eficiente do modelo YOLOv11n diretamente em dispositivos Android [28,29]. 

A Figura 1 apresenta a arquitetura geral do sistema AgroInsect, destacando a 

execução local do modelo de detecção no dispositivo móvel e o fluxo de comunicação 

com o servidor em nuvem. As imagens capturadas em campo são processadas diretamente 

pela rede neural YOLOv11n, enquanto o código da aplicação, desenvolvido em Dart, 

utiliza a biblioteca TFLite para realizar as inferências, identificar os insetos-praga e 

marcar automaticamente as caixas delimitadoras (bounding boxes) nas imagens. Essa 
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abordagem permite que todo o processo de detecção ocorra localmente no dispositivo, 

eliminando a dependência de processamento em nuvem e possibilitando a operação do 

sistema em ambientes com conectividade limitada. 

 

 

Figura 1. Os módulos fundamentais para detecção eficiente do modelo YOLOv11, SPPF, C2PSA e C3K2. 

 
A arquitetura do aplicativo segue o padrão MVVM (Model–View–ViewModel), 

promovendo separação clara entre a interface do usuário, a lógica de negócios e a 

manipulação dos dados [30], facilitando a manutenção, a escalabilidade e a evolução do 

sistema. Os resultados das detecções, bem como os dados do usuário, são organizados e 

preparados para armazenamento e sincronização com a infraestrutura em nuvem. 

O fluxo operacional do aplicativo AgroInsect é apresentado na Figura 2, que 

descreve as etapas de interação do usuário e de processamento das informações. O fluxo 

inicia-se com a autenticação do usuário e a seleção da fazenda ou unidade de manejo de 

interesse, garantindo que todas as informações coletadas sejam corretamente associadas 

a uma área agrícola específica. Em seguida, o usuário define o modo de operação, 

podendo optar entre a detecção automática de insetos ou a anotação manual de insetos, 

modos que são complementares na lógica do sistema.  

Independentemente do modo selecionado, o fluxo converge para a etapa de 

aquisição ou seleção de imagens, na qual as imagens podem ser capturadas diretamente 

pela câmera do dispositivo móvel ou selecionadas a partir do armazenamento local. No 

modo de detecção automática, as imagens adquiridas são processadas pelo modelo de 

visão computacional embarcado. Quando ocorre a detecção de insetos, os resultados são 

automaticamente registrados. Nos casos em que não há detecção ou quando o usuário 

identifica detecções incorretas ou incompletas, o fluxo permite a transição para a etapa 

de anotação manual, possibilitando o registro ou a correção das informações relacionadas 

aos insetos observados. 
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Figura 2. Fluxograma do fluxo operacional do aplicativo AgroInsect, ilustrando as etapas de autenticação do usuário, 
seleção da área de interesse, definição do modo de operação, aquisição de imagens, detecção automática de 
insetos, anotação manual e armazenamento. 

 

Todas as informações provenientes tanto das detecções automáticas quanto das 

anotações manuais — incluindo as coordenadas das caixas delimitadoras, as imagens 

analisadas, as classes identificadas e a geolocalização do ponto de captura — são 

armazenadas de forma persistente em um banco de dados relacional MySQL [6]. Esses 

registros podem ser utilizados tanto para o monitoramento da dinâmica populacional de 

insetos na propriedade quanto para a construção, expansão e refinamento contínuo da 

base de dados AgroInsect, destinada ao treinamento e à melhoria dos modelos de deep 

learning. 

Para a visualização espacial das ocorrências registradas no fluxo, foi integrada a 

API do Google Maps, permitindo ao usuário acompanhar a distribuição geográfica das 

pragas detectadas diretamente na interface do aplicativo. Adicionalmente, foram 

desenvolvidos scripts em Python para a geração de mapas de calor e interpolação espacial, 

utilizando a biblioteca SciPy para a implementação do método IDW (Inverse Distance 

Weighting) e a biblioteca GeoPandas para a manipulação dos dados geoespaciais. Essas 

representações espaciais fornecem suporte à tomada de decisão, com base na distribuição 

e intensidade das infestações ao longo da área monitorada. 

O aplicativo AgroInsect foi avaliado em condições reais de campo na Fazenda 

Serra Azul, em uma área experimental de 100 × 100 m, subdividida em grade de 

amostragem de 20 × 20 m. As imagens foram capturadas utilizando um smartphone 

Motorola Edge 30 (8 GB de RAM, processador Snapdragon 778G+), selecionado por 

representar um dispositivo comercial de gama média. Essa configuração permitiu avaliar 
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o desempenho da detecção em tempo real e a capacidade de resposta do sistema em 

condições operacionais reais. Todas as detecções foram processadas localmente no 

dispositivo, georreferenciadas no momento da captura e, posteriormente, transmitidas 

para o banco de dados MySQL central. 

 

5.2.2. Dataset 

 

O conjunto de dados utilizado neste estudo foi o mesmo utilizado pelos autores 

que publicaram uma análise de desempenho dos modelos YOLO e Detectron2 para 

detecção de pragas [5]. O conjunto de dados inclui quatro tipos de pragas que atacam as 

culturas de milho e soja: 591 imagens de Diabrotica Speciosa, 177 imagens de Dalbulus 

Maidis, 248 imagens de Diceraeus ssp. e 334 imagens de Spodoptera Frugiperda [5]. 

Essas imagens constituem um dataset denominado AgroInsect. As anotações das imagens 

do conjunto de dados AgroInsect foram realizadas utilizando o software de código aberto 

Label Studio (versão 0.9.1) [31]. Cada imagem foi anotada com informações da região 

de interesse (ROI), classe do inseto e posição do objeto no formato YOLO. Na Figura 3 

está ilustrado um exemplo para cada classe do dataset. 

