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RESUMO GERAL

ALMEIDA, G. P. S. de. Sistemas inteligentes embarcados em dispositivos moveis e
baseados em deep learning para deteccdo e monitoramento espacial de pragas
agricolas. 2025. 114p. Tese (Doutorado em Ciéncias Agrarias — Agronomia). Instituto
Federal Goiano — Campus Rio Verde — GO, Brasil.

A deteccdo precisa e 0 monitoramento oportuno de pragas agricolas sdo desafios centrais
para a agricultura moderna, especialmente em sistemas produtivos de soja e milho em
larga escala. Préticas ineficientes de monitoramento frequentemente levam a aplicacao
tardia de medidas de controle e a consequente reducdo da produtividade. Os recentes
avancos em deep learning e computacdo movel criaram possibilidades para a
identificacdo automatica de insetos em campo por meio de modelos leves de visao
computacional. Nesse contexto, esta tese apresenta um framework integrado para
deteccdo inteligente e monitoramento espacial de pragas agricolas, baseado em deep
learning, métodos geoestatisticos e aplicagdes moveis. Inicialmente, foram construidos e
avaliados dois conjuntos de dados: um dataset robusto de imagens de alta resolucéo,
curado por meio de validagdo dupla por especialistas, e um dataset reduzido para fins
comparativos. Arquiteturas de deteccdo de ultima geracdo (YOLO e Detectron2) foram
treinadas em ambos os datasets e posteriormente convertidas para os formatos
TensorFlow Lite (TFLite) e ONNX, possibilitando a execu¢do em dispositivos com
recursos computacionais limitados. Mesmo no cenario menos favoravel e utilizando o
dataset reduzido e 0 modelo ONNX mais leve — os resultados foram satisfatorios, com
precisdo de 87,3% e acurdcia de 95,0%. Com base nestes resultados, foi desenvolvido o
aplicativo mével Agrolnsect, capaz de realizar deteccdo em tempo real, diretamente no
dispositivo, de quatro espécies-chave de pragas relevantes para a agricultura brasileira
(Diabrotica speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda). O
sistema extrai automaticamente a geolocalizacdo das imagens, valida a consisténcia
espacial das deteccBes a partir dos limites da propriedade e sincroniza os dados com base
em nuvem. A visualizacdo espacial € realizada por meio de mapas de calor e interpolacdes
via Krigagem Ordinaria (PyKrige), permitindo mapear a incidéncia das pragas com alta
resolucdo. Ensaios de campo confirmaram o alto desempenho do sistema, com acuracia
global de 95,1%, F1-scores superiores a 0,94 para todas as espécies e apenas 1,1% de
falsos positivos. O modelo geoestatistico apresentou elevado poder preditivo (R2 > 0,94)
sob amostragem densa, reproduzindo padrGes espaciais consistentes com o0
comportamento ecolégico das pragas. Além disso, esta tese apresenta o AgroLablA, um
ambiente digital criado para armazenamento, anotacdo e disponibilizacdo de datasets
agricolas. A plataforma oferece imagens validadas, permite exportacdo em multiplos
formatos e esta preparada para receber novas classes de insetos e plantas daninhas,
contribuindo para 0 avanco da pesquisa em visdo computacional aplicada ao manejo de
pragas. O ecossistema integrado composto pela geracdo de datasets, deteccdo movel,
validacdo espacial e mapeamento geoestatistico demonstra solugdo escalavel e
operacionalmente robusta para 0 monitoramento de pragas em sistemas agricolas. Os
resultados evidenciam o Agrolnsect como uma ferramenta pratica e eficaz para apoiar a
tomada de decisdo no manejo integrado de pragas, especialmente em regiées com baixa
conectividade, fortalecendo os pilares da Agricultura 4.0.

Palavras-chave: Visdo computacional; Deep learning; YOLO; Deteccdo de insetos;
Monitoramento de pragas; Agricultura de precisdo; Krigagem ordinéria; Geoestatistica;
Aplicativos maéveis; TFLite; Agricultura 4.0.



ABSTRACT

REZENDA, A. G. Soil physical quality in the diagnosis of compaction and in the
assessment of regenerative agriculture. 2025. 114p. Thesis (Doctorate in Agricultural
Sciences — Agronomy. Instituto Federal Goiano — Campus Rio Verde — GO, Brazil.

Accurate and timely detection of insect pests remains one of the major challenges in
modern agriculture, especially in large-scale soybean and maize production systems.
Inefficient monitoring practices often result in delayed control interventions and
significant yield losses. Recent advancements in deep learning and mobile computing
have opened new opportunities for in-field pest identification using lightweight computer
vision models. In this context, this thesis presents an integrated framework for intelligent
pest detection and spatial monitoring based on deep learning, geostatistical analysis, and
mobile applications. First, two datasets of insect pests were constructed and evaluated: a
comprehensive high-resolution dataset curated through double-expert validation, and a
smaller sample designed for comparative analysis. State-of-the-art detection architectures
(YOLO and Detectron2) were trained on both datasets and subsequently converted into
TensorFlow Lite (TFLite) and ONNX formats to enable deployment on resource-
constrained devices. Even under the least favorable conditions using the reduced dataset
and the lightest ONNX model the results reached a precision of 87.3% and accuracy
95.0%, demonstrating the robustness of the pipeline. Building upon these results, a mobile
system named Agrolnsect was developed. The application performs real-time, on-device
detection of four key pest species relevant to Brazilian soybean and maize production
(Diabrotica speciosa, Dalbulus maidis, Diceraeus spp., and Spodoptera frugiperda),
automatically extracts geolocation metadata, validates spatial consistency based on field
boundaries, and synchronizes detections with a cloud database. Spatial visualization is
generated through heatmaps and Ordinary Kriging (PyKrige), enabling high-resolution
incidence maps. Field evaluations confirmed strong model performance, with overall
accuracy of 95.1%, F1-scores above 0.94 for all species, and only 1.1% false detections.
The kriging model achieved R? > 0.94 under dense sampling, accurately reproducing
ecological spatial patterns. Additionally, this thesis introduces AgroLablA, a digital
platform designed for the storage, annotation, and dissemination of agricultural pest
datasets. It provides curated, multi-format datasets suitable for training machine learning
models and supports the continuous expansion of new insect and weed classes. The
integrated environment that encompasses dataset generation, mobile detection, spatial
verification, and geostatistical mapping demonstrate a scalable and operationally robust
solution for precision pest monitoring. The results position the Agrolnsect database as an
effective tool for accelerating decision-making in integrated pest management,
particularly in regions with limited connectivity, thus contributing to the consolidation of
Agriculture 4.0.

Keywords: Computer vision; Deep learning; YOLO; Insect detection; Pest monitoring;
Precision agriculture; Ordinary Kriging; Geostatistics; Mobile applications; TFLite;
Agriculture 4.0.
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INTRODUCAO GERAL

A presente tese esta estruturada no formato de artigos cientificos, organizados de
maneira sequencial, complementar e interdependente, com o objetivo de propor, avaliar
e validar um sistema inteligente integrado para a deteccéo e 0 monitoramento espacial de
pragas agricolas em lavouras de soja e milho. O trabalho articula trés eixos centrais: (i) 0
desenvolvimento e a avaliacdo de modelos de visdo computacional baseados em deep
learning; (ii) a construcdo e disponibilizacdo de um dataset agricola curado e validado
por especialistas; e (iii) a implementacdo de uma aplicacdo movel embarcada, capaz de
realizar deteccdo em tempo real e apoiar analises espaciais das ocorréncias.

O Capitulo I, intitulado “Performance Analysis of YOLO and Detectron2 Models
for Detecting Corn and Soybean Pests Employing Customized Dataset”, apresenta uma
analise comparativa do desempenho de diferentes arquiteturas de deteccdo de objetos
amplamente consolidadas na literatura, com destaque para os modelos YOLO (v5, v7, v8
e v9) e o framework Detectron2. Sdo avaliados dois cendrios de treinamento distintos —
um dataset completo e um dataset reduzido — permitindo investigar de forma sistematica
o impacto do tamanho da base de dados na acuracia, precisdo, recall e capacidade de
generalizagdo dos modelos. Adicionalmente, os modelos com melhor desempenho séo
convertidos para os formatos ONNX e TensorFlow Lite (TFLite), possibilitando a analise
do impacto dessas conversbes na eficiéncia das inferéncias quando executadas em
dispositivos com recursos computacionais limitados. Os resultados evidenciam que,
mesmo em condi¢cbes menos favoraveis, os modelos mantém desempenho robusto,
reforcando a viabilidade para aplicacGes embarcadas.

O Capitulo II, intitulado “Agrolnsect: A Curated Dataset for the Identification of
Agricultural Insects of Interest in Corn and Soy”, dedica-se a apresentacdo do dataset
Agrolnsect, desenvolvido especificamente para atender as demandas de aplicagdes de
visdo computacional no contexto da agricultura brasileira. O capitulo descreve
detalhadamente o processo de aquisi¢do das imagens, a curadoria realizada com validagéo
dupla por especialistas em entomologia, a padronizacdo das classes e a organizacdo das
anotagdes em formatos compativeis com diferentes frameworks de deep learning. O
dataset contempla quatro espécies de insetos-praga de elevada relevancia econdmica —
Diabrotica speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda — e é
disponibilizado como um recurso aberto, com potencial de reutilizacdo, reprodutibilidade
cientifica e expansao futura. A principal contribuicéo deste capitulo reside na mitigagédo
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da lacuna existente na literatura quanto a disponibilidade de bases de dados agricolas
robustas, representativas e devidamente anotadas.

O Capitulo 1, intitulado “Monitoramento de Pragas Agricolas via Smartphone
com [A Embarcada e Mapeamento Geoestatistico”, integra os resultados metodoldgicos
e experimentais apresentados nos capitulos anteriores em uma solugdo aplicada e
operacional. Neste capitulo é descrito o desenvolvimento do aplicativo mével Agrolnsect,
capaz de realizar a deteccdo automatica de insetos diretamente no smartphone, sem
dependéncia continua de conectividade com a internet. O sistema contempla a captura de
Imagens em campo, a execucao local das inferéncias por meio de modelos otimizados, a
extracdo de metadados geoespaciais e a sincronizacgao das informagdes com base de dados
em nuvem quando disponivel. Complementarmente, os dados coletados sao utilizados
para a geracdo de mapas de calor e mapas interpolados por Krigagem Ordinaria,
permitindo a andlise da distribuicdo espacial das pragas. Avalia¢cbes conduzidas em
cenarios simulados e em condi¢des reais de campo demonstram a robustez do sistema,
bem como a aplicabilidade préatica no suporte a tomada de decisdo no manejo integrado
de pragas.

De forma integrada, os trés capitulos estabelecem um fluxo completo que abrange
desde a geracdo e validagdo dos dados, passando pelo treinamento, otimizagdo e
conversdo de modelos de deep learning, até a implementacdo de uma solu¢do embarcada
associada a analise geoestatistica das ocorréncias. Essa abordagem evidencia o potencial
da inteligéncia artificial embarcada e das geotecnologias como ferramentas estratégicas
para a consolidacdo da Agricultura 4.0, especialmente em contextos caracterizados por
limitacBes de infraestrutura e conectividade. Ao final, a tese contribui simultaneamente
com avang¢os metodoldgicos, cientificos e tecnoldgicos, apresentando solucdo escalavel,

robusta e alinhada as demandas reais da agricultura brasileira.
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OBJETIVOS
Geral

Desenvolver e validar um sistema inteligente para deteccdo e monitoramento
espacial de insetos-praga em lavouras de soja e milho, integrando um modelo de deep
learning otimizado para dispositivos moveis, um aplicativo embarcado em smartphone
para coleta georreferenciada e uma infraestrutura computacional capaz de armazenar,
sincronizar e analisar espacialmente a incidéncia das pragas por meio de técnicas de

geoestatistica.

Objetivos Especificos

- Construir, organizar e validar o conjunto de dados Agrolnsect, incluindo a curadoria das
imagens, a anotagdo individual dos insetos e a padronizagdo das classes Diabrotica
speciosa, Dalbulus maidis, Diceraeus spp. e Spodoptera frugiperda;

- Treinar e avaliar modelos de deteccdo de objetos baseados em YOLO, utilizando tanto
0 conjunto de dados completo (Agrolnsect) quanto o conjunto reduzido, a fim de
comparar o impacto do tamanho da base na acuracia e na capacidade de generalizacdo;

- Converter os modelos treinados para os formatos TFLite e ONNX, otimizados para
execucdo em dispositivos de baixo poder computacional, avaliando o desempenho,
consumo de recursos e a eficiéncia das inferéncias embarcadas em smartphone;

- Desenvolver o aplicativo mével Agrolnsect, responsavel por capturar imagens em
campo, realizar a detecgcdo localmente no dispositivo, extrair metadados (coordenadas
GNSS, horario, informacg6es contextuais) e registrar automaticamente cada ocorréncia;

- Implementar um mecanismo de sincronizacdo com banco de dados na nuvem,
garantindo armazenamento seguro, escalavel e estruturado das imagens, detecches e
metadados, permitindo analise temporal e espacial das ocorréncias;

- Aplicar técnicas de geoestatistica, especialmente a Krigagem Ordinaria, para gerar
mapas de calor e mapas interpolados da incidéncia dos insetos-praga, possibilitando
identificar padrdes de distribuicdo espacial e auxiliar na tomada de deciséo no manejo
integrado de pragas;

- Avaliar o sistema embarcado em condic¢des reais de campo, analisando robustez,
usabilidade, eficiéncia operacional, laténcia de inferéncia, estabilidade do aplicativo,

impacto das condi¢Ges ambientais e confiabilidade das deteccdes;
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- Integrar todo o fluxo operacional em um pipeline automatizado, envolvendo captura,
deteccdo, validagdo, sincronizacéo, interpolacdo espacial e visualizagdo, demonstrando a
aplicabilidade do sistema para monitoramento em tempo real mesmo em areas com

conectividade limitada.
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3 CAPITULO 1

PERFORMANCE ANALYSIS OF YOLO AND DETECTRON2 MODELS FOR
DETECTING CORN AND SOYBEAN PESTS EMPLOYING CUSTOMIZED
DATASET

(AGRONOMY — ISNN-2073-4395)

Abstract: One of the most challenging aspects of agricultural pest control is accurate
detection of insects in crops. Inadequate control measures for insect pests can seriously
impact the production of corn and soybean plantations. In recent years, artificial
intelligence (Al) algorithms have been extensively used for detecting insect pests in the
field. In this line of research, this paper introduces a method to detect four key insect
species that are predominant in Brazilian agriculture. Our model relies on computer vision
techniques, including You Only Look Once (YOLO) and Detectron2, and adapts them to
lightweight formats—TensorFlow Lite (TFLite) and Open Neural Network Exchange
(ONNX)—for resource-constrained devices. Our method leverages two datasets: a
comprehensive one and a smaller sample for comparison purposes. With this setup, the
authors aimed at using these two datasets to evaluate the performance of the computer
vision models and subsequently convert the best-performing models into TFLite and
ONNX formats, facilitating their deployment on edge devices. The results are promising.
Even in the worst-case scenario, where the ONNX model with the reduced dataset was
compared to the YOLOvV9-gelan model with the full dataset, the precision reached 87.3%,
and the accuracy achieved was 95.0%.