No total, foram anotadas 1510 imagens, considerando que algumas continham mais de 

um inseto da mesma espécie. As anotações foram exportadas e organizadas em arquivos 

com os mesmos nomes das imagens correspondentes, com os caminhos de treinamento, 

validação e teste definidos em arquivos YAML, um formato de arquivo utilizado nos 

algoritmos. Os resultados obtidos com o conjunto de dados AgroInsect demonstraram alto 

desempenho dos modelos da família YOLO. O modelo YOLOv5 atingiu precisão, recall 

e F1-Score de 98,04%, com precisão específica de 99,22%. Da mesma forma, o YOLOv7 

apresentou F1-Score de 96,12% e precisão de 98,45%, enquanto o YOLOv8 obteve F1-

Score de 96,08% e precisão de 98,43%. Modelos mais recentes, como o YOLOv9-c e o 

YOLOv9-gelan, apresentaram ainda melhores resultados, alcançando F1-Scores de 

97,06% e 98,04%, respectivamente, com precisão superior a 99%. Esses resultados 

indicam que o conjunto de dados AgroInsect é adequado para o treinamento de modelos 

de detecção de pragas, fornecendo imagens com diversidade suficientes para a obtenção 

de métricas de desempenho elevadas [5]. 
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Figura 3: Exemplos de quatro objetos marcados utilizando Caixas Delimitadoras. 

 

5.2.3. Modelo Yolo 

 

Dentre as várias versões, para o desenvolvimento do aplicativo para smartphone, 

foi escolhido o YOLOv11n, sendo essa a versão mais recente da família YOLO (You 

Only Look Once), reconhecida pela alta eficiência na detecção de objetos em tempo real 

[32]. A Figura 4 ilustra o processo de treinamento, de forma que três blocos principais 

atuam na rede YOLOv11 para produzir um modelo que resolva a tarefa de detecção de 

objetos. A versão 11 da YOLO incorpora inovações arquitetônicas significativas, como o 

bloco C3k2 (Cross Stage Partial com kernel de tamanho 2), o módulo SPPF (Spatial 
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Pyramid Pooling- Fast) e o bloco C2PSA (Convolutional block with Parallel Spatial 

Attention), que, em conjunto, aprimoram a extração de características e aumentam a 

precisão do modelo. 

O bloco C3k2, por exemplo, melhora a extração de detalhes de objetos pequenos, 

como insetos, mesmo em imagens complexas. Já o módulo SPPF permite a detecção 

eficiente de alvos em múltiplas escalas, fundamental para monitorar insetos em diferentes 

estágios de vida ou tamanhos. O bloco C2PSA, por sua vez, potencializa a identificação 

de padrões por meio de atenção espacial paralela, tornando o modelo mais robusto em 

cenários com fundos complexos ou visualmente confusos, como campos abertos ou 

lavouras. Além disso, o YOLOv11 está disponível em diferentes tamanhos de modelo, 

desde versões compactas, como o YOLOv11n, até configurações maiores, permitindo a 

adaptação a ampla gama de aplicações — desde dispositivos móveis até sistemas de alto 

desempenho [33]. 

 

 

Figura 4: Módulos fundamentais para detecção eficiente do modelo YOLOv11, SPPF, C2PSA e C3K2. 

Neste trabalho, o modelo YOLOv11n foi treinado especificamente para a 

detecção de pragas agrícolas, sendo posteriormente convertido para o formato 

TensorFlow Lite (TFLite) [34], permitindo a execução em dispositivos Android. Essa 

conversão garantiu inferência rápida, baixo consumo de recursos e viabilidade em campo, 

requisitos estes fundamentais para aplicações móveis. A entrada do modelo é composta 

por imagens RGB, e a arquitetura é capaz de realizar detecção em tempo real, gerando 

caixas delimitadoras para indicar a localização das pragas. O treinamento do modelo foi 

realizado na plataforma Google Colab, com suporte a GPU. A acurácia da detecção, 

baseada na arquitetura YOLOv11n convertida para TFLite, foi avaliada por meio da 

precisão média (AP) e da Média de Precisão Aritmética (mAP). Para a etapa de validação, 

foram selecionadas aleatoriamente 15 imagens por espécie, enquanto o teste utilizou 25 

imagens por espécie. Mesmo quando implantado em dispositivos com restrições de 
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hardware, o modelo manteve alta acurácia e desempenho, evidenciando o potencial da 

arquitetura YOLOv11n para aplicações embarcadas de visão computacional [35]. 

 

5.2.4. Interpolação Espacial com Krigagem 

 

A krigagem é um método geoestatístico de interpolação amplamente utilizado 

para estimar valores de uma variável espacialmente contínua a partir de um conjunto 

discreto de pontos amostrados [36]. Diferentemente de métodos determinísticos, como a 

ponderação pelo inverso da distância (IDW), a krigagem considera não apenas a distância 

entre os pontos, mas também a dependência espacial existente entre as amostras, 

modelada por meio de uma função variograma. Essa abordagem permite estimar valores 

desconhecidos com base em combinação linear ponderada das observações vizinhas, 

otimizando a estimativa em termos de erro mínimo e não tendencioso [37].  

A estimativa krigada de uma variável Z(x0) em um ponto não amostrado (x0) 

pode ser expressa pela Equação (1):  

 

 

  

 (1) 

   

em que: 

• Ẑ(𝑥0) é o valor estimado no ponto de localização x0; 

• Z(𝑥𝑖) são os valores observados nos n pontos amostrados; 

• λi são os pesos atribuídos a cada ponto amostrado, determinados de forma que a 

soma dos pesos seja igual a 1 (∑  λi = 1). 

 

Os pesos λi são calculados com base no variograma experimental, que descreve a 

variabilidade espacial da variável estudada em função da distância entre amostras. O 

variograma é definido pela Equação (2): 

 

 

                                                                                                

(2) 

em que: 
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• γ(h) é o semivariograma para uma distância h; 

• N(h) é o número de pares de pontos separados por h; 

• Z(𝑥𝑖) e Z(𝑥𝑖 + h) são os valores observados em dois pontos separados por essa distância. 

A partir do variograma ajustado (esférico, exponencial, gaussiano, etc.), o modelo 

de krigagem calcula a matriz de covariância espacial e resolve o sistema linear que 

fornece os pesos λi ideais para cada ponto estimado. Isso garante que as estimativas 

apresentem erro mínimo de predição e incorporem a estrutura espacial real dos dados 

[38]. No presente estudo, foi utilizada a krigagem ordinária (Ordinary Kriging), 

implementada via biblioteca PyKrige [39], integrando-a a um servidor web em Flask para 

geração automatizada de mapas de densidade em tempo real. O modelo, utilizando um 

variograma esférico e operando com coordenadas geográficas, interpola as contagens 

discretas de insetos obtidas em campo. O resultado é uma superfície contínua de 

densidade (mapa de calor), visualizada sobre a interface do Google Maps. Essa integração 

transforma os dados brutos de monitoramento em inteligência espacial acionável, 

permitindo que os resultados sejam visualizados dinamicamente em interface móvel. A 

ferramenta fornece, assim, um suporte geoestatístico para a identificação precisa no 

monitoramento espacial de pragas agrícolas para a tomada de decisão no manejo de 

precisão. Para avaliar o desempenho do modelo de krigagem implementado, foi 

conduzida uma simulação sintética controlada. Foram gerados 8.000 pontos de ocorrência 

simulados distribuídos entre as espécies Diabrotica speciosa, Dalbulus maidis, Diceraeus 

spp. e Spodoptera Frugiperda. Cada espécie apresentou um padrão espacial distinto, com 

área de maior densidade (hotspot) e distribuição dispersa pelo restante da região de 

estudo. A área experimental foi subdividida em grades de 20×20, 50×50, 100×100 e 

200×200 células, representando diferentes níveis de densidade amostral. Com base nos 

pontos simulados de cada grade, foram gerados mapas de krigagem ordinária utilizando 

a biblioteca PyKrige. Esses mapas interpolados foram posteriormente comparados com 

os mapas de gradiente simulados, considerados como a superfície de referência (ground 

truth). Essa comparação permitiu quantificar o erro de predição e analisar a sensibilidade 

do método à escassez de dados amostrais.  

5.3. Resultados 

 

5.3.1. Principais funcionalidades do AgroInsect 
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O Agrosinsect é um aplicativo para smartphone que auxilia os produtores na 

tomada de decisão no controle de pragas. A Figura 5 mostra a interface do aplicativo. Ao 

fazer login no sistema, o usuário precisa selecionar uma fazenda que ele esteja associado. 

O sistema tem estrutura para detecção e anotações de imagens, gerenciar usuários, 

fazendas, funções, classes e visualizações de mapas. Os módulos de detecção e anotação 

de imagens trabalham juntos.  

 

Figura 5: Interface do aplicativo AgroInsect, com detecção de objeto, mapa de calor e mapa de krigagem. 

 

No módulo de detecção o usuário pode escolher tirar uma foto ou carregar uma 

imagem da galeria. Após esse processo a imagem é processada pelo modelo YOLO11s 

treinado e convertido para TFLITE para detecção e contagem de cada objeto (classe). 

Após esse processo o usuário pode salvar a detecção ou fazer correções nas anotações ou 

até anotar objetos que não foram detecção pelo modelo.  

Para a geração dos mapas são necessárias as coordenadas de geolocalização das 

imagens, o sistema é capaz de ler as informações dos metadados EXIF das imagens tanto 

daquelas que são capturadas pelo dispositivo como aquelas que são lidas da galeria do 

smartphone. Para garantir que as imagens sejam coletadas exclusivamente nos limites da 

propriedade agrícola associada e selecionada pelo usuário logado, foi implementada uma 

validação georreferenciada baseada no raio de abrangência da fazenda. Cada propriedade 

possui um ponto central definido por coordenadas geográficas (farm_latitude, 

farm_longitude) e um raio máximo de operação (radius), expresso em metros. A distância 

entre o ponto de captura da imagem (extraído dos metadados EXIF) e o centro da fazenda 

é calculada utilizando a fórmula de Haversine: 
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(3) 

 

em que R = 6371 km é o raio médio da Terra, ϕ1, ϕ2 são as latitudes e 𝜆1, 𝜆2 são 

as longitudes em radianos. A imagem é considerada válida se: 

 

(4) 

 

em que 𝑟𝑚𝑥 é o raio da fazenda em quilômetros. Essa abordagem garante a integridade 

espacial dos dados, evitando contaminações por amostras externas à área monitorada. A 

Figura 6 apresenta o projeto do banco de dados relacional (MySQL) da aplicação.  

 

 

Figura 6: Estrutura do banco de dados relacional (MySQL) do sistema AgroInsect. A arquitetura multitenant utiliza a 
tabela user_farm para garantir isolamento total de dados entre fazendas. 

 

O esquema foi desenvolvido para oferecer isolamento lógico entre diferentes 

fazendas, garantindo que cada uma, possua seus próprios dados operacionais e de usuários 

associados. 

As tabelas centrais desse modelo são user, farm, user_farm e image: 

1. A tabela user armazena informações globais de autenticação e cadastro dos usuários. 

2. A tabela farm contém os dados específicos de cada fazenda registrada no sistema. 
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3. A tabela de junção user_farm é o elemento que estabelece o vínculo entre usuários e 

fazendas, permitindo que um mesmo usuário possa estar associado a uma ou mais 

fazendas. 