Keywords:  Spodoptera frugiperda; Diceraeus ssp.; Dalbulus maidis; Diabrotica
speciosa; deep learning; computer vision; pest control; agronomy; grain production;
ONNX; TFLite

3.1. Introduction

Securing enough food to satisfy the growing needs of the global population will
be one of the most critical challenges facing humanity in the future. The world population
is expected to reach 9 billion by 2050 [1], imposing on global leaders the challenge of
increasing agricultural production sustainably. However, there are several factors that
have impacted food production to meet global demand, such as forest preservation,
scarcity of productive areas, soil degradation in cultivated areas [2,3], decrease in water
resources [4], resistance to agricultural pesticides [5] and attack by insect pests [6].

In Brazil, agriculture contributed 25% to the gross domestic product (GDP) [7],
with a production in the 2022/2023 harvest season of 320 million tons of grains [8].
Notably, soybean and corn production plays a pivotal role, and they are cultivated across
several regions [7]. Historically, soybean production in the 2000s was 41.9 million tons,
but currently, these numbers have more than tripled, reaching 154.6 million tons.
Meanwhile, corn production during the same period increased from 35.2 to 131.9 million
tons [8].
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For example, agribusiness in Mato Grosso state represents 56.6% of the state’s
GDP, and so, it is crucial to maintain or increase productivity. The 2022/2023 corn harvest
yielded 50,731.2 tons [9], while during the same period, soybean production reached
45,316,887 tons [10]. The production of these grains is important for the state’s economy
and the entire production chain.

Given the above figures, it is evident that Brazil has established itself in the
international market as one of the largest producers and exporters of agricultural products
[11,12]. Therefore, it is necessary to invest in new technologies to maintain productivity
and maximize profits. The major challenge is to achieve higher production per planted
hectare and reduce the use of agricultural inputs for weed and pest control [13].

To maintain Brazil’s status as one of the world’s leading agricultural producers
and enhance profitability for farmers, the integration of computing technology in
agriculture is essential. Leveraging such technology can provide valuable information to
support informed decision making and drive efficiency in farming practices [14,15,16].
Within the technological realm, computer vision is a highly promising technology [17]
that has been applied in various areas of the production process to solve different
problems, such as yield prediction [18,19,20,21,22], disease detection [23,24,25,26],
weed detection [27,28,29], pest insect detection [30,31,32,33,34,35,36,37], species
recognition [38,39,40], crop improvement [41,42], water resource utilization [43,44,45]
and soil management [46,47].

In recent years, studies have advanced in the use of deep-learning techniques in
conjunction with computer vision technologies applied to agriculture [48,49,50,51].
Among the available systems, You Only Look Once (YOLO) and Detectron2 stand out,
with advanced capabilities for real-time target detection, efficiency, accuracy and speed
[52,53,54]. These technologies have been utilized for pest control, which can result in
decreased production and increased prices of the product and its derivatives [55,56,57].
Using such technologies to develop automated systems or platforms toward detecting and
identifying insect species in crops in real time, before populations escalate, could offer
significant advantages.

Deep learning (DL)-based solutions excel at object detection and identification
with high precision and speed. These solutions leverage the knowledge gained from
previously trained neural networks to expedite the training process for new applications

[58,59,60,61]. To achieve this, however, a proper, structured dataset containing images
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of the objects to be detected is essential, which demands a great deal of effort and
knowledge to be accomplished [62].

Driven by the need for more shared and categorized datasets for agricultural
research, Yuzhen Lu et al. [48] address a significant gap in the precision agriculture
literature by compiling publicly available image datasets used in computer vision
applications since 2015. A total of 34 public image datasets were identified and
categorized into three groups based on their purposes: 15 datasets related to weed control,
10 dedicated to fruit detection and the remaining 9 for other applications.

Considering effective approaches that use computer vision to detect insects in
crops, YOLO versions 3, 4 and 5 were used by S. Verma et al. [49] for the detection of
five other insect species (distinct from the ones addressed here) that also attack soybeans.
They concluded that YOLO v4 and YOLO v5 can be applied for the automatic
identification of insects in different agricultural crops. Park et al. [30] developed a deep-
learning prediction platform on unmanned ground vehicles with three different models
for object detection: MRCNN, YOLO v3 and Detectron2. All models achieved
satisfactory results in detecting Riptortus pedestris (R. pedestris). The three models
showed a mean average precision (mAP) performance of 0.95797, 0.97541 and 0.94435,
respectively.

A two-stage classification model, named MaizePestNet, was developed based on
EfficientNet-B0 and the Grad-CAM algorithm to locate targets and minimize background
interference, thus achieving improved classification performance [50]. A dataset was
created that includes 36 common maize pests, such as Spodoptera frugiperda, covering
both adult and larval stages. The models proposed by the authors achieved the lowest
average accuracy of 83.18%, while the highest average accuracy was 94.22%. This
performance surpassed that of the control models ResNet101 and DenseNet161, which
had average accuracies of 88.2% and 84.81%, respectively.

Another key issue in this area is the deployment of the aforementioned computer
vision models on resource-constrained (edge) devices. This is crucial because such
devices offer advantages like lower costs, reduced energy consumption and portability.
However, deploying insect detection systems on resource-constrained devices poses a
significant challenge due to the limited computational capacity of the equipment and the
complexity of the application scenarios. Rustia et al. [40] developed a remote system for

continuous monitoring of insect pests in an outdoor mango orchard. The proposed deep-
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learning algorithm succeeded in recognizing pest insects of various sizes, achieving an
F1-Score of 0.96% and an average processing time of 10.93 s on a Raspberry Pi Zero W.

To enable the deployment of large computer vision models on edge devices,
frameworks such as ONNX and TFLite [63] have been developed. These frameworks
optimize the mathematical functions of the models to fit the constraints of limited
hardware. For instance, Lim et al. [64] utilized ONNX to effectively convert models for
compatibility with specific frameworks. An integrated framework was developed that
allows for exploring and customizing the inference operations of various convolutional
neural network (CNN) models on embedded edge devices.

Although the above studies show promising results, there is still a gap to be
addressed regarding the size of the dataset required for training the models and the
detection capabilities of models converted to ONNX and TFLite formats [63].

In this paper, we created a dataset called Agrolnsect, which includes existing
images of the following insect species: Diabrotica speciosa, Dalbulus maidis, Diceraeus
spp. and Spodoptera frugiperda. From this image collection, we derived a Reduced
dataset containing 100 images of each such species. To assess the detection capability of
the models according to the dataset size, we utilized Detectron2 and YOLO models
(versions v5, v7, v8 and v9 (c and gelan)). The best results from each model combined
with the dataset were converted to ONNX and TFLite formats to evaluate detection
performance. Effective detection with these converted models paves the way for their use
in devices with limited computational resources, such as smartphones and
microcontrollers, and facilitates the development of low-cost applications capable of
autonomous operation. Compared to previous studies, our research delves into the
challenges of testing models with reduced datasets, allowing for the incorporation of new
insect species into detection models with a limited number of samples. This study is
expected to advance the development of insect detection applications on resource-
constrained devices.

The remainder of this paper is organized as follows. The Section 2 details the
development process, including dataset creation, model selection, model conversion and
evaluation metrics. Section 3 provides the evaluation results. In Section 4, we present and
discuss the main findings. Finally, the Section 5 outlines the key insights and suggests

directions for future research.
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3.2. Materials and methods
3.2.1. Dataset Acquisition

Four economically significant pest insects found in corn and soybean crops in the
State of Mato Grosso were selected for this study, as presented in Figure 1: Diabrotica
speciosa [65,66,67], Dalbulus maidis [68,69], Diceraeus spp. [67,70,71,72,73],
Spodoptera frugiperda [55,67,74,75,76].

(@)

Figure 1. Insects selected for the dataset. (a) Diabrotica Speciosa; (b) Dalbulus Maidis; (c) Diceraeus ssp.; (d)
Spodoptera Frugiperda.

To ensure the reliability of the data used and the four evaluated species, a total of
1510 images were gathered. One part of these images was sourced from the iNaturalist
database (inaturalist.org) [77,78], and another part was captured in the field by the authors

themselves and validated by entomology experts.

3.2.2 Compilation of the Agrolnsect Dataset

The object detection methods used in the experiments conducted in this work
require image annotations for supervised learning. These annotations include information
about the region of interest (ROI), classification target and class information [79,80].

To test the efficiency of Detectron2 and the YOLO family, the Agrolnsect dataset
was created, encompassing 1510 images. From this dataset, a subset of images for training
was extracted and is referred to in this work as the Reduced dataset. Many existing works
use random selection of the images in the dataset for training, validation and test images
[38,49,67]. However, one of the goals of this work was to measure the detection capability
of different models. To ensure that all models were trained under the same conditions, the
first one hundred images from each class were selected for use in all training sessions
with the Reduced dataset. Training with the Agrolnsect dataset was performed using all
available images, except those selected for validation and testing. The same

predetermined selection criterion was applied to the choice of the fifteen validation
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images and the twenty-five test images. All models trained with both datasets were tested
with the same images to avoid any results being influenced by image complexity or other
factors. All the evaluated models were able to make successful inferences on images
featuring multiple insects or different classes. However, to simplify the interpretation of
test results for each class in the confusion matrix, we used only images containing a single
insect. Table 1 presents the number of images and annotations for each class in the
Agrolnsect and Reduced datasets, respectively. The difference between the number of
images and annotations is due to some images containing more than one insect of the
same species (one annotation per insect); however, this situation did not occur with the
images and annotations used for validation and testing, since we chose here only images
with a single insect.

Annotations for the 1510 images were created using Label Studio version 0.9.1,
an open-source software that stores annotations in JSON format within an SQLite or
PostgreSQL database. The software allows exporting to different formats [81]. After
annotating and labeling all images, they were exported to the YOLO format with the
configuration [class_id X, y, w, h]. These parameters are used to represent an object in a
computer vision system. The annotation files were saved with the same names as the
images, and the configurations for the file paths that feed the model

(training/validation/test) were saved in a YAML file.

Table 1. Division of datasets for each insect class and their annotations for training and evaluation of deep-learning
models.

Classes
Dataset
Diabrotica  Dalbulus  Diceraeus Spodoptera  Total
speciosa maidis ssp. frugiperda
591 177 248 334 1350
Agrolnsect
599 280 257 358 1496
100 100 100 100 400
Reduced
100 156 104 102 462
15 15 15 15 60
Validation

15 15 15 15 60
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25 25 25 25 100

Test
25 25 25 25 100

3.2.2. Training Methods

The Detectron2 used in this research is an updated version of the original
Detectron framework, developed and presented by Facebook Al Research on 9 October
2019. This new version focuses primarily on object detection and instance segmentation
tasks. The deep-learning library used was PyTorch, enabling integration with other neural
network architectures. Detectron2 utilizes pretrained models with large image datasets
[82,83].

YOLO emerges as an innovative model for object detection, offering a unified
and efficient solution for use in computer vision. Its simplicity in construction and direct
training on complete images set it apart from traditional approaches, making it ideal for
real-time applications. Unlike classifier-based methods, which operate in separate stages,
YOLO stands out with its unique architecture. The model is trained on a single loss
function directly related to detection performance, optimizing the process and ensuring
accurate results. It is recognized as the fastest general-purpose object detector in the
literature, paving the way for a range of innovative applications. Its ability to operate in
real time and adapt to different scenarios makes it ideal for a wide range of applications
in areas such as security, industry, medicine, agriculture and transportation [52].

The models were tested using the two datasets created (Agrolnsect and Reduced)
and included YOLO models (v5, v7, v8 and v9, both ¢ and gelan versions). The models
that demonstrated the best precision were then converted to ONNX and TFLite formats,
which are optimized for deployment on devices with limited computational resources. As
the algorithms to convert YOLO version 9 (c and gelan) to the TFLite and Detectron2 to
ONNX and TFLite are not yet publicly available, they were not converted.

The training of the models was conducted using Google Colab [84,85], a cloud-
based notebook service provided by Google, which allows writing and executing Python
code directly in the browser and provides graphics processing units (GPUs) and tensor
processing units (TPUSs) to accelerate machine-learning and deep-learning tasks. Using
Google Colab enables researchers to conduct evaluations without the need to purchase

acceleration hardware. The configuration used for training and inference in this research
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included a T4 GPU accelerator (Nvidia, Santa Clara, CA, USA), with data integration

saved in Google Drive.

3.2.3.Conversion Methods to ONNX and TFLite

The conversion of YOLO models to ONNX or TFLite formats offers several
advantages, including portability, efficiency and integration with a wide range of
platforms and devices [64,86,87]. Given these benefits, the models were converted to
ONNX and TFLite formats after the initial training with the selected datasets. It is
noteworthy that version 7 required more effort during the conversion process, as it did
not have a standard implementation in the file available on the GitHub repository.
Additionally, versions 9 were converted only to ONNX, as TFLite was not available at

the time of this research work.

3.2.4. Models’ Parameters and Evaluation Metrics

The models used in this paper involve numerous hyperparameter settings.
However, the aim of the research was not to evaluate the effectiveness of different
configurations but to assess the model’s ability to correctly detect pest insects. To this
end, some adjustments were made to the default settings of the models, as detailed in
Table 2, which also provides information on several important parameters for the
networks. It is worth noting that Detectron2 works with a very small learning rate to

converge efficiently.

Table 2. Some important hyperparameters for configuring the Detectron2 and YOLO models.