O isolamento dos dados é assegurado pela forma como as informações 

operacionais, como imagens e anotações são vinculadas à relação user_farm. Assim, o 

sistema garante que cada usuário só possa salvar, consultar ou visualizar imagens e dados 

pertencentes às fazendas com as quais possua uma associação ativa (registro válido na 

tabela user_farm).  Usuários sem vínculo não têm acesso aos dados de outras fazendas, 

mantendo a integridade e confidencialidade das informações. 

 

5.3.2. Validação do Modelo de Krigagem em um Cenário Simulado 

A etapa de validação teve como objetivo avaliar a precisão e a consistência 

espacial das estimativas de abundância geradas pela krigagem. Foram utilizadas métricas 

amplamente adotadas em geoestatística para quantificar os erros de predição e a acurácia 

do modelo, incluindo o erro quadrático médio (RMSE), o erro médio absoluto (MAE), o 

viés médio (Bias) e o coeficiente de determinação (R²). 

O erro de predição foi quantificado pelo erro quadrático médio (RMSE): 

 

 

(5) 

 

A acurácia preditiva foi avaliada pelo coeficiente de determinação (R²): 

 

 

(6) 

 

em que Z̅ representa a média dos valores coletados (simulados). 

Além disso, foi calculado o erro médio absoluto (MAE) e o erro médio (Bias), que permite 

avaliar a precisão e o erro desvio sistemático das estimativas: 
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(7) 

 

A Tabela 1 resume os resultados obtidos para cada espécie simulada e diferentes 

resoluções de nota.  

 

Tabela 1. Métricas de validação da interpolação por krigagem para a abundância simulada de insetos em diferentes 
resoluções de grade. 

Species Grid Size Samples (𝒏𝒕𝒂𝒊𝒏) Validation (𝒏𝒗𝒂𝒍𝒊𝒅) RMSE MAE R² 

Dalbulus 

  

  

  

20×20 1963 2455 1.2596 1.0152 0.9113 

50×50 761 2455 1.2971 0.9913 0.9060 

100×100 198 2455 2.6761 1.9419 0.5997 

200×200 46 2455 2.3932 1.6535 0.6799 

Diabrotica 

  

  

  

20×20 950 2501 0.8070 0.6189 0.9511 

50×50 321 2501 0.8830 0.7402 0.9414 

100×100 74 2501 1.0341 0.8588 0.9197 

200×200 16 2501 2.6374 1.9396 0.4774 

Diceraeus 20×20 558 1515 0.8073 0.6323 0.9478 

  50×50 272 1515 0.8748 0.7288 0.9388 

  100×100 76 1515 1.1860 1.0217 0.8874 
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  200×200 13 1515 2.7187 2.2817 0.4085 

Frugiperda 20×20 601 1529 0.7664 0.5860 0.9656 

  50×50 287 1529 0.8300 0.6919 0.9597 

  100×100 70 1529 1.4723 1.1575 0.8731 

  200×200 19 1529 2.9628 1.9192 0.4859 

 

Os resultados demonstram tendência clara de redução da acurácia à medida que 

diminui a densidade amostral (ou seja, com o aumento do tamanho da grade). Para todas 

as espécies, as grades mais densas (20×20 e 50×50) apresentaram os menores valores de 

RMSE e MAE e os maiores valores de R2, indicando alta capacidade do modelo em 

reconstruir os padrões espaciais simulados. Entre as espécies, Diabrotica Speciosa 

destacou-se com os melhores indicadores (R2 > 0,94 nas grades de 20×20 e 50×50), 

refletindo seu padrão espacial mais uniforme. Por outro lado, Dalbulus Maidis e 

Spodoptera Frugiperda apresentaram leve degradação de desempenho nas grades mais 

amplas, por causa da presença de áreas de alta agregação (hotspots) e maior variabilidade 

local, que aumentam o erro de predição em regiões de transição. Além das métricas 

quantitativas de validação, analisou-se a estrutura espacial dos erros de predição para 

identificar possíveis vieses ou desvios regionais nas estimativas obtidas pela krigagem. 

Os resíduos foram calculados conforme a Equação 8, que representa a diferença entre os 

valores estimados e os valores de referência do universo simulado: 

 

 

(8) 

 

em que: 

•  representa o valor estimado pela krigagem no ponto i; 

• 𝑍𝑖 é o valor observado (simulado) correspondente. 
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 A Figura 7 ilustra a distribuição espacial desses resíduos para ambas as 

configurações de amostragem (20×20 e 200×200).  

 

 

Figura 7: Distribuição espacial dos resíduos de krigagem para as quatro espécies de insetos simuladas sob duas 
densidades de amostragem (grades de 20×20 e 200×200). 

Os mapas de resíduos demonstram que os erros de predição apresentam estrutura 

espacial coerente com os padrões artificiais utilizados nas simulações. No conjunto de 

dados sintético, cada espécie apresentou uma região de alta densidade (hotspot) e uma 

dispersão gradual pelo restante da área. Consequentemente, observou-se tendência de 

subestimação nas zonas de maior concentração e superestimação nas regiões periféricas. 

Esse efeito de suavização é especialmente evidente em Dalbulus maidis e Spodoptera 

Frugiperda e reflete o comportamento inerente da krigagem, que produz estimativas 

locais suavizadas próximas aos dados concentrados.  

Por outro lado, Diabrotica Speciosa apresentou distribuição de resíduos mais 

homogênea, condizente com seu padrão de simulação mais uniforme. Esse 

comportamento está em concordância com as métricas quantitativas, nas quais Diabrotica 

obteve o maior valor de R2 e o menor RMSE, indicando que o modelo de krigagem 

reconstruiu adequadamente variações espaciais moderadas sob condições de amostragem 

regular. 

De forma geral, a análise espacial dos resíduos confirma a robustez do método de 

krigagem implementado na aplicação MPI. Mesmo com padrões simulados 

simplificados, o modelo foi capaz de reproduzir os principais gradientes espaciais sem 

apresentar viés direcional sistemático. Esses resultados demonstram que o procedimento 

de interpolação mantém desempenho consistente em diferentes densidades amostrais 
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(20×20 a 200×200), reforçando o potencial para aplicações reais em monitoramento de 

pragas agrícolas. Trabalhos futuros poderão incorporar covariáveis auxiliares, como 

índices de vegetação, atributos do solo ou variáveis climáticas, visando aprimorar o 

desempenho preditivo em cenários de baixa densidade amostral 

 

5.3.3. Avaliação das detecções automáticas realizadas em campo 

 

A etapa de avaliação teve como objetivo quantificar o desempenho do modelo de 

reconhecimento de insetos usando um aplicativo de smartfone. Cada objeto detectado foi 

revisado manualmente e classificado em três categorias: (i) Detecção correta (D), quando 

o inseto foi identificado corretamente; (ii) Ajuste de classe (A), quando a detecção foi 

válida, mas a classificação da espécie necessitou correção; e (iii) Exclusão (E), aplicada 

a falsos positivos ou objetos sem definição morfológica adequada. 

A Tabela 2 apresenta o resumo das detecções realizadas pelo modelo nas 79 

imagens avaliadas. Do total de 183 objetos identificados, 92,4% foram classificados 

corretamente, 6,6% exigiram ajuste de classe e 1,1% foram excluídos por erro de 

detecção. Esses resultados evidenciam desempenho consistente do modelo, com baixa 

ocorrência de falsos positivos e necessidade limitada de intervenção manual. 

  

Tabela 2. Resumo das detecções e ajustes de classes. 

Categoria Quantidade Descrição 

Detecções corretas (D) 169 Detecções com classificação correta 

Ajustes de classe (A) 12 Detecções que exigiram correção manual 

Exclusões (E) 2 Objetos descartados por erro de detecção 

Total válido 183 Total de objetos considerados após exclusões 

 

Já a Figura 8 apresenta a matriz de confusão derivada da validação cruzada, 

sintetizando o desempenho do classificador na discriminação das quatro espécies de 

insetos-alvo e da classe de fundo (background). Observa-se elevada concordância entre 
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rótulos previstos e verdadeiros, refletida em altos valores de sensibilidade por classe. As 

poucas inconsistências identificadas concentram-se em pares específicos de classes e 

podem estar associadas a variações presentes nas imagens utilizadas no processo de 

validação. 

 

Figura 8: Matriz de confusão do modelo AgroInsect avaliado com imagens coletadas em campo. 

 

As métricas quantitativas de desempenho estão apresentadas na Tabela 3. O 

modelo alcançou acurácia geral de 95,1%, com valores de precision, recall e F1-score 

superiores a 90% para todas as classes de interesse agronômico. A espécie Dalbulus 

Maidis apresentou F1-score de 98%, indicando excelente equilíbrio entre sensibilidade e 

precisão. Desempenho igualmente robusto foi observado para Diabrotica Speciosa (98%) 

e Spodoptera Frugiperda (96%). Erros pontuais, como falsos negativos ocasionais, por 

exemplo, indivíduos de Diabrotica Speciosa classificados como background explicam a 

ligeira redução no valor de revocação dessa classe (96%), sem comprometer o 

desempenho global do modelo. 
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Tabela 3. Desempenho do modelo de classificação para as espécies avaliadas. 

Classe Precisão Revocação F1-score Amostras 

Diabrotica 

speciosa 

1.00 0.96 0.98 24 

Dalbulus 

maidis 

0.99 0.97 0.98 120 

Diceraeus ssp. 0.92 0.96 0.94 23 

Spodoptera 

frugiperda 

1.00 0.93 0.96 14 

Acurácia geral 95,1%       

 

Os resultados combinados da avaliação automática e da revisão manual reforçam 

o potencial do sistema AgroInsect como ferramenta de apoio ao monitoramento 

automatizado de pragas. A elevada acurácia e a baixa necessidade de correções indicam 

que o modelo pode reduzir significativamente o esforço humano na etapa de triagem, 

mantendo consistência e confiabilidade nos registros. Em trabalhos futuros, recomenda-

se o uso de estratégias de aprendizado ativo e refinamento iterativo para ampliar a 

robustez frente à variabilidade de morfologia e iluminação nas imagens de campo. 

 

5.3.4. Análise Espacial das Ocorrências de Pragas 

A Figura 9 apresenta os resultados gerados pelo sistema, após a aplicação dos 

filtros por fazendas que o usuário esteja associado e por intervalo de datas e espécie de 

praga. A interface retorna três componentes complementares: (a) um painel quantitativo 

com o número total de insetos detectados na propriedade no período selecionado; (b) um 

mapa de distribuição espacial mostrando a localização geográfica de cada detecção; e (c) 

um mapa de krigagem representando a interpolação da densidade dos insetos no talhão. 

Em conjunto, esses elementos permitem avaliar não apenas a intensidade das 

ocorrências, mas também a dinâmica espacial das pragas, fornecendo subsídios objetivos 

para a tomada de decisão no manejo localizado. 



92 

 

Figura 9. Painel de resultados gerados pelo sistema: (a) total de insetos detectados; (b) distribuição espacial das 
detecções; (c) interpolação espacial por krigagem. 