Model Detectron2 YOLOv5n YOLOv7 YOLOv8 YOLOv9-c YOLO
\V9-
gelan

Layers 50 168 106 25 70 42

Activation RelLu? RelLu ReLu Leaky R* Leaky R ReLu

Function

Loss Cross- BCE3 Cross- Combine DFL DFL?

Function entropy entropy  dloss
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Optimizer SGD? Adam SGD Adam Adam SGD 2
Learning 0.00005 0.01 0.01 0.001 0.01 0.01
Rate

Batch Size 2 16 16 16 16 16
Epochs 10.000 300 300 300 300 300
Regulariza L2 L2 L2 L2 L2 L2
tion

! Rectified Linear Unit, 2 Stochastic Gradient Descent, 3 Binary Cross-Entropy, * Leaky Rectified Linear

Unit, * Distillation-Augmented Feature Loss.

In this research, precision (P), accuracy (A), recall (R), F1-Score (f1) and
confusion matrix are useith additional Python scripts in Visual Studio Code. The metric
results were saved in spreadsheets for discussion.

To understand the results, it is important to understand the variables: true positive (TP)
represents what was correctly predicted; true negative (TN) indicates that the model
correctly predicted that a class is not present; false positive (FP) occurs when the model
makes an incorrect detection; false negative (FN) occurs when the model fails to predict
an object in the image.

The model’s precision is calculated by Equation (1), which is the ratio of the number of

true positive examples predicted to the total of true positive and false positive predictions.

Precision (P) = TP/TP + FP 1)

The model’s accuracy is the product of all true predictions divided by the total

number of predictions, as follows:

Accuracy = (TP + TN)/(TP + FN + TN + FP) 2)

Equation (3) presents the recall, which measures the proportion of true positives

correctly identified.

Recall = TP/TP + FN 3)
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The F1-Score is a metric that combines precision and recall, expressed in Formula

(4).
F1=2x(PxR)/(P+R) 4)

In addition to the metrics presented above, an important tool used in this work to
visualize and analyze the performance of neural network models in object detection is the
confusion matrix [91,92,93,94]. According to Markoulidakis et al. [95] and Farhadpour
et al. [96], this is a powerful tool for analyzing the performance of classification
algorithms. Figure 2a,b show the confusion matrix used for binary and multiclass
classification problems. Figure 2a displays a confusion matrix for binary classification
with dimensions of 2 x 2, having the actual class labels ‘Positive’ and ‘Negative’, and the
predicted elements (positive and negative) compared with the actual class labels, resulting
in true positives (TPs), true negatives (TNs), false positives (FPs) and false negatives
(FNs). On the other hand, the multiclass confusion matrix (Figure 2b) is a structure with
dimensions N x N, where N is the number of classes. The predicted values are compared
with the actual values and summed at the position (actual class, predicted class). The

higher the values of Xn = Yn, the more efficient the model.

__ Predicted Class
cY, cY, [ e | cy,

CXy

Predicted Class

CX; | 3CX;-CY,

2
2
(]
Positive | Negative = |
Actual Positive TP EN g - . |
Class Negative FP ™ CX, 5 CXCYs
(a) (b)

Figure 2. Examples of confusion matrices. (a) Confusion matrix for binary classification problem. (b) Confusion
matrix for multiclass classification problem.

3.3 Results
3.3.1.Evaluation of the Detectron2 Model in Insect Detection

Figure 3 presents the loss function of Detectron2 trained with both datasets. The

value of the loss function gradually decreased as the iterations progressed.
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Figure 3. Evolution of the loss function of Detectron2 over iterations with training executed on the Reduced dataset
(a) and on the Agrolnsect dataset (b).

Despite different amounts of data, both models showed a sharp decline in error
rate before 2000 epochs, with a less pronounced decline starting around epoch 4000.
Figure 3a, which represents training on the Reduced dataset, exhibited a more continuous
decline compared to the graph of the Agrolnsect dataset.

The decrease in loss score with increasing iterations indicates that the model is
learning and improving its object detection performance. The point where the decline
slows down signals a decrease in the model’s generalization ability.

The results of the inferences made with the Detectron2 model are presented in
Table 3.

Table 3. Metrics per class after inference of test images using the Reduced and Agrolnsect datasets with the
Detectron2 model

Dataset Classes Precision Recall F1-Score Accuracy
Diabrotica Speciosa 92.31 96 94.12 97.12
. Dalbulus 96.15 100 98.04 99.04
Agroinsect
Diceraeus 100 96 97.96 99.04
Spodoptera Frugiperda 96.15 100 98.04 99.04
General 94.23 9423 94.23 97.69

Diabrotica Speciosa 92.31 96 94.117 97.0874
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Dalbulus 96.15 100 980392  99.0201
Reduced  pjceraeus 100 92 95.83 98.06

Spodoptera Frugiperda 100 100 100 100

General 94.17 9417 9417 97.67

The consistency in these values (94.23% for precision, recall and F1-Score)
suggests that the model is well balanced in its ability to correctly identify positive and
negative classes. The high accuracy of 97.69% indicates that, in addition to being good
at correctly predicting the positive class, the model also classifies samples from the
negative classes correctly. The decrease from 94.23% to 94.17% in precision, recall and
F1-Score metrics was minimal, indicating that the model’s performance remained almost
unchanged even with the dataset reduction. Similarly, the accuracy variation was also
very small, decreasing from 97.69% to 97.67%.

Figure 4 illustrates the performance of the inference conducted using the
Detectron2 model applied to the four types of insects investigated in this study. The figure
clearly demonstrates the model’s ability to accurately identify and classify the insects in
the images from the datasets used. It was observed that the model was able to accurately
predict the presence of insects in both training datasets, highlighting its robustness and
reliability. Additionally, the analysis revealed that the model performed consistently
across all variations in these insect images. These observations suggest that Detectron2 is
effective for insect detection tasks, underscoring its utility for practical applications in

pest monitoring.

(@)

(b)

Figure 4. Prediction with Detectron2 and custom dataset. (a) contains the resulting images from the model trained
with the Reduced dataset, and in (b), the images are from the Agrolnsect dataset.
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The confusion matrix (Figure 5) for Detectron2 with the two datasets shows high
performance. The model had no difficulty in locating the insects; however, the best results
were obtained for the Dalbulus and Spodoptera frugiperda classes, with all samples being
detected.

3.3.2.Evaluation of the YOLO Model for Insect Detection
Table 4 presents the versions of the YOLO model used in this study along with

the sizes of the original model and the sizes after training with the datasets
(Agrolnsect/Reduced).

Confusion Matrix - Detectron2 - Reduced Dataset Confusion Matrix - Detectron2 - Agrolnsect Dataset
3 0 ( 1 2 Diabroti 0 0 ( 1
Fogpa o g _
= 1 1. BackGr 0 1

Figure 5. Confusion matrix of the Detectron2 model trained with the Reduced dataset (a) and the Agrolnsect dataset
(b). The background includes insects detected where none existed.

The reduction in model complexity, fewer parameters to adjust, more effective
regularization and reduction in data diversity contribute to the model size reduction. After
training with the Reduced dataset, the YOLOv5, YOLOV8 and YOLOvV9-c versions
showed a decrease in size compared to the original model. The increase in the size of the
YOLOvV7 and YOLOV9-gelan models following training may be due to a combination of
factors, including modifications to the model architecture, more detailed storage of
weights and parameters and the complexity of the training data. The models might have
stored weights with higher precision or in different formats, leading to a larger file size.
When models use higher precision for weight representation, this can significantly
contribute to increasing the final model size.

Table 5 shows the performance metrics, including precision, recall, F1-Score and
accuracy, for different versions of YOLO models evaluated on the two distinct datasets.
The results show that the YOLOV5 model achieved precision, recall and F1-Score of

85.58% with the Reduced dataset. However, with the Agrolnsect dataset, these metrics
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significantly improved to 98.04%. Accuracy specifically increased from 94.23% to
99.22% when using the complete dataset. YOLOv7 showed similar performance, with
precision, recall and F1-Score of 86.67% on the Reduced dataset and 96.12% on the
Agrolnsect dataset. Accuracy also increased from 94.67% to 98.45% on the Agrolnsect
dataset. YOLOV8 obtained values of 86.54% for precision, recall and F1-Score with the
Reduced dataset and 96.08% with the Agrolnsect dataset. The accuracy for this model

increased from 94.62% to 98.43% between the two datasets.

Table 4. Different versions of YOLO and the size of each model after training with specific datasets.

YOLO Model Dataset Original Size  Training Size
version (MB) (MB)
Reduced 3.7
YOLOv5 YOLOv5N 3.9
Agrolnsect 13.8
Reduced 284.7
YOLOv7 YOLOv7 72.1
Agrolnsect 284.7
Reduced 6
YOLOv8 YOLOv8n 6.2
Agrolnsect 35
Reduced 98
YOLOV9-c 98.4
Agrolnsect 98
YOLOV9
Reduced 195.2
YOLOV9-gelan 49.1
Agrolnsect 195.2

The YOLOvV9-c model exhibited a slight variation in accuracy from 98.81% to
98.82%, with precision, recall and F1-Score of 97.03% on the Reduced dataset,
improving slightly to 97.06% on the Agrolnsect dataset.

Finally, YOLOv9-gelan achieved 96.08% in precision, recall and F1-Score with
the Reduced dataset and 98.04% with the Agrolnsect dataset, with accuracy increasing

from 98.43% to 99.22%. Overall, the performance metrics for all YOLO models showed
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a significant improvement when evaluated with the Agrolnsect dataset compared to the
Reduced dataset. However, it is important to note that the smaller dataset also yielded
satisfactory results, paving the way to its use in resource-constrained devices.

Figure 6 shows the learning curves that outline the training processes of the
models over epochs. The optimizer updated the model weights, reducing losses and
improving their performances. It is possible to see the model’s learning capacity and
potential overfitting or underfitting. Figure 6(a-1) presents the learning curves (total loss)
for all YOLO maodels trained with the Reduced dataset, while Figure 6(a-2) highlights the
class loss. Similarly, Figure 6(b-1) illustrates the box loss, and Figure 6(b-2) shows the
class loss for the models trained with the Agrolnsect dataset. It can be observed that box,
class and objectivity loss decreased over the training time (epoch) as the model learned

to locate, identify and detect insects with greater confidence.

Table 5. Comparison of model performance metrics based on different training datasets and YOLO versions.

YOLO Version Dataset Precision % Recall % F1-Score % Accuracy %

Reduced 85.58 85.58 85.58 94.23
YOLOvV5

Agrolnsect 98.04 98.04 98.04 99.22

Reduced 86.67 86.67 86.67 94.67
YOLOv7

Agrolnsect 96.12 96.12 96.12 98.45

Reduced 86.54 86.54 86.54 94.62
YOLOv8

Agrolnsect 96.08 96.08 96.08 98.43

Reduced 97.03 97.03 97.03 98.81

YOLOV9-c
Agrolnsect 97.06 97.06 97.06 98.82
Reduced 96.08 96.08 96.08 98.43
YOLOvV9-gelan
Agrolnsect 98.04 98.04 98.04 99.22

The YOLOV8, YOLOV9-c and YOLOvV9-gelan versions experienced early
stopping, halting training when the model showed no sign of improvement in the last
epochs with the Agrolnsect dataset, and with the Reduced dataset, only the YOLOV9
versions experienced this early stopping. This early stopping parameter can be

configured, but in this research, the versions used the default setting, considering the last
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100 epochs. With the Agrolnsect dataset, the selected models performed well in
training/learning with faster convergence, without reaching the 300 epochs used in
training, except for the YOLOv5s and YOLOV7 models, which went up to the end of the

300 epochs for the insect datasets.
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a Yolov7
k] Yolové

—— Yolov9-
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Figure 6. Loss curves for YOLO models trained on two different datasets (Reduced dataset and Agrolnsect dataset,
respectively), where (a-1,b-1) represent the total loss, and (a-2,b-2) represent the class loss.

Figure 7a, b present the precision curve during the training of the YOLO models
used in this research. The YOLOv7 model, during training on both datasets, showed a
later convergence; however, before 100 epochs, it managed to stabilize the precision
result. The other models had a faster convergence around epoch number 40, with the
result stabilizing until the end of the training, which is very similar to the results presented
by Badgujar et al. [62] in a study on insect identification.

Figure 8 illustrates the training graph of the YOLOvV5 model over 300 epochs with
the Reduced dataset. Despite showing the lowest Precision value among all the values in
Table 5, it is observed that the model converged without much fluctuation in box_loss
and cls_loss. The Recall values, which measure the model’s ability to find all objects

present in the image, reached 80% before 100 epochs.
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Figure 7. Precision curve of YOLO model training: (a) Reduced dataset; (b) Agrolnsect dataset.

The YOLOv9-gelan achieved the highest precision among all models and
datasets. Figure 9 presents the training results of the model, with a significant drop in
box_loss, reaching an mAP@[0.50] above 90% and a Recall metric above 80%. The
mAP@[0.50] and Recall are important metrics for evaluating the performance of object
detection models, as they measure precision and coverage of detection, respectively.

Figure 10 illustrates the confusion matrix for five YOLO models used in the
experimental study, trained with a Reduced dataset to classify four insect classes. It is
observed that even in YOLOV5, YOLOv7 and YOLOV8 versions, which did not achieve
a precision higher than 90% (Table 5), the false negatives in the last column of each model
and false positives in the last row were low.

The YOLOvV5s model had the lowest overall precision; however, it correctly
classified 22 out of 25 Diabrotica speciosa images used in the test, 1 image as Dalbulus,
and it failed to detect 2 images. In the Dalbulus class, 24 images were correctly classified,
with four false positives and one false negative, while the other two classes followed a
similar pattern with good precision. The standout among the models using the Reduced
dataset was the YOLOV9-gelan version, which, out of 100 images used for testing, failed
to predict only 2 images and had two false positives for the Dalbulus and Diceraeus

classes.
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Figure 8. Metric curve of YOLOV5s trained with the Reduced dataset.
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Figure 9. Training metrics curve of YOLOv9-gelan: Agrolnsect dataset with the best result among model/dataset

combinations.

Figure 10 illustrates the confusion matrix for five YOLO models used in the

experimental study, trained with a Reduced dataset to classify four insect classes. It is
observed that even in YOLOV5, YOLOvV7 and YOLOVS versions, which did not achieve
a precision higher than 90% (Table 5), the false negatives in the last column of each model

and false positives in the last row were low.
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Figure 10. Confusion matrix of YOLO models with Reduced dataset.