 

5.3.5. Resultados do Painel Espacial Integrado do Sistema AgroInsect 

 

A Figura 10 apresenta o conjunto de mapas derivados da análise espacial realizada 

pelo sistema AgroInsect. O painel integra todas as etapas do fluxo de processamento 

desde as detecções produzidas pelo modelo até a interpolação espacial por krigagem 

permitindo uma avaliação clara e quantitativa da distribuição das pragas ao longo do 

talhão monitorado. O mapa agregado (Figura 10a) sintetiza a ocorrência combinada de 

todas as espécies, fornecendo um panorama geral da pressão de insetos no período 

analisado e destacando regiões de maior concentração que motivaram a avaliação 

individual de cada praga. Para Diabrotica Speciosa (Figura 10b), a projeção espacial 

revela padrão de distribuição fortemente pontual. As áreas de maior intensidade 

concentram-se nas proximidades imediatas dos pontos amostrados, especialmente na 

região central do talhão. A ausência de gradientes de dispersão mais amplos sugere focos 

localizados de infestação, compatíveis com o comportamento menos móvel dessa espécie 

e com registros de agregação espacial restrita mencionados na literatura. A krigagem 

aplicada à espécie Dalbulus (Figura 10c) resultou no padrão espacial mais amplo e 

contínuo entre todas as espécies avaliadas. Observa-se a formação de gradientes suaves e 

regiões de maior intensidade distribuídas predominantemente nas porções leste e sudoeste 

do talhão. Esse comportamento é coerente com a maior capacidade de deslocamento 

associada à espécie, resultando em superfície interpolada mais homogênea e com 

transições mais progressivas entre zonas de baixa e alta probabilidade de ocorrência. A 
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espécie Diceraeus (Figura 10d) apresenta padrão intermediário. Embora a maior parte da 

área mantenha valores reduzidos, observa-se a formação de um núcleo de intensidade 

elevada na porção central do talhão. Esse foco pode estar associado a características 

microambientais específicas que favorecem sua presença. Ainda assim, a distribuição 

como um todo permanece fragmentada, sugerindo pressão populacional moderada no 

período avaliado. Por fim, Frugiperda (Figura 10e) exibiu o padrão espacial mais 

homogêneo e de menor magnitude absoluta. A superfície interpolada mostra variação 

mínima ao longo do talhão, com apenas pequenas áreas de leve aumento, sem formação 

de manchas robustas de infestação. Esse comportamento confirma as baixas contagens 

observadas na etapa de detecção e sugere que a espécie estava dispersa e em baixa 

densidade durante o intervalo monitorado. 

 

 

Figura 10. Mapas de incidência por krigagem: (a) distribuição agregada de todas as espécies; (b) Diabrotica; (c) 
Dalbulus; (d) Diceraeus; (e) Frugiperda. 

 

5.4. Discussão 

 

Os resultados obtidos demonstram que o sistema integra de forma eficiente 

técnicas modernas de visão computacional, geoprocessamento e modelagem espacial, 

oferecendo um fluxo completo para monitoramento de pragas em campo. Esse tipo de 

arquitetura, que combina detecção automática, validação geográfica e interpolação via 

krigagem em um único ambiente computacional, ainda é pouco explorado na literatura, 

em que soluções costumam abranger apenas partes isoladas desse processo. Por exemplo, 

Zhou et al. [6] apresentam um sistema baseado em YOLO para pomares, mas cuja etapa 
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de mapeamento depende de serviços externos, como ArcGIS Server, aumentando a 

complexidade operacional do monitoramento e os custos de integração. 

O desempenho do modelo de classificação, com acurácia geral de 95,1%, mostra 

consistência com avanços recentes em arquiteturas de redes leves para detecção em 

dispositivos móveis. O trabalho de Xu et al. [40] descreve o modelo GBiDC-PEST, 

otimizado para smartphones Android, alcançando elevada precisão com forte redução do 

custo computacional. Resultados similares foram obtidos no AgroInsect, reforçando que 

modelos comprimidos e adaptados para TFLite podem manter desempenho competitivo 

mesmo operando em hardware restrito, sendo um aspecto crucial para a adoção por 

produtores rurais em contextos de baixa infraestrutura. 

Além disso, o trabalho de Verma et al. (2021) contribui com uma análise 

detalhada do desempenho de diferentes versões da família YOLO (v3, v4 e v5) na 

detecção de insetos em soja, alcançando mAP de até 99,5% e F1-score de 96% para o 

YOLOv5 [24]. Embora tais resultados reforcem o potencial dos modelos YOLO para 

detecção precisa em cenários agrícolas, a abordagem permanece dependente de 

processamento em GPU e foco exclusivo na etapa de detecção. Em contraste, o 

AgroInsect amplia significativamente esse escopo ao operar integralmente em 

smartphones comuns, eliminando a necessidade de hardware especializado e integrando 

módulos adicionais ausentes em estudos anteriores, como validação geoespacial 

automática, interpolação via krigagem e geração de mapas de infestação. Assim, o 

presente trabalho avança além da simples detecção, oferecendo um sistema funcional de 

monitoramento espacial que atende diretamente às demandas práticas da agricultura de 

precisão. 

Uma comparação relevante também pode ser feita com soluções baseadas em 

computação em nuvem. Karar et al. (2021) propõem um pipeline no qual o smartphone 

atua apenas como interface, enquanto a inferência com Faster R-CNN ocorre 

integralmente em servidores remotos [9]. Embora apresente acurácia elevada, o sistema 

depende de conectividade contínua, retransmissão automática em caso de falhas de rede 

e infraestrutura de hospedagem escalável. No contexto agrícola, em que a conectividade 

é frequentemente limitada, essa dependência pode comprometer a adoção prática. O 

AgroInsect avança nesse aspecto ao eliminar completamente a necessidade de 

processamento remoto, garantindo operação estável, de baixa latência e sem custos 

adicionais de infraestrutura, mesmo em regiões rurais com cobertura instável. 
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Além disso, estudos recentes demonstram avanços importantes na detecção de 

insetos pequenos em ambientes agrícolas heterogêneos. Tang et al. (2025) apresentam o 

S-YOLOv5m, uma variante aprimorada do YOLOv5m projetada para tomates, que 

incorpora SPD-Conv, módulos Ghost, CBAM e o bloco AEM. Essas alterações resultam 

em aumento de 4,73% no mAP, redução de 31% no número de parâmetros e ganho de 

1,3 ms por imagem na inferência [41]. Tais melhorias refletem a evolução das arquiteturas 

YOLO para lidar com alvos pequenos e condições de iluminação e oclusão complexas; 

contudo, 12 o modelo permanece voltado exclusivamente à etapa de detecção e depende 

de GPU durante a fase de treinamento, sem incorporar elementos adicionais necessários 

a um sistema completo de monitoramento espacial. Em contraste, o AgroInsect associa 

detecção, validação espacial e modelagem geoestatística em um único pipeline executado 

integralmente em smartphones, ampliando a aplicabilidade em cenários de baixa 

infraestrutura. 