The YOLOvV5s model had the lowest overall precision; however, it correctly
classified 22 out of 25 Diabrotica speciosa images used in the test, 1 image as Dalbulus,
and it failed to detect 2 images. In the Dalbulus class, 24 images were correctly classified,
with four false positives and one false negative, while the other two classes followed a
similar pattern with good precision. The standout among the models using the Reduced
dataset was the YOLOV9-gelan version, which, out of 100 images used for testing, failed
to predict only 2 images and had two false positives for the Dalbulus and Diceraeus
classes.

The confusion matrix presented in Figure 11 was used to demonstrate the
excellent capability of the YOLO models trained with the Agrolnsect dataset. During the
evaluation of the YOLOv5s and YOLOv9-gelan models on a test set, a low error rate was
observed, with only two false positives recorded. The Dalbulus class presented greater
difficulty for all tested models, with two false positives in each case. In summary, the
visualization of the confusion matrix provides a more comprehensive understanding of
the performance of the object detection models, highlighting the areas of success and
opportunities for improvement. Identifying specific error patterns, such as those observed
in the Dalbulus class, is crucial for guiding future adjustments and refinements in

detection algorithms.
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Figure 11. Confusion matrix of YOLO models with Agrolnsect dataset.

Figure 12 illustrates the performance of YOLOv9-gelan in insect detection,
showcasing inference results on eight images from the Agrolnsect dataset. Each insect
class is represented by two images, highlighting YOLOV9-gelan’s ability to accurately

identify insects across various colors and textures.

1d
(a)

Figure 12. Insect detection with YOLOv9-gelan: (a) Diabrotica speciosa; (b) Dalbulus maidis; (c) Diceraeus ssp.; (d)
Spodoptera frugiperda.

Table 6 presents a detailed comparison of the performance parameters for five
YOLO models after conversion to ONNX and TFLite formats. The models were trained
on the two datasets used in this work. The table shows the comparison of precision, recall,
F1-Score and accuracy for each model and format combination across both datasets. This
comparison highlights variations in model performance based on the dataset and
conversion format. Understanding these variations is essential for evaluating the

effectiveness of each YOLO version.
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Table 6: Comparison of performance parameters for models converted to ONNX and TFLite.

Model Dataset Conversion Precision % Recall % F1-Score % Accuracy %

Reduced  ONNX 94.23 94.23 94.23 97.69

Reduced  TFLite 94.23 94.23 94.23 97.69
YOLOV5

Agrolnsect ONNX 96.15 96.15 96.15 98.46

Agrolnsect TFLite 96.15 96.15 96.15 98.46

Reduced  ONNX 94.23 94.23 94.23 97.69

Reduced  TFLite 94.23 94.23 94.23 97.69
YOLOv7

Agrolnsect ONNX 96.15 96.15 96.15 98.46

Agrolnsect TFLite 96.15 96.15 96.15 98.46

Reduced  ONNX 86.54 86.54 86.54 94.62

Reduced  TFLite 86.54 86.54 86.54 94.62
YOLOv8

Agrolnsect ONNX 96.12 96.12 96.12 98.45

Agrolnsect TFLite 96.12 96.12 96.12 98.45

Reduced  ONNX 96.97 96.00 96.48 98.25
YOLOV9-c

Agrolnsect ONNX 97.09 97.09 97.09 98.84

Reduced  ONNX 97.03 97.03 97.03 98.81
YOLOv9-gelan

Agrolnsect ONNX 98.04 98.04 98.04 99.22

The results presented in Table 6 demonstrate that for the Reduced dataset, both
YOLOV5 and YOLOvV7 achieve consistent performance, with precision, recall and F1-
Score of 94.23% and accuracy of 97.69% across ONNX and TFLite formats. In contrast,
YOLOvV8 shows reduced metrics, with precision, recall and F1-Score of 86.54% and
accuracy of 94.62% in the same formats. For the Agrolnsect dataset, all models perform
better, with YOLOV5 and YOLOV7 reaching 96.15% in precision, recall and F1-Score
and accuracy of 98.46%. YOLOV8 also maintains high metrics at 96.12% for precision,
recall and F1-Score, with an accuracy of 98.45%. Notably, YOLOvV9-c and YOLOv9-
gelan exhibit superior results, with YOLOvV9-gelan achieving the highest metrics of
98.04% for precision, recall and F1-Score and accuracy of 99.22% on the Agrolnsect
dataset.

The results of the inferences made with the converted models applied to the test
data are presented in Table 6. It is important to note that all metrics for the model/dataset

combinations achieved results above 94%, except for the YOLOv8 model applied to the
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Reduced dataset, which reached 86.54% precision, recall and F1-Score and 94.62%
accuracy.

The results for the YOLOv5s model trained with the Reduced dataset and
converted to TFLite, and the YOLOV9-gelan model with the Agrolnsect dataset and

converted to ONNX, can be observed in the confusion matrix (Figure 13).
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Figure 13. Confusion matrix of YOLO models: (a) Detection result for YOLOv5s—TFLite with Reduced dataset; (b)
Detection result for YOLOv9-gelan—ONNX with Agrolnsect dataset.

Figure 14 displays a selection of detection results from the YOLOv5s-TFLite and

YOLOvV9-gelan—~ONNX models, illustrating successful detection across all four

challenging categories.

(a)

Figure 14. Inferences with ONNX and TFLite: (a) YOLOv5s—TFLite result; (b) YOLOv9-gelan—ONNX result.

3.4. Discussion

Data processing is a critical step in supervised deep learning, as feeding irrelevant
or incorrect data can significantly affect model performance, as noted by Badgujar et al.
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[62]. Y. Luand S. Young [48] reported the scarcity of public image datasets, describing
this situation as a crucial bottleneck for rapid prototyping and evaluation of computer
vision and machine-learning algorithms applied to agriculture, thus justifying the need
for evaluations with smaller datasets, which could facilitate the development of
applications without requiring a large dataset. Good precision and accuracy using a
dataset with few images pave the way for incorporating new insects into the model
without the need for extensive efforts to collect many images and annotations.

During the development of this work, no other dataset with the same insect classes
evaluated here was found in the literature. However, to get an idea of the performance of
YOLO and Detectron2 algorithms, we compared our results with other papers that we
found sufficiently close to our approach, and we summarized them in Table 7. The
approach by S. Verma et al. [49] used YOLO versions 4 and 5 for detecting five insects
and achieved precisions of 99% and 93.20%, respectively. Considering that our best
results were achieved with YOLOv5s and YOLOv9-gelan versions with a precision of
98.04% in both cases, the 0.96% difference between the two evaluations may be
associated with the number of images used in training. They used 3710 images, while we

only used 1510 images.

Table 7: Comparison of results obtained with the models proposed in this work and those available in the literature,
including the number of classes, dataset and metrics.

Model Classes Dataset Precision Recall F1-Score Accuracy
YOLOvV5s 4 Agrolnsect 98.04% 98.04% 98.04% 99.22%
YOLOvV5s 4 Reduced 85.58% 85.58% 85.58% 94.23%
YOLOv7 4 Reduced 86.67% 86.67% 86.67% 94.67%
YOLOv8 4 Reduced 86.54% 86.54% 86.54% 94.62%

YOLOvV9-gelan 4 Agrolnsect 98.04% 98.04% 98.04% 99.22%

Detectron2 4 Agrolnsect 94.23% 94.23% 94.23% 97.69%
YOLOV5s [49] 5 - 93.20% 99.60% 96% -
YOLOv4s [49] 5 - 99% 93% 96% -
YOLOv7-Adam [97] 3 - 99.95% - - -
Maize-YOLO [98] 13 - 73.30% 77.30% 75.10% -

New Version-5x [99] 7 - 86.80% 88.60% 87.80% -
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YOLOv3/5 [100] 6 - 92.70% 93.90% 93.20%
EfficientNet-Br [50] 36 - 93.51% 97.14% 94.68%
YOLOV3 [67] 12 - 95.15% 75.79% 84.35% 72.96%
YOLO-MPNET—OSW [101] 3 - 94.14% 91.99% 93.05%
YOLOv5-Modificado [102] 2 - 86.84% 84.58% 85.69%
CNN [51] 5 - 97.00%
InceptionV3 [51] 5 - 97.00%
YOLOVS5 [51] 5 - 98.75%

The authors Zhang et al. [97], using the YOLOv7 model and the Adam optimizer,
achieved a precision of 99.95% for the classification of Diabrotica virgifera, Zea mays,
Spodoptera frugiperda and Helicoverpa zea, which is higher than the 98.04% precision
obtained by the best models proposed in this study.

As mentioned, good efficiency using a reduced dataset paves the way for
incorporating new insects into the model without the need for many samples. The results
achieved with the models using the Reduced dataset were superior to those obtained by
Yang et al. [98], who achieved a precision of 73.30%, recall of 77.30% and F1-Score of
75.10% in detecting 13 insects. YOLO models (v5, v7, v8) combined with the Reduced
dataset achieved precision results close to the 86.8% obtained by Kumar et al. [99] and
Slim et al. [102].

Among the training combinations with YOLO versions and the Agrolnsect
dataset, YOLOV8 provided the worst results, with 96.08% precision, recall and F1-Score
and an accuracy of 98.43%. However, these values are higher than those achieved by
Bjerge et al. [100], who, among ten models, achieved the best precision at 92.7%, recall
at 93.9% and F1-Score at 93.2%.

The results generated with the models applied in this work are consistent with the
values from a study on corn earworm (Spodoptera frugiperda) in Chinese cornfields for
detection from larval to adult stages presented by Zhang et al. [50], who achieved a good
balance between precision and cost, with a precision of 93.51%, recall of 97.14% and F1-
Score of 94.68%.
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This study is relevant compared to other studies on pest insects attacking soybean
crops. In a recent work published by Tetila et al. [67], which aimed to identify 12 different
classes, including 2 at two stages (nymph and adult) in the State of Mato Grosso do Sul
in Brazil, the best precision achieved was 95.15%.

Another insect detection study with three classes achieved the best precision of
94.14%, recall of 91.99% and F1-Score of 93.05% for the C. medinalis class using
YOLO-MPNET with OSW, as reported by Sun et al. [101]. Using the YOLOv5 model,
they achieved the best precision of 71.26%, while our work achieved a precision of
85.58% using the same model with a reduced dataset.

With a precision of 94.23% for Detectron2 and 98.04% for YOLOv5s, the models
evaluated here demonstrated more consistent results than those presented by Slim et al.
[102], who achieved a precision of 86.84% in detecting the Mediterranean fruit fly
Ceratitis capitata and the peach fruit fly Bactrocera zonata.

A study conducted for the detection of five classes of insects that attack soybeans
in India yielded excellent results, with an accuracy of 97% using CNN and Inceptionv3
models and 98.75% using YOLOV5 in the work presented by Trikey et al. [51]. However,
the results achieved in our studies were superior, with YOLOvV5s and YOLOv9-gelan
models achieving 98.04% accuracy.

The equal value observed in this paper regarding the precision, recall and F1-
Score metrics can be explained by the presence of a balanced test set, coupled with the
model’s ability to generalize consistently across all classes. This pattern reflects a robust
and balanced model performance, suggesting an absence of bias toward any specific class
and the ability to make accurate predictions across all categories.

As presented in Figure 5, the confusion matrix demonstrates the models’ ability
to correctly detect classes with few false positives and negatives.

To run on edge devices with limited computational resources, the model size can
be a determining factor. After analyzing the results of the research published by Ye et al.
[103] with a 12 MB model and the data in Table 4, it is evident that there is room for
improvement in reducing our model sizes, as our results showed that the YOLOv9-gelan
model had a size of 195.2 MB.

As shown in Table 6, with the conversion of the models, YOLO v5, v7 and YOLO
9-gelan with a reduced dataset showed improved accuracies, while v8 maintained results
for the smaller dataset and improved with the full dataset. The YOLO 9-c model did not
show much variation. Once converted to standard formats, such as ONNX or TFLite, the
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models can be run on a variety of platforms and devices, including mobile devices,
embedded systems and servers. This provides greater flexibility for deploying YOLO

models in different environments.

3.5. Conclusions

This paper presents an approach based on deep-learning models to detect four
species of insects found in corn and soybean crops. Our technique evaluates various
setups with YOLO and Detectron2 models. In order to render our method deployable in
resource-constrained devices, we compared the two mentioned computer vision models
on a full (Agrolnsect) and a smaller subset (Reduced) dataset and finally converted the
best-performing models into TFLite and ONNX formats.

The Detectron2 and YOLO models demonstrated strong performance in detecting
and classifying insect species, even when trained with the Reduced dataset. As
anticipated, the models performed better with the Agrolnsect dataset, but the results with
the Reduced dataset were still notable. YOLOV5 achieved an accuracy of 85.58%,
YOLOV7 86.67%, YOLOVS 86.54%, YOLOV9-gelan 96.08% and YOLOV9-c 97.03%.
For the YOLOV9-c and YOLOvV9-gelan models, the accuracy difference between the
Agrolnsect and Reduced datasets was just 0.03% and 1.96%, respectively. A key finding
of this study is that even with a limited number of images for a specific insect, a model
can maintain high efficiency and accuracy.

Additionally, YOLOvV5 models with a Reduced dataset performed better when
converted to TFLite, with a 2.19% decrease in accuracy in comparison to the results with
the Agrolnsect dataset. For YOLOV7, there was an improvement with the Reduced
dataset, while YOLOvV8 showed no significant variations. Similarly, the YOLOv9-c and
YOLOV9-gelan versions also exhibited minimal variations in results. These outcomes
demonstrate that converting YOLO results into TFLite and employing a reduced dataset
is a practical and effective approach for deploying insect pest detection on resource-
constrained devices.