Um avanço complementar é observado no trabalho de Kargar et al. (2025), que 

apresentam um modelo ultraleve projetado para segmentação e contagem de insetos 

diretamente em microcontroladores com apenas 1 MB de RAM e 2 MB de memória flash 

[42]. Apesar da expressiva redução de complexidade, aproximadamente 0,75 M de 

parâmetros, o modelo alcança desempenho sólido (DSC de 85% e IoU de 73%), 

demonstrando a viabilidade de execução totalmente embarcada em dispositivos de 

baixíssimo custo energético. No entanto, assim como outros estudos focados em 

arquiteturas leves, a aplicação restringe-se à tarefa de segmentação e contagem, sem 

incorporar validação geográfica, integração com sistemas espaciais ou geração de mapas 

de distribuição. Nesse sentido, o aplicativo diferencia-se ao expandir esse paradigma de 

processamento local para um pipeline completo de monitoramento, integrando detecção, 

georreferenciamento, interpolação e geração automática de mapas diretamente em 

smartphones convencionais. 

No campo dos modelos leves, Wang et al. (2025) introduzem o Insect-YOLO, que 

incorpora o módulo CBAM para aprimorar a extração de características em imagens de 

baixa resolução. O modelo atinge mAP50 de 93,8% com aproximadamente 3 milhões de 

parâmetros, demonstrando boa relação entre eficiência e desempenho. Ainda assim, a 

aplicação é descrita em cenários que requerem infraestrutura dedicada, tipicamente 

integrada a sistemas IoT com processamento remoto. Os autores também destacam 

limitações importantes, como sensibilidade às condições ambientais, desempenho 

desigual entre espécies, especialmente planthoppers e risco de sobreajuste devido ao uso 
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de base de dados regional [21]. O AgroInsect supera esses entraves ao operar diretamente 

sobre imagens capturadas em campo, mitigando vieses geográficos e dispensando 

câmeras dedicadas ou servidores externos. 

Adicionalmente, soluções recentes baseadas em armadilhas inteligentes 

equipadas com visão computacional e IoT, como as descritas por Guo et al. (2023), 

possibilitam coleta automatizada de grandes volumes de dados, mas exigem sensores 

fixos, infraestrutura permanente e conectividade estável para transmissão e análise [22]. 

Em contraste, o AgroInsect democratiza o monitoramento ao utilizar o próprio 

smartphone do produtor como dispositivo de captura e processamento, ampliando 

significativamente o alcance do sistema em regiões em que sensores dedicados são 

economicamente inviáveis. 

A análise geoestatística realizada neste estudo revelou padrões espaciais 

consistentes com investigações clássicas que aplicam krigagem ao monitoramento de 

pragas. Os efeitos de suavização observados com subestimação em áreas de maior 

densidade e superestimação nas bordas, também são relatados em trabalhos sobre 

Helicoverpa armigera, Billbugs e grape root borer [43]. Além disso, as diferenças 

espaciais entre as espécies analisadas, como o padrão pontual de Diabrotica e a 

distribuição mais difusa de Dalbulus, refletem comportamentos ecológicos amplamente 

documentados, relacionados à mobilidade, agregação e dispersão. 

Outro aspecto relevante é o tratamento automático da informação espacial. A 

validação georreferenciada baseada em metadados EXIF e no raio operacional da 

propriedade reduz falhas de posicionamento, problema comum em sistemas que 

dependem de entrada manual de coordenadas ou do uso de GPS externo. Tal abordagem 

atende a uma lacuna frequentemente apontada em aplicações móveis agrícolas, tornando 

a base espacial do AgroInsect mais robusta que a de soluções existentes. Notadamente, 

nenhum dos estudos revisados, incluindo modelos IoT, arquiteturas leves recentes e 

métodos baseados em nuvem, integra análise geoespacial, interpolação ou geração 

automatizada de mapas. Assim, o aplicativo desenvolvido diferencia-se ao unificar 

detecção, validação espacial e modelagem geoestatística em um único ambiente 

computacional. 

De modo geral, os resultados demonstram que este software avança o estado da 

arte ao integrar um pipeline completo, desde a captura e detecção e anotação até a geração 

de mapas derivados de interpolação espacial, proporcionando uma ferramenta prática, 

precisa e operacionalmente eficiente para suporte ao manejo integrado de pragas. 
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5. Conclusão e trabalhos futuros 

 

O AgroInsect mostrou ser uma solução robusta para o monitoramento automatizado de 

pragas agrícolas, combinando detecção eficiente, validação geográfica rigorosa e 

modelagem espacial por krigagem. A elevada acurácia do modelo de classificação e a 

baixa necessidade de ajustes manuais reforçam o potencial da plataforma em reduzir o 

esforço humano na etapa de triagem, aumentando a confiabilidade dos registros e 

permitindo análises mais rápidas e objetivas. 

Os mapas gerados pela krigagem revelaram padrões coerentes com a ecologia das 

espécies avaliadas, destacando diferenças importantes na intensidade e dispersão das 

ocorrências. A integração dessas informações em um único painel oferece aos produtores 

uma visão clara sobre a dinâmica espacial das pragas no talhão, auxiliando na tomada de 

decisão para intervenções pontuais e eficientes. 