For future work, we plan to further investigate the effects of varying reduced
dataset sizes on model performance and tailor our approach for effective deployment and
evaluation on mobile devices. This will involve optimizing our method to perform
efficiently on mobile platforms and evaluating its effectiveness in practical, real-world

scenarios. We also intend to integrate images from yellow traps, light traps and
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pheromone traps into our datasets toward evaluating the models’ ability to detect and

classify in visually noisier images with other insects.
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Abstract

Agriculture 4.0 relies on the integration of advanced digital technologies to increase the
efficiency, speed, and reliability of agricultural processes. In this context, the Agrolnsect
dataset was developed to support research in machine learning and computer vision
applied to pest management. The dataset consists of high-resolution images and their
corresponding annotations, enabling the use of deep learning approaches, such as
convolutional neural networks, for object detection tasks and classification of insect pests.
Initially, the Agrolnsect dataset includes four economically relevant species for soybean
and maize crops (Spodoptera Frugiperda, Diceraeus spp., Dalbulus Maidis, and
Diabrotica Speciosa), with potential for expansion in future versions. The dataset is
integrated into the AgroLablA web application, which enables the creation and storage
of annotations, as well as the export of images and their corresponding labels in multiple
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formats, providing flexibility for training a wide range of artificial intelligence models
and contributing to advances in applied agricultural pest management.

SPECIFICATIONS TABLE

Subject Computer Sciences

Specific subject [Computer Vision, Deep Learning, and Precision Agriculture for Insect
area Pest Detection

Type of data  [The dataset is distributed as a .rar archive containing .jpg images and

corresponding .txt annotation files in YOLO format

Data collection

The AGROINSECT dataset was collected from three sources: public
images obtained from the iNaturalist [1,2] and GBIF databases, and
field images captured by the authors using digital cameras under natural
lighting conditions. Images were selected based on visual quality and
confirmed species identification. Only insect species with economic
relevance to maize and soybean crops were included. All images were
manually annotated using Label Studio software, generating bounding-
box labels in YOLO format. No data normalization was applied.

research article

Data source Fazenda Serra Azul, Manzagéo, Nobres, MT, Brazil, Global

location (iNaturalist and GBIF databases

Data Repository name: Mendeley Data

accessibility |- identification number: 10.17632/4jyp4mogxi. 1
Direct URL to data: https://data.mendeley.com/datasets/4jyp4m9gx;j/2
Direct URL to data: https://agrolabia.com.br

Related de Almeida, G.P.S.; dos Santos, L.N.S.; da Silva Souza, L.R.; da

Costa Gontijo, P.; de Oliveira, R.; Teixeira, M.C.; de Oliveira, M;
Teixeira, M.B.; do Carmo Franga, H.F. Performance Analysis of
YOLO and Detectron2 Models for Detecting Corn and Soybean Pests
Employing Customized Dataset. Agronomy 2024, 14(10), 2194.
https://doi.org/10.3390/agronomy14102194

VALUE OF THE DATA

The availability of high-quality public datasets remains a major challenge in

digital agriculture, limiting the development and validation of computer vision models

for pest detection. The AGROINSECT dataset addresses this gap by providing curated

images and corresponding annotations suitable for training deep learning models,


https://data.mendeley.com/datasets/4jyp4m9gxj/2
https://agrolabia.com.br/
https://doi.org/10.3390/agronomy14102194
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particularly those from the YOLO family, widely adopted in agricultural monitoring
applications.

The dataset has already supported peer-reviewed scientific research,
demonstrating its applicability in real-world agricultural scenarios. Its annotations were
produced through a structured curation process, ensuring consistency and reliability for
machine learning tasks. The dataset is distributed in formats compatible with multiple
computer vision frameworks, enabling its reuse in studies focused on object detection,
classification, and real-time monitoring systems.

By focusing on insect pests of high economic relevance to maize and soybean
crops in Brazil, the dataset contributes to the development of practical and scalable
solutions for pest management, with potential benefits for precision agriculture research

at both local and global scales.

BACKGROUND

The dataset was compiled as a research on image-based detection of insect pests
in agricultural environments, where the availability of annotated datasets remains limited,
particularly for crops of high economic importance such as maize and soybean. Advances
in deep learning and computer vision, especially object detection architectures including
YOLO and Detectron2, increased the need for datasets that represent real field conditions
and support method development and evaluation.

The images were collected to support methodological studies focused on training
and benchmarking deep learning models for insect pest detection. Data acquisition
combined images obtained from public biodiversity repositories with images captured in
agricultural fields, aiming to represent variations in lighting conditions, backgrounds,
insect poses, and image quality commonly observed in crop monitoring scenarios.

This data article is related to a previously published research article that
investigated the performance of object detection models for identifying insect pests in
maize and soybean crops. While the research article focused on model training,
evaluation, and deployment aspects, the present data article provides a detailed and
standalone description of the dataset, including data sources, organization, and annotation
procedures, thereby supporting transparency, reproducibility, and reuse of the data in

future studies [3].
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DATA DESCRIPTION

The AGROINSECT dataset contains 1,510 RGB images of agricultural insect
pests stored in .jpg format, along with 1,510 corresponding annotation files stored in .txt
format following the YOLO bounding-box annotation scheme. Across the entire dataset,
a total of 1,654 insect objects were annotated. Each annotation file may contain one or
more object entries when multiple insect individuals are present in a single image.

All image and annotation files were stored within a single directory structure in
the repository. Image files and annotation files share identical filenames to ensure a direct
correspondence between images and their labels.

The dataset includes four insect species of agricultural relevance: Diabrotica
speciosa, Dalbulus maidis, Diceraeus spp., and Spodoptera frugiperda. Figure 1 presents

representative examples of the four species included in the dataset.

(d)

Figure 1. Representative insect species included in the AGROINSECT dataset: (a) Diabrotica speciosa, (b) Dalbulus
Maidis, (c) Diceraeus spp., and (d) Spodoptera Frugiperda.

Annotations were manually created using the open-source software Label Studio
[4], where each visible insect individual was treated as a separate object and delineated
using a bounding box. The annotation files encode the class label and normalized
bounding-box coordinates according to the YOLO format specification.

Table 1 summarizes the distribution of images, annotation files, and annotated
insect objects across the four species. When more than one insect individual appears in a
single image, each individual is represented as an independent object within the

corresponding annotation file.
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Tabela 1. Division of datasets for each insect class and their annotations for training and evaluation of deep-learning

models.
Dataset Classes
Diabraotica Dalbulus Diceraeus Spodoptera Total
speciosa maidis ssp. frugiperda
Agroinsect Image 591 177 248 334 1350
Annotation 599 280 257 358 1494
Reduced Image 100 100 100 100 400
Annotation 100 156 104 102 462
Validation Image 15 15 15 15 60
Annotation 15 15 15 15 60
Test Image 25 25 25 25 100
Annotation 25 25 25 25 100

Source: Adapted from Almeida et al. (2024).

EXPERIMENTAL DESIGN, MATERIALS AND METHODS

The AGROINSECT dataset was compiled from a combination of field-collected

images acquired in agricultural areas and publicly available images obtained from the

iNaturalist and GBIF databases [2]. Field images were collected in commercial crop fields

and experimental farms located in the state of Mato Grosso, Brazil. All images were

captured under natural field conditions using RGB cameras, preserving variations in

background, illumination, insect pose, and scale [5,6].

Following data acquisition, all images were manually annotated using the open-

source software Label Studio. Each insect individual visible in an image was treated as a

separate object and delineated using a bounding box, with annotations exported according
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to the YOLO format specification [7]. Images containing multiple insect individuals were
annotated with multiple object entries within a single annotation file.

After the annotation process, the labeled images and corresponding annotation
files were imported into a dedicated dataset management platform named LabAgrolA, a
robust software application developed to support image submission, curation, validation,
and controlled access under a client—server architecture. The back end of LabAgrolA was
implemented using Node.js [8], with authentication based on JSON Web Token (JWT)
[9] to ensure secure access, data integrity, and traceability. The MVVM (Model-View—
ViewModel) [10] architectural pattern was adopted to promote modularity and
scalability.

The front end was developed using the React framework, with Redux [11]
employed for state management to ensure consistent interaction with data throughout the
curation workflow. Data storage is managed using a MySQL [12] relational database
hosted on a Linux server, ensuring robustness and availability for large volumes of image
data and metadata.

A structured curation and validation workflow was applied to ensure dataset
quality. Each annotated image was independently reviewed by two specialists with
expertise in the respective insect species. Only images and annotations approved by both
evaluators were incorporated into the final dataset and released for research use. This
dual-review strategy reduces labeling errors and improves annotation consistency for
computer vision applications.

The AGROINSECT dataset has been employed in peer-reviewed studies
investigating deep learning—based object detection approaches for agricultural pest
monitoring. However, the present data article focuses exclusively on describing the data
acquisition procedures, annotation methodology, curation workflow, and dataset

organization, without reporting experimental results or model performance evaluations.

LIMITATIONS

Although the AGROINSECT dataset constitutes a relevant resource for research
in digital agriculture, some limitations should be acknowledged. First, the dataset is
currently restricted to four insect species of agricultural importance, which may limit its

applicability for studies targeting a broader range of pests or different taxonomic groups.
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Second, the images were collected from heterogeneous sources, including field
acquisitions and public repositories, resulting in variability in the image characteristics
such as illumination conditions, background complexity, insect scale, and camera
perspective. While this variability reflects realistic field scenarios, it may introduce class
imbalance and visual heterogeneity that can affect downstream use.

Additionally, the dataset is geographically concentrated in Brazilian agricultural
regions, particularly in the state of Mato Grosso. As a result, environmental and crop-
specific characteristics may not fully represent other agricultural contexts or climatic
conditions.

Finally, although a dual-review curation process was adopted to ensure annotation
quality, the dataset size remains limited when compared to large-scale benchmarks
commonly used in computer vision research. Future extensions incorporating additional
species, regions, and acquisition conditions could further enhance the generalizability and
reuse potential of the dataset.
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5 CAPITULO 111

MONITORAMENTO DE PRAGAS AGRICOLAS VIA SMARTPHONE COM IA
EMBARCADA E MAPEAMENTO GEOESTATISTICO

Resumo: A rapida disseminacdo de pragas agricolas e a falta de informacdes de campo
em tempo oportuno continuam sendo grandes obstaculos para um manejo integrado de
pragas eficiente. Este estudo apresenta o Agrolnsect, um aplicativo para smartphone que
integra um modelo de aprendizado profundo embarcado (YOLOv11ln-TFLite) com
mapeamento geoestatistico para apoiar 0 monitoramento em tempo real de pragas em
lavouras de soja e milho. O sistema realiza a detecgdo diretamente no dispositivo para
quatro espécies-chave de insetos-praga (Diabrotica Speciosa, Dalbulus Maidis,
Diceraeus spp. e Spodoptera Frugiperda), extrai automaticamente metadados de
geolocalizacdo das imagens, valida a consisténcia espacial com base nos limites da
propriedade agricola e transmite as deteccdes para um banco de dados em nuvem. Mapas
de calor e interpolacdes espaciais sdo gerados por meio da Krigagem Ordinaria,
implementada com a biblioteca PyKrige, permitindo visualizar a incidéncia das pragas ao
longo da area monitorada. Os testes de campo demonstraram elevado desempenho de
detec¢do, com acuracia global de 95,1%, F1-score superior a 0,94 para todas as espécies
e apenas 1,1% de deteccdes falsas. O modelo de krigagem apresentou forte capacidade
preditiva sob amostragem densa (R2 > 0,94), reproduzindo padrfes espaciais consistentes
com o comportamento ecolégico de cada espécie. O fluxo integrado, que combina
deteccdo em tempo real, validacdo espacial e interpolacdo automatizada, mostrou-se
robusto e operacionalmente viavel em condicGes reais de campo. Os resultados destacam
0 Agrolnsect como ferramenta préatica e escalavel para 0 monitoramento de pragas em
agricultura de precisao, especialmente em areas com conectividade limitada, contribuindo
para tomada de decisdo mais rapida e confidvel no manejo integrado de pragas.

Palavras-chave: YOLOv1l; TFLite; aprendizado profundo; deteccdo de pragas;
krigagem; agricultura de precisdo; mapa de calor; aplicacdo movel.

5.1. Introducao

De acordo com a Organizacéao das Nag6es Unidas para Alimentacédo e Agricultura
(FAO), aproximadamente 40% das culturas alimentares mundiais séo perdidas todos 0s
anos devido a pragas e doencas, resultando em prejuizos estimados a cerca de US$ 220
bilhGes anuais para a economia global [1]. Estima-se que existam 70.000 espécies de
pragas que podem causar danos as culturas agricolas mundialmente, incluindo insetos,
patogenos e ervas daninhas, com poder de gerar perdas que podem variar de 35% a 42%
do potencial de producéo [2]. Os valores investidos no controle das pragas por meio da
utilizacdo de defensivos agricolas, a contaminacdo do meio ambiente e os problemas de

salde humana, ressaltam a necessidade de abordagens mais eficazes e sustentaveis no
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controle das pragas [3, 4]. Apesar da quantidade de espécies de pragas existentes, esse
estudo se concentra em 4 insetos pragas [5], Diabrotica Speciosa, Dalbulus Maidis,
Diceraeus ssp. e Spodoptera Frugiperda. Os avancos em inteligéncia artificial tém
impulsionado a utilizacdo da computacdo no manejo integrado de pragas, uma vez que 0
controle manual é desafiador, podendo consumir muitos recursos e tempo [6].

Impulsionados pelo acesso a grandes conjuntos de dados rotulados e pelo
fortalecimento da computacéo paralela via GPU (Unidade de Processamento Grafico), o
aprendizado profundo proporcionou avangos na area da visdo computacional, permitindo
um treinamento mais eficiente de redes neurais profundas. Além disso, aprimoramentos
como a mitigacdo do gradiente de desaparecimento, novas técnicas de regularizacéo e o
desenvolvimento de frameworks como TensorFlow, Theano e MXNet facilitaram a
prototipagem e otimizacdo dos modelos. Esses fatores possibilitaram avangos notaveis
em tarefas como deteccdo de objetos, rastreamento de movimento, reconhecimento de
acOes, estimativa de pose humana, segmentacdo semantica e previsdes de rendimento de
culturas [7, 8].

E um desafio fornecer aos agricultores informagdes precisas e em tempo habil
sobre a prevencéo e o controle eficaz de pragas e doencas. A escassez de dados detalhados
sobre os tipos de pragas e doengas, a extensdo dos danos causados e 0s métodos
apropriados de prevencao e controle apresentam desafios na implementacéo de estratégias
baseadas na previsdo e no monitoramento das condi¢des das culturas [9]. Essa limitacdo
compromete a capacidade de mitigar efetivamente os impactos negativos nas lavouras.
Além disso, a discrepancia entre a percep¢do das pessoas sobre pragas e doencas de
culturas e a disponibilidade de avaliadores qualificados para realizar diagnésticos
precisos tem se intensificado, evidenciando uma lacuna critica no suporte técnico
oferecido ao setor agricola. Diante desse cenario, torna-se imprescindivel o
desenvolvimento de novos métodos para a identificacdo e 0 manejo de pragas e doencas,
capazes de superar essas barreiras e promover uma gestdo agricola mais eficiente e
sustentavel [10].

A visdo computacional, uma subéarea da IA (Inteligéncia Artificial), traz avangos
tecnoldgicos para a agricultura moderna [11, 12, 13]. A utilizacdo dessas tecnologias
permite trabalhar em alguns dominios de problemas proeminentes nas fases de manejo da
producdo agricola, no manejo do solo, plantio, controle de insetos pragas e ervas

daninhas, crescimento das plantas, irrigacdo e colheita [14, 15, 16, 17, 18].
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Karar et al. (2021) desenvolveram um aplicativo movel para detecgdo e
classificagdo de pragas de colheitas com base no Faster R-CNN e no sistema de
computacdo em nuvem, para classificar 5 pragas: Aphids, Flea Beetles, Cicadellidae e
Flax budworm. O sistema criado conseguiu classificar com sucesso as pragas agricolas
[9], o processamento desse sistema ocorre remotamente, em um servidor na nuvem.
Contudo, essa arquitetura de projeto pode gerar prejuizo na indisponibilidade das
informacdes, quando a conexdo com servidor falhar e ndo conseguir entregar para a
aplicacdo o resultado processado. Essa problematica ja foi relatada em outros sistemas de
detec¢do [19]. Outro exemplo é o sistema de deteccdo de doengas em plantas, que buscou
tratar essa indisponibilidade [20].

Wang et al.(2025) criaram o sistema chamado Insect-YOLO. Foi realizado uma
pesquisa utilizando um modelo YOLOv8m de aprendizado profundo aprimorado com um
maddulo Convolutional Block Attention Module (CBAM), que permite refinar
mapas de caracteristicas para destacar regiGes de interesse, melhorando a capacidade de
detectar pragas pequenas ou oclusas em imagens de baixa resolucdo. Foi relatado
limitacGes com relacdo as variacdes de tamanho, forma e cor de pragas da mesma
espécie em imagens em tempo real, dificultando o processo de rotulagem. Apesar da
vantagem de utilizar imagens de baixa resolugéo, fatores ambientais, como iluminacéo,
condicdes climaticas e complexidade do fundo, impactam negativamente a
acuracia do modelo [21]. Ainda utilizando o YOLOv8n, Kebei Qin et al. (2024)
introduziram FasterNet e PConvGLU ao modelo alcangando melhoria eficaz ao reduzir a
redundancia computacional enquanto aprimorava a representacdo de recursos em
cenarios realistas. O cabecalho de detec¢do empregado por meio das camadas Group
Normalization e Scale ajudou o modelo a lidar com alvos de tamanhos diferentes com
sobrecarga computacional reduzida [22]. Ja Vilar-Andreu et al. (2024) realizaram uma
nova proposta, buscando desenvolver um modelo para detectar a presenca de insetos sem
se preocupar em classificar qual classe ele pertence. Esse processo é uma perspectiva
generalista que resolve o problema de saber se tem ou ndo inseto, mas ndo ajuda o
produtor a identificar a incidéncia de determinada praga na lavoura [23].

Verma et al. (2021) propuseram o uso dos algoritmos YOLO (v3, v4 e v5) para
detectar insetos em plantacdes de soja, treinados com imagens coletadas em campo. Foi
alcancado alta precisédo, com o modelo YOLOV5 obtendo o melhor desempenho (mAP
de 99,5%). Os obstaculos incluiram a falta de datasets amplos e rotulados, além da

complexidade de identificar insetos em ambientes naturais variados, reforcando a
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necessidade de mais dados e ajustes para cenarios reais [24]. Tetila EC et al. (2024)
utilizaram o YOLOV5 para detecgdo em tempo real de plantas daninhas em plantagdes de
soja usando imagens de UAV. O modelo apresentou precisdo de deteccdo com 93,99%
sendo melhor que as versGes mais modernas do YOLO v6 e v7, demonstrando a
necessidade de mais estudos para esclarecer as razdes para as precisoes mais baixas desses
dois modelos [4].

Em um estudo realizado para detectar 6 insetos pragas que atacam as lavoura de
milho, os autores utilizaram o Iception-V3 modificado juntamente com um modelo de
aprendizado profundo e aprendizado por transferéncia. Com os pesos do ImageNet o
modelo alcancou 97,0% de precisdo de validacdo, superando o Inception-V3 original
(94,8%) e 0 AlexNet (96,3%) [25]. A aprendizagem por transferéncia foi identificada
como uma estratégia eficaz para otimizar o treinamento do modelo [21].

Nawoya et al. (2024) [26] fizeram uma revisdo sobre o emprego da viséo
computacional e aprendizado profundo na criacdo de insetos, voltado a produgédo de
alimentos e racdes. Observaram que a integracdo de técnicas de visdo computacional
(CV) e Aprendizado Profundo (DL) séo bastante promissoras, mesmo com os desafios
tecnoldgicos, ambientais e a morfologia dos insetos com curto ciclo de vida metamdrfico.
Eles chamam a atencdo para a necessidade de desenvolver técnicas baseadas em CV de
baixo custo, ndo invasivas e ndo destrutivas, para medir caracteristicas economicamente
importantes, como tamanho, peso, niveis de proteina e gordura dos insetos.

No contexto de inserir novas tecnologias na agricultura, ,Sahin YS et al. (2025)
integraram em uma solucédo de detec¢do em tempo real com YOLOV8 e suporte a decisao
baseado em linguagem via ChatGPT-4. Conseguiram juntar precisdo na deteccdo de
pragas e recomendacdes especificas para os agricultores [27]. N&o ficou claro se a API
(Interface de Programacdo de Aplicativos) utilizada estava funcionando offline ou
fazendo chamadas ao servidor na nuvem. Nesse Ultima opcdo a falta de conexao
impossibilita a entrega da informacéo gerada pelo Chatgpt4. O sistema poderia armazenar
as imagens coletadas para serem utilizadas em novos treinamentos permitindo aumentar
a base de dados para treinamento.

Embora varias abordagens tenham avancado no campo da visdo computacional e
aprendizado por transferéncia (TL) na detec¢do e reconhecimento de insetos pragas no
campo, muitos desafios ainda permanecem na precisao da classificacdo dos insetos, na
confiabilidade dos modelos, na capacidade de rodar em dispositivos de baixo poder

computacional, na autonomia de energia e comunicagéo de dados em trabalhos em campo
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e no enfrentamento da escassez de dados rotulados de diferentes tipos de insetos que
atacam as mais variadas culturas. Vencer essas limitacdes € fundamental para o
desenvolvimento de ferramentas mais robustas e confidveis para serem aplicadas no
manejo integrado de qualquer producéo agricola.

Este estudo tem como objetivo desenvolver um sistema embarcado em
smartphone, suportado por um modelo de aprendizado de maquina (YOLOv11), para
detectar automaticamente insetos-praga em plantacdes de soja e milho, armazenar 0s
dados em nuvem e permitir analises espaciais da incidéncia desses insetos para apoiar o
monitoramento agricola. Os objetivos especificos sdo: (1) treinar e validar um modelo de
deteccdo profundo (YOLOv11) para identificar de forma precisa os insetos Diabrotica
speciosa , Dalbulus maidis , Diceraeus spp. e Spodoptera frugiperda, (2) desenvolver
uma aplicacdo movel para smartphones que capture imagens, execute o modelo
YOLOvV11 localmente e registre as deteccGes, associados a metadados, (3) implementar
um mecanismo para sincronizar os dados coletados pelo aplicativo com um banco de
dados na nuvem, garantindo armazenamento seguro e escalavel das imagens e registros
de deteccdo, (4) Utilizar os dados coletados para gerar mapas de calor e interpolacédo
espacial que mostrem a distribuicéo e a incidéncia dos insetos nas lavouras ao longo do

tempo [6].

5.2. Material e métodos

5.2.1. Arquitetura e principais tecnologias utilizadas

O aplicativo Agrolnsect foi desenvolvido com foco na deteccdo de pragas
agricolas em tempo real, na anotacdo de imagens e na visualizacdo geoespacial das
ocorréncias detectadas, integrando processamento embarcado, coleta de dados em campo
e andlise espacial. A aplicacdo foi construida utilizando o framework Flutter, no ambiente
Android Studio, com suporte a biblioteca TensorFlow Lite (TFLite), que permite a
execucdo eficiente do modelo YOLOv11n diretamente em dispositivos Android [28,29].

A Figura 1 apresenta a arquitetura geral do sistema Agrolnsect, destacando a
execucdo local do modelo de deteccdo no dispositivo movel e o fluxo de comunicagéo
com o servidor em nuvem. As imagens capturadas em campo sdo processadas diretamente
pela rede neural YOLOv11n, enquanto o cédigo da aplicacdo, desenvolvido em Dart,
utiliza a biblioteca TFLite para realizar as inferéncias, identificar os insetos-praga e

marcar automaticamente as caixas delimitadoras (bounding boxes) nas imagens. Essa
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abordagem permite que todo o processo de deteccdo ocorra localmente no dispositivo,
eliminando a dependéncia de processamento em nuvem e possibilitando a operacéo do

sistema em ambientes com conectividade limitada.
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Figura 1. Os mddulos fundamentais para detecgdo eficiente do modelo YOLOv11, SPPF, C2PSA e C3K2.

A arquitetura do aplicativo segue o padrdo MVVM (Model-View—ViewModel),
promovendo separacdo clara entre a interface do usuério, a légica de negocios e a
manipulacdo dos dados [30], facilitando a manutencao, a escalabilidade e a evolucdo do
sistema. Os resultados das detec¢des, bem como os dados do usuario, sdo organizados e
preparados para armazenamento e sincronizagao com a infraestrutura em nuvem.

O fluxo operacional do aplicativo Agrolnsect é apresentado na Figura 2, que
descreve as etapas de interacdo do usuario e de processamento das informacdes. O fluxo
inicia-se com a autenticacdo do usuério e a selecdo da fazenda ou unidade de manejo de
interesse, garantindo que todas as informacdes coletadas sejam corretamente associadas
a uma area agricola especifica. Em seguida, o usuario define o modo de operacao,
podendo optar entre a detec¢do automatica de insetos ou a anotacdo manual de insetos,
modos que sdo complementares na l6gica do sistema.

Independentemente do modo selecionado, o fluxo converge para a etapa de
aquisicdo ou selecdo de imagens, na qual as imagens podem ser capturadas diretamente
pela cAmera do dispositivo mdvel ou selecionadas a partir do armazenamento local. No
modo de detec¢do automatica, as imagens adquiridas sdo processadas pelo modelo de
visdo computacional embarcado. Quando ocorre a detecgédo de insetos, 0s resultados séo
automaticamente registrados. Nos casos em que ndo ha deteccdo ou quando o usuério
identifica detecgdes incorretas ou incompletas, o fluxo permite a transi¢do para a etapa
de anotag&o manual, possibilitando o registro ou a correc¢do das informacdes relacionadas

ao0s insetos observados.
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Figura 2. Fluxograma do fluxo operacional do aplicativo Agrolnsect, ilustrando as etapas de autenticagdo do usudrio,
selecdo da area de interesse, definicdo do modo de operagdo, aquisicdo de imagens, detecgdo automatica de
insetos, anotagdo manual e armazenamento.

— Anotacdo de Insetos —

Todas as informacg6es provenientes tanto das deteccGes automaticas quanto das
anotagdes manuais — incluindo as coordenadas das caixas delimitadoras, as imagens
analisadas, as classes identificadas e a geolocalizacdo do ponto de captura — séo
armazenadas de forma persistente em um banco de dados relacional MySQL [6]. Esses
registros podem ser utilizados tanto para o0 monitoramento da dindmica populacional de
insetos na propriedade quanto para a construcdo, expansdo e refinamento continuo da
base de dados Agrolnsect, destinada ao treinamento e a melhoria dos modelos de deep
learning.

Para a visualizacdo espacial das ocorréncias registradas no fluxo, foi integrada a
API do Google Maps, permitindo ao usuario acompanhar a distribuicdo geogréfica das
pragas detectadas diretamente na interface do aplicativo. Adicionalmente, foram
desenvolvidos scripts em Python para a geracdo de mapas de calor e interpolacdo espacial,
utilizando a biblioteca SciPy para a implementacdo do método IDW (Inverse Distance
Weighting) e a biblioteca GeoPandas para a manipulacéo dos dados geoespaciais. Essas
representacdes espaciais fornecem suporte a tomada de decisédo, com base na distribuicao
e intensidade das infestagdes ao longo da area monitorada.

O aplicativo Agrolnsect foi avaliado em condigOes reais de campo na Fazenda
Serra Azul, em uma area experimental de 100 x 100 m, subdividida em grade de
amostragem de 20 x 20 m. As imagens foram capturadas utilizando um smartphone
Motorola Edge 30 (8 GB de RAM, processador Snapdragon 778G+), selecionado por

representar um dispositivo comercial de gama média. Essa configuragdo permitiu avaliar
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0 desempenho da deteccdo em tempo real e a capacidade de resposta do sistema em
condigdes operacionais reais. Todas as deteccdes foram processadas localmente no
dispositivo, georreferenciadas no momento da captura e, posteriormente, transmitidas

para o banco de dados MySQL central.