Comparado a soluções existentes, o aplicativo se destaca pela operação totalmente 

embarcada em smartphone, pela validação espacial automatizada e pela geração imediata 

de mapas de incidência, características que o tornam adequado para uso em campo, 

inclusive em propriedades com infraestrutura limitada. 

Como trabalhos futuros, a incorporação de covariáveis ambientais, como índices 

de vegetação, umidade do solo e variáveis climáticas, poderá ampliar a precisão das 

estimativas em cenários com baixa densidade amostral. Estratégias de aprendizado ativo 

também poderão ser exploradas para o aprimoramento contínuo do modelo, 

especialmente em condições de grande variabilidade morfológica e luminosa. Em síntese, 

o AgroInsect se apresenta como ferramenta promissora para modernizar práticas de 

monitoramento e apoiar decisões no manejo integrado de pragas. 
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CONCLUSÃO GERAL 

 

 Esta tese apresentou o desenvolvimento integrado de um sistema inteligente para 

detecção e monitoramento espacial de insetos-praga em lavouras de soja e milho, 

combinando modelos avançados de visão computacional, bases de dados especializadas 

e técnicas de geoestatística. A abordagem proposta contemplou desde a construção e 

curadoria do conjunto de dados AgroInsect, passando pelo treinamento e avaliação de 

modelos de deep learning, até a implementação de um aplicativo móvel capaz de realizar 

inferências embarcadas e gerar mapas de incidência em tempo quase real. 

 A experimentação conduzida com diferentes versões dos modelos YOLO (v5, v7, 

v8, v9-gelan e v9-c) e com o Detectron2 demonstrou que é possível alcançar elevado 

desempenho mesmo em cenários de recursos limitados. Os resultados obtidos com o 

conjunto de dados completo (AgroInsect) confirmaram a robustez dos modelos, mas um 

achado relevante foi que o uso de um conjunto reduzido (Reduced), composto por apenas 

100 imagens por espécie, não comprometeu significativamente a acurácia. Modelos como 

o YOLOv9-c e o YOLOv9-gelan apresentaram diferenças de apenas 0,03% e 1,96% entre 

os conjuntos completo e reduzido, reforçando que, com curadoria adequada, é possível 

treinar redes de alta performance mesmo com bases menores. Esse resultado representa 

um avanço importante, pois facilita a inclusão de novas espécies de insetos em futuras 

versões do sistema, permitindo escalabilidade com baixo custo de anotação. 

 A conversão dos melhores modelos para os formatos TFLite e ONNX confirmou 

a viabilidade de execução eficiente em dispositivos de borda, como smartphones. Em 

particular, o YOLOv5 mostrou redução mínima de desempenho após a conversão, e o 

YOLOv7 chegou a apresentar melhoria com o conjunto de dados reduzido. Esses achados 

ressaltam que o emprego de modelos leves em campo não é apenas factível, mas desejável 

para soluções que exigem operação offline, baixa latência e baixo consumo energético. 

 A implementação do aplicativo AgroInsect consolidou o sistema como uma 

plataforma operacional completa. A detecção embarcada, a extração automática de 

metadados e a sincronização com a nuvem permitiram o registro padronizado das 

ocorrências, reduzindo erros humanos e possibilitando análises integradas. A validação 

geográfica das detecções garantiu coerência espacial, evitando registros inconsistentes e 

aumentando a confiabilidade das informações coletadas. 
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As análises espaciais realizadas por meio da krigagem ordinária revelaram 

padrões consistentes com a ecologia das espécies avaliadas, indicando áreas de maior 

incidência e possíveis rotas de dispersão. A geração imediata de mapas de calor e 

superfícies interpoladas demonstrou o potencial do sistema para apoiar o manejo 

integrado de pragas, fornecendo aos produtores informações claras, objetivas e 

espacialmente explícitas para intervenções mais eficientes e sustentáveis. 

 Em comparação com soluções disponíveis na literatura e no mercado, o 

AgroInsect diferencia-se por operar completamente embarcado em smartphone, 

dispensando conexão contínua com a internet e permitindo uso em propriedades rurais 

com infraestrutura limitada. A integração entre detecção, validação espacial, 

armazenamento estruturado e análise geoestatística torna a plataforma uma ferramenta 

completa, moderna e aplicável em situações reais de campo.  

 Como desdobramentos futuros, recomenda-se a incorporação de covariáveis 

ambientais, como índices de vegetação, umidade do solo e variáveis climáticas, com o 

objetivo de aprimorar a precisão das estimativas em contextos de baixa densidade 

amostral. Sugere-se também a adoção de estratégias de aprendizado ativo, permitindo que 

o próprio sistema selecione novas imagens relevantes para rotulagem, acelerando o 

processo de adaptação a diferentes condições morfológicas, luminosas e ambientais. 

Além disso, a inclusão de imagens provenientes de armadilhas amarelas, luminosa e 

feromônios ampliará a capacidade do modelo de lidar com cenários visuais mais 

desafiadores, contribuindo para uma solução ainda mais robusta. 

 Em síntese, o sistema proposto — composto pelo dataset AgroInsect, pelos 

modelos YOLO otimizados e pelo aplicativo móvel AgroInsect — representa uma 

contribuição significativa para o avanço da Agricultura 4.0. Ao integrar detecção 

embarcada, validação espacial e análise geoestatística em um único ecossistema 

operacional, a tese demonstra que é possível viabilizar soluções inteligentes, escaláveis e 

de alto desempenho para o monitoramento automatizado de pragas agrícolas. Essa 

abordagem abre caminho para novas investigações e aplicações capazes de transformar 

estratégias de manejo integrado, promovendo maior eficiência, sustentabilidade e 

precisão na produção agrícola. 