5.2.2. Dataset

O conjunto de dados utilizado neste estudo foi o0 mesmo utilizado pelos autores

que publicaram uma anélise de desempenho dos modelos YOLO e Detectron2 para
deteccdo de pragas [5]. O conjunto de dados inclui quatro tipos de pragas que atacam as
culturas de milho e soja: 591 imagens de Diabrotica Speciosa, 177 imagens de Dalbulus
Maidis, 248 imagens de Diceraeus ssp. € 334 imagens de Spodoptera Frugiperda [5].
Essas imagens constituem um dataset denominado Agrolnsect. As anotacfes das imagens
do conjunto de dados Agrolnsect foram realizadas utilizando o software de codigo aberto
Label Studio (versdo 0.9.1) [31]. Cada imagem foi anotada com informacdes da regido
de interesse (ROI), classe do inseto e posicdo do objeto no formato YOLO. Na Figura 3
esta ilustrado um exemplo para cada classe do dataset.
No total, foram anotadas 1510 imagens, considerando que algumas continham mais de
um inseto da mesma espécie. As anota¢oes foram exportadas e organizadas em arquivos
com 0s mesmos nomes das imagens correspondentes, com os caminhos de treinamento,
validacdo e teste definidos em arquivos YAML, um formato de arquivo utilizado nos
algoritmos. Os resultados obtidos com o conjunto de dados Agrolnsect demonstraram alto
desempenho dos modelos da familia YOLO. O modelo YOLOVS5 atingiu precisao, recall
e F1-Score de 98,04%, com precisdo especifica de 99,22%. Da mesma forma, 0 YOLOv7
apresentou F1-Score de 96,12% e precisdo de 98,45%, enquanto o YOLOv8 obteve F1-
Score de 96,08% e precisdo de 98,43%. Modelos mais recentes, como 0 YOLOvV9-c e 0
YOLOV9-gelan, apresentaram ainda melhores resultados, alcangando F1-Scores de
97,06% e 98,04%, respectivamente, com precisao superior a 99%. Esses resultados
indicam que o conjunto de dados Agrolnsect é adequado para o treinamento de modelos
de deteccéo de pragas, fornecendo imagens com diversidade suficientes para a obtencéo
de métricas de desempenho elevadas [5].
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(a) Objeto marcado como classe 0 (b) Objeto marcado como classe
no dataset, corresponde a Diabrot- I no dataset, corresponde a
ica Speciosa. Spodoptera Frugiperda.

(c) Objeto marcado como classe 2 (d) Objeto marcado como classe 3
no dataset, corresponde a Diceracus  no dataset, corresponde a diabrotica
Spp. speciosa.

Figura 3: Exemplos de quatro objetos marcados utilizando Caixas Delimitadoras.

5.2.3. Modelo Yolo

Dentre as varias versdes, para o desenvolvimento do aplicativo para smartphone,
foi escolhido 0 YOLOv11n, sendo essa a versao mais recente da familia YOLO (You
Only Look Once), reconhecida pela alta eficiéncia na deteccdo de objetos em tempo real
[32]. A Figura 4 ilustra o processo de treinamento, de forma que trés blocos principais
atuam na rede YOLOV11 para produzir um modelo que resolva a tarefa de deteccéo de
objetos. A versdo 11 da YOLO incorpora inovagdes arquitetdnicas significativas, como o

bloco C3k2 (Cross Stage Partial com kernel de tamanho 2), o0 modulo SPPF (Spatial
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Pyramid Pooling- Fast) e o bloco C2PSA (Convolutional block with Parallel Spatial
Attention), que, em conjunto, aprimoram a extracdo de caracteristicas e aumentam a
precisdo do modelo.

O bloco C3k2, por exemplo, melhora a extracéo de detalhes de objetos pequenos,
como insetos, mesmo em imagens complexas. J& 0 médulo SPPF permite a detec¢do
eficiente de alvos em multiplas escalas, fundamental para monitorar insetos em diferentes
estagios de vida ou tamanhos. O bloco C2PSA, por sua vez, potencializa a identificacdo
de padrdes por meio de atencdo espacial paralela, tornando o modelo mais robusto em
cenarios com fundos complexos ou visualmente confusos, como campos abertos ou
lavouras. Além disso, 0 YOLOvV11 esta disponivel em diferentes tamanhos de modelo,
desde versdes compactas, como 0 YOLOv11n, até configuracbes maiores, permitindo a
adaptacdo a ampla gama de aplicacBes — desde dispositivos moveis até sistemas de alto

desempenho [33].

YOLOv11 Predict class

SPPF - Output
task:
C2PSA i ~ Object
Detection
C3K2 =

Figura 4: Mddulos fundamentais para detecgdo eficiente do modelo YOLOv11, SPPF, C2PSA e C3K2.

Neste trabalho, o modelo YOLOv1ln foi treinado especificamente para a
deteccdo de pragas agricolas, sendo posteriormente convertido para o formato
TensorFlow Lite (TFLite) [34], permitindo a execu¢do em dispositivos Android. Essa
conversdo garantiu inferéncia rapida, baixo consumo de recursos e viabilidade em campo,
requisitos estes fundamentais para aplicacfes mdveis. A entrada do modelo é composta
por imagens RGB, e a arquitetura é capaz de realizar deteccdo em tempo real, gerando
caixas delimitadoras para indicar a localizagdo das pragas. O treinamento do modelo foi
realizado na plataforma Google Colab, com suporte a GPU. A acurécia da deteccéo,
baseada na arquitetura YOLOv11n convertida para TFLite, foi avaliada por meio da
precisdo média (AP) e da Média de Precisdo Aritmética (mAP). Para a etapa de validagéo,
foram selecionadas aleatoriamente 15 imagens por espécie, enquanto o teste utilizou 25

imagens por espécie. Mesmo quando implantado em dispositivos com restricbes de
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hardware, 0 modelo manteve alta acuracia e desempenho, evidenciando o potencial da
arquitetura YOLOv11n para aplicagdes embarcadas de visdo computacional [35].

5.2.4. Interpolacdo Espacial com Krigagem

A krigagem € um método geoestatistico de interpolagdo amplamente utilizado
para estimar valores de uma variavel espacialmente continua a partir de um conjunto
discreto de pontos amostrados [36]. Diferentemente de métodos deterministicos, como a
ponderacéo pelo inverso da distancia (IDW), a krigagem considera ndo apenas a distancia
entre 0s pontos, mas também a dependéncia espacial existente entre as amostras,
modelada por meio de uma funcdo variograma. Essa abordagem permite estimar valores
desconhecidos com base em combinacdo linear ponderada das observacfes vizinhas,
otimizando a estimativa em termos de erro minimo e ndo tendencioso [37].

A estimativa krigada de uma variavel Z(x0) em um ponto ndo amostrado (x0)

pode ser expressa pela Equacéo (1):

Zxo) = ) AiZ(x:) (1)
i=1

em que:
« 7(x,) é o valor estimado no ponto de localizag&o xO0;
* Z(x;) sdo os valores observados nos n pontos amostrados;

* \i sdo os pesos atribuidos a cada ponto amostrado, determinados de forma que a

soma dos pesos seja igual a 1 (¥ \i = 1).

Os pesos Al sdo calculados com base no variograma experimental, que descreve a
variabilidade espacial da varidvel estudada em fungdo da distancia entre amostras. O

variograma € definido pela Equacéo (2):

N(h)

_ SN e 2 ®)
vih) = 5o ;w(x,} Z(x; + )]

em que:
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* y(h) ¢ o semivariograma para uma distancia h;
* N(h) ¢ o nimero de pares de pontos separados por h;
* Z(x;) e Z(x; + h) sdo os valores observados em dois pontos separados por essa distancia.
A partir do variograma ajustado (esférico, exponencial, gaussiano, etc.), 0 modelo
de krigagem calcula a matriz de covariancia espacial e resolve o sistema linear que
fornece os pesos Ai ideais para cada ponto estimado. Isso garante que as estimativas
apresentem erro minimo de predicdo e incorporem a estrutura espacial real dos dados
[38]. No presente estudo, foi utilizada a krigagem ordinaria (Ordinary Kriging),
implementada via biblioteca PyKrige [39], integrando-a a um servidor web em Flask para
geracdo automatizada de mapas de densidade em tempo real. O modelo, utilizando um
variograma esférico e operando com coordenadas geogréaficas, interpola as contagens
discretas de insetos obtidas em campo. O resultado é uma superficie continua de
densidade (mapa de calor), visualizada sobre a interface do Google Maps. Essa integracédo
transforma os dados brutos de monitoramento em inteligéncia espacial acionavel,
permitindo que os resultados sejam visualizados dinamicamente em interface mével. A
ferramenta fornece, assim, um suporte geoestatistico para a identificacdo precisa no
monitoramento espacial de pragas agricolas para a tomada de decisdo no manejo de
precisdo. Para avaliar o desempenho do modelo de krigagem implementado, foi
conduzida uma simulacdo sintética controlada. Foram gerados 8.000 pontos de ocorréncia
simulados distribuidos entre as espécies Diabrotica speciosa, Dalbulus maidis, Diceraeus
spp. e Spodoptera Frugiperda. Cada espécie apresentou um padrao espacial distinto, com
area de maior densidade (hotspot) e distribuicdo dispersa pelo restante da regido de
estudo. A area experimental foi subdividida em grades de 20x20, 50x50, 100x100 e
200%200 células, representando diferentes niveis de densidade amostral. Com base nos
pontos simulados de cada grade, foram gerados mapas de krigagem ordinéria utilizando
a biblioteca PyKrige. Esses mapas interpolados foram posteriormente comparados com
0s mapas de gradiente simulados, considerados como a superficie de referéncia (ground
truth). Essa comparacao permitiu quantificar o erro de predicéo e analisar a sensibilidade
do método & escassez de dados amostrais.
5.3. Resultados

5.3.1. Principais funcionalidades do Agrolnsect
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O Agrosinsect € um aplicativo para smartphone que auxilia os produtores na
tomada de decis&o no controle de pragas. A Figura 5 mostra a interface do aplicativo. Ao
fazer login no sistema, o usuario precisa selecionar uma fazenda que ele esteja associado.
O sistema tem estrutura para deteccdo e anotacdes de imagens, gerenciar USUArios,
fazendas, fungdes, classes e visualiza¢bes de mapas. Os mddulos de detec¢do e anotacao
de imagens trabalham juntos.

.o 4 1A - 40 -d “ s -

¢ Detection L) « Detection 5 e/ B € Heatmap - .
FARM SHEGD . FARM SHEGO

all

Figura 5: Interface do aplicativo Agrolnsect, com detec¢do de objeto, mapa de calor e mapa de krigagem.

No modulo de deteccdo o usuario pode escolher tirar uma foto ou carregar uma
imagem da galeria. Apds esse processo a imagem é processada pelo modelo YOLO11s
treinado e convertido para TFLITE para detec¢do e contagem de cada objeto (classe).
Apds esse processo o usuario pode salvar a deteccdo ou fazer correcdes nas anotacées ou
até anotar objetos que nao foram detec¢do pelo modelo.

Para a geracdo dos mapas sdo necessarias as coordenadas de geolocalizacdo das
imagens, o sistema é capaz de ler as informacdes dos metadados EXIF das imagens tanto
daquelas que sdo capturadas pelo dispositivo como aquelas que séo lidas da galeria do
smartphone. Para garantir que as imagens sejam coletadas exclusivamente nos limites da
propriedade agricola associada e selecionada pelo usuario logado, foi implementada uma
validagdo georreferenciada baseada no raio de abrangéncia da fazenda. Cada propriedade
possui um ponto central definido por coordenadas geograficas (farm_latitude,
farm_longitude) e um raio maximo de operacéo (radius), expresso em metros. A distancia
entre o ponto de captura da imagem (extraido dos metadados EXIF) e o centro da fazenda

¢ calculada utilizando a formula de Haversine:
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d = 2R arcsin { \/sin3 (@) + cos(¢ ) cos(¢da) sin® [% ]] . (3)

em que R = 6371 km ¢ o raio médio da Terra, ¢p1, $2 sdo as latitudes e 1;, 1, s&0

as longitudes em radianos. A imagem é considerada valida se:

d<r,. (4)

em que 7, € 0 raio da fazenda em quildmetros. Essa abordagem garante a integridade
espacial dos dados, evitando contaminacdes por amostras externas a area monitorada. A

Figura 6 apresenta o projeto do banco de dados relacional (MySQL) da aplicacéo.

1 user_role v
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—J user v o . — role v
d INT e role_id INT
i - NT | m——n T
_id INT : & VARCHAR(4S)  _ _ __ _y| 7 role_name VARCHAR(4.
. ) >
user_name VARCHAR(S50) L et TIMESTA
cpf CHAR(11) Lzt > F
n VARCHAR(50) 7 e
d VARCHAR(255) : * —] image v
VARCHAR(45) 1 image_id INT
¢ 1 1 user_farm v
hborhood VARCHAR(4 userfarm_id INT
1 erfarm_id INT
plement VARCHAR(45) B — — — — — — — — = image_path VARCHAR(255)
ber INT = image_latitude DECIMAL(11,8)
ithdate DATE | e H—y image_longitude DECIMAL(11,8)
user_phone VARCHAR(20) ! imag. pture TIMESTA,
1 reated_at TIMESTA
user_cellphone VARCHAR(20) i i i image_status ENUM(...)
user_email VARCHAR(50) H——— = annotation_type ENUM(...)
created_at TIMESTAMP
& ¥
updated_at TIMESTAMP
: >
1 =
farm_name VARCHAR(S0) 1 '}’
farm_address VARCHAR(45) 1 H
I
1 ] annotations v :
: otations_id INT 1
ighborhood VARCHAR(4. H o~ T 1
_zipcode INT 1 , AR :
farm_latitude DECIMAL(10,8) PRI SR A !  min DECIMALCIS8) Bolp i = o
farm_longitude DECIMAL(11,8) 1 classes v

y_min DECIMAL(15,8)
farm_phone VARCHAR(20)

x_max DECIMAL(15,8)
farm_cellphone VARCHAR(20)

ail VARCHAR(45)
ated TIMESTAMP

name VARCHAR(4...C)
y_max DECIMAL(15,8)
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validation_status % [apia] =

created_at TIMESTAMP o a

farm_update TIMESTAMP
radius DOUBLE

updated_at TIMESTAMP

is_automated TINYINT(1)
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Figura 6: Estrutura do banco de dados relacional (MySQL) do sistema Agrolnsect. A arquitetura multitenant utiliza a
tabela user_farm para garantir isolamento total de dados entre fazendas.

O esquema foi desenvolvido para oferecer isolamento ldgico entre diferentes
fazendas, garantindo que cada uma, possua seus proprios dados operacionais e de usuarios
associados.

As tabelas centrais desse modelo s&o user, farm, user_farm e image:

1. A tabela user armazena informacgdes globais de autenticagéo e cadastro dos usuérios.

2. A tabela farm contém os dados especificos de cada fazenda registrada no sistema.
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3. A tabela de juncdo user_farm é o elemento que estabelece o vinculo entre usuarios e
fazendas, permitindo que um mesmo usuario possa estar associado a uma ou mais
fazendas.

O isolamento dos dados é assegurado pela forma como as informagdes
operacionais, como imagens e anota¢es sdo vinculadas a relacdo user_farm. Assim, o
sistema garante que cada usudrio so possa salvar, consultar ou visualizar imagens e dados
pertencentes as fazendas com as quais possua uma associacao ativa (registro valido na
tabela user_farm). Usuarios sem vinculo ndo tém acesso aos dados de outras fazendas,

mantendo a integridade e confidencialidade das informagdes.

5.3.2. Validacdo do Modelo de Krigagem em um Cenério Simulado

A etapa de validacdo teve como objetivo avaliar a precisdo e a consisténcia
espacial das estimativas de abundéncia geradas pela krigagem. Foram utilizadas métricas
amplamente adotadas em geoestatistica para quantificar os erros de predi¢cdo e a acurécia
do modelo, incluindo o erro quadratico médio (RMSE), o erro médio absoluto (MAE), o
viés médio (Bias) e o coeficiente de determinacéo (R?).

O erro de predicao foi quantificado pelo erro quadratico médio (RMSE):

n )
v g l A R
RMSE = 4|~ ;(4 Z)

A acurécia preditiva foi avaliada pelo coeficiente de determinagéo (R?):

(6)

2o T2y
Yz - Z)?

em que Z representa a média dos valores coletados (simulados).
Além disso, foi calculado o erro médio absoluto (MAE) e o erro médio (Bias), que permite

avaliar a precisdo e o erro desvio sistematico das estimativas:



1 . I N
MAE = - Y |Z: -2, Bias=- Y (Z—2;
, 2= 2, Bias= ) (-2
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A Tabela 1 resume os resultados obtidos para cada espécie simulada e diferentes

resolucdes de nota.

Tabela 1. Métricas de validagdo da interpolagdo por krigagem para a abundancia simulada de insetos em diferentes
resolugdes de grade.

Species Grid Size Samples (Nsqin) Validation (n,q;;,4) RMSE MAE  R?
Dalbulus 20x20 1963 2455 1.2596 1.0152 0.9113
50x50 761 2455 1.2971 0.9913 0.9060
100x100 198 2455 2.6761 1.9419 0.5997
200x200 46 2455 2.3932 1.6535 0.6799
Diabrotica | 20x20 950 2501 0.8070 0.6189 0.9511
50x50 321 2501 0.8830 0.7402 0.9414
100x100 74 2501 1.0341 0.8588 0.9197
200x200 16 2501 2.6374 1.9396 0.4774
Diceraeus | 20x20 558 1515 0.8073 0.6323 0.9478
50x50 272 1515 0.8748 0.7288 0.9388
100x100 76 1515 1.1860 1.0217 0.8874
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200x200 13 1515 2.7187 2.2817 0.4085
Frugiperda | 20x20 601 1529 0.7664 0.5860 0.9656
50x50 287 1529 0.8300 0.6919 0.9597
100x100 70 1529 1.4723 1.1575 0.8731
200x200 19 1529 2.9628 1.9192 0.4859

Os resultados demonstram tendéncia clara de reducdo da acurécia a medida que
diminui a densidade amostral (ou seja, com o0 aumento do tamanho da grade). Para todas
as espécies, as grades mais densas (20x20 e 50x50) apresentaram 0s menores valores de
RMSE e MAE e os maiores valores de R2, indicando alta capacidade do modelo em
reconstruir os padrBes espaciais simulados. Entre as espécies, Diabrotica Speciosa
destacou-se com os melhores indicadores (R2 > 0,94 nas grades de 20x20 e 50x50),
refletindo seu padrdo espacial mais uniforme. Por outro lado, Dalbulus Maidis e
Spodoptera Frugiperda apresentaram leve degradacdo de desempenho nas grades mais
amplas, por causa da presenca de areas de alta agregacdo (hotspots) e maior variabilidade
local, que aumentam o erro de predicdo em regides de transicdo. Além das métricas
quantitativas de validacdo, analisou-se a estrutura espacial dos erros de predi¢do para
identificar possiveis vieses ou desvios regionais nas estimativas obtidas pela krigagem.
Os residuos foram calculados conforme a Equacao 8, que representa a diferenca entre 0s

valores estimados e os valores de referéncia do universo simulado:

. ®)

em que:
. Zi representa o valor estimado pela krigagem no ponto i;

* Z; € 0 valor observado (simulado) correspondente.
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A Figura 7 ilustra a distribuicdo espacial desses residuos para ambas as
configuracdes de amostragem (20%20 e 200%200).

AT A

(a) Dalbulus maidis (20x20) (b) Diabrotica speciosa (20x20) (¢) Diceraeus ssp. (20x20) (d) Spodoptera frugiperda (20x20)

(e) Dalbulus maidis (200x200) () Diabrotica speciosa (200x200) (g) Diceraeus ssp. (200x200) (h) Spodoptera frugiperda (200x200)

Figura 7: Distribuicdo espacial dos residuos de krigagem para as quatro espécies de insetos simuladas sob duas
densidades de amostragem (grades de 20x20 e 200x200).

Os mapas de residuos demonstram que os erros de predicdo apresentam estrutura
espacial coerente com os padrdes artificiais utilizados nas simulagdes. No conjunto de
dados sintético, cada espécie apresentou uma regido de alta densidade (hotspot) e uma
dispersdo gradual pelo restante da area. Consequentemente, observou-se tendéncia de
subestimacdo nas zonas de maior concentracao e superestimacao nas regides periféricas.
Esse efeito de suavizacao é especialmente evidente em Dalbulus maidis e Spodoptera
Frugiperda e reflete o comportamento inerente da krigagem, que produz estimativas
locais suavizadas proximas aos dados concentrados.

Por outro lado, Diabrotica Speciosa apresentou distribuicdo de residuos mais
homogénea, condizente com seu padrdo de simulacdo mais uniforme. Esse
comportamento esta em concordancia com as métricas quantitativas, nas quais Diabrotica
obteve o maior valor de R2 e o menor RMSE, indicando que o modelo de krigagem
reconstruiu adequadamente variagdes espaciais moderadas sob condi¢des de amostragem
regular.

De forma geral, a analise espacial dos residuos confirma a robustez do método de
krigagem implementado na aplicagdo MPI. Mesmo com padrbes simulados
simplificados, o0 modelo foi capaz de reproduzir os principais gradientes espaciais sem
apresentar viés direcional sistematico. Esses resultados demonstram que o procedimento

de interpolagcdo mantém desempenho consistente em diferentes densidades amostrais
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(20%x20 a 200x200), reforcando o potencial para aplicagdes reais em monitoramento de
pragas agricolas. Trabalhos futuros poderdo incorporar covariaveis auxiliares, como
indices de vegetacdo, atributos do solo ou variaveis climaticas, visando aprimorar o

desempenho preditivo em cenarios de baixa densidade amostral

5.3.3. Avaliacao das detec¢Bes automaticas realizadas em campo

A etapa de avaliacdo teve como objetivo quantificar o desempenho do modelo de
reconhecimento de insetos usando um aplicativo de smartfone. Cada objeto detectado foi
revisado manualmente e classificado em trés categorias: (i) Detecgéo correta (D), quando
o inseto foi identificado corretamente; (ii) Ajuste de classe (A), quando a deteccdo foi
valida, mas a classificacdo da espécie necessitou correcdo; e (iii) Exclusdo (E), aplicada
a falsos positivos ou objetos sem definicdo morfoldgica adequada.

A Tabela 2 apresenta o resumo das detecgdes realizadas pelo modelo nas 79
imagens avaliadas. Do total de 183 objetos identificados, 92,4% foram classificados
corretamente, 6,6% exigiram ajuste de classe e 1,1% foram excluidos por erro de
deteccdo. Esses resultados evidenciam desempenho consistente do modelo, com baixa

ocorréncia de falsos positivos e necessidade limitada de intervengdo manual.

Tabela 2. Resumo das detecgdes e ajustes de classes.

Categoria Quantidade  Descricao

Detecgdes corretas (D) 169 Detecgdes com classificagéo correta

Ajustes de classe (A) 12 DeteccGes que exigiram correcdo manual
Exclusdes (E) 2 Objetos descartados por erro de deteccdo
Total valido 183 Total de objetos considerados apos exclusdes

Ja a Figura 8 apresenta a matriz de confusdo derivada da validacdo cruzada,
sintetizando o desempenho do classificador na discriminacdo das quatro espécies de
insetos-alvo e da classe de fundo (background). Observa-se elevada concordancia entre
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rotulos previstos e verdadeiros, refletida em altos valores de sensibilidade por classe. As
poucas inconsisténcias identificadas concentram-se em pares especificos de classes e

podem estar associadas a variagdes presentes nas imagens utilizadas no processo de

validacao.
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Figura 8: Matriz de confusdo do modelo Agrolnsect avaliado com imagens coletadas em campo.

As métricas quantitativas de desempenho estdo apresentadas na Tabela 3. O
modelo alcancou acurécia geral de 95,1%, com valores de precision, recall e F1-score
superiores a 90% para todas as classes de interesse agrondémico. A espécie Dalbulus
Maidis apresentou F1-score de 98%, indicando excelente equilibrio entre sensibilidade e
precisdo. Desempenho igualmente robusto foi observado para Diabrotica Speciosa (98%)
e Spodoptera Frugiperda (96%). Erros pontuais, como falsos negativos ocasionais, por
exemplo, individuos de Diabrotica Speciosa classificados como background explicam a
ligeira reducdo no valor de revocacdo dessa classe (96%), sem comprometer o

desempenho global do modelo.
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Tabela 3. Desempenho do modelo de classificagdo para as espécies avaliadas.

Classe Precisdo Revocacao F1-score Amostras
Diabrotica 1.00 0.96 0.98 24
speciosa

Dalbulus 0.99 0.97 0.98 120
maidis

Diceraeus ssp.  0.92 0.96 0.94 23
Spodoptera 1.00 0.93 0.96 14
frugiperda

Acuracia geral 95,1%

Os resultados combinados da avaliacdo automatica e da revisdo manual reforcam
0 potencial do sistema Agrolnsect como ferramenta de apoio ao monitoramento
automatizado de pragas. A elevada acuracia e a baixa necessidade de corre¢Bes indicam
que o modelo pode reduzir significativamente o esforco humano na etapa de triagem,
mantendo consisténcia e confiabilidade nos registros. Em trabalhos futuros, recomenda-
se 0 uso de estratégias de aprendizado ativo e refinamento iterativo para ampliar a

robustez frente a variabilidade de morfologia e iluminagdo nas imagens de campo.

5.3.4. Analise Espacial das Ocorréncias de Pragas

A Figura 9 apresenta os resultados gerados pelo sistema, apds a aplicacdo dos
filtros por fazendas que o0 usuario esteja associado e por intervalo de datas e espécie de
praga. A interface retorna trés componentes complementares: (a) um painel quantitativo
com o numero total de insetos detectados na propriedade no periodo selecionado; (b) um
mapa de distribuicdo espacial mostrando a localiza¢do geografica de cada detecgéo; e (c)
um mapa de krigagem representando a interpolagdo da densidade dos insetos no talhé&o.

Em conjunto, esses elementos permitem avaliar ndo apenas a intensidade das
ocorréncias, mas também a dinamica espacial das pragas, fornecendo subsidios objetivos

para a tomada de decisdo no manejo localizado.
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Figura 9. Painel de resultados gerados pelo sistema: (a) total de insetos detectados; (b) distribuicdo espacial das
detecgdes; (c) interpolagdo espacial por krigagem.

5.3.5. Resultados do Painel Espacial Integrado do Sistema Agrolnsect

A Figura 10 apresenta o conjunto de mapas derivados da andlise espacial realizada
pelo sistema Agrolnsect. O painel integra todas as etapas do fluxo de processamento
desde as deteccbes produzidas pelo modelo até a interpolacdo espacial por krigagem
permitindo uma avaliacdo clara e quantitativa da distribuicdo das pragas ao longo do
talhdo monitorado. O mapa agregado (Figura 10a) sintetiza a ocorréncia combinada de
todas as espécies, fornecendo um panorama geral da pressdao de insetos no periodo
analisado e destacando regides de maior concentracdo que motivaram a avaliacdo
individual de cada praga. Para Diabrotica Speciosa (Figura 10b), a projecdo espacial
revela padrdo de distribuicdo fortemente pontual. As areas de maior intensidade
concentram-se nas proximidades imediatas dos pontos amostrados, especialmente na
regido central do talhdo. A auséncia de gradientes de dispersdo mais amplos sugere focos
localizados de infestacdo, compativeis com o comportamento menos mével dessa espécie
e com registros de agregacédo espacial restrita mencionados na literatura. A krigagem
aplicada a espécie Dalbulus (Figura 10c) resultou no padrdo espacial mais amplo e
continuo entre todas as espécies avaliadas. Observa-se a formacéo de gradientes suaves e
regides de maior intensidade distribuidas predominantemente nas porc¢des leste e sudoeste
do talhdo. Esse comportamento é coerente com a maior capacidade de deslocamento
associada a espécie, resultando em superficie interpolada mais homogénea e com

transicfes mais progressivas entre zonas de baixa e alta probabilidade de ocorréncia. A
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espécie Diceraeus (Figura 10d) apresenta padrdo intermediario. Embora a maior parte da
area mantenha valores reduzidos, observa-se a formacdo de um ndcleo de intensidade
elevada na porcdo central do talhdo. Esse foco pode estar associado a caracteristicas
microambientais especificas que favorecem sua presenca. Ainda assim, a distribuicdo
como um todo permanece fragmentada, sugerindo presséo populacional moderada no
periodo avaliado. Por fim, Frugiperda (Figura 10e) exibiu o padrdo espacial mais
homogéneo e de menor magnitude absoluta. A superficie interpolada mostra variacao
minima ao longo do talhdo, com apenas pequenas areas de leve aumento, sem formacao
de manchas robustas de infestacdo. Esse comportamento confirma as baixas contagens
observadas na etapa de deteccdo e sugere que a espécie estava dispersa e em baixa

densidade durante o intervalo monitorado.

Fozenda Serra Azul . Fazenda Serra Azul - Fazenda Serrs Azul * Fazenda Sema Azud * Fazenda Serra Azul -
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Figura 10. Mapas de incidéncia por krigagem: (a) distribuicdo agregada de todas as espécies; (b) Diabrotica; (c)
Dalbulus; (d) Diceraeus; (e) Frugiperda.

5.4. Discussao

Os resultados obtidos demonstram que o sistema integra de forma eficiente
técnicas modernas de visdo computacional, geoprocessamento e modelagem espacial,
oferecendo um fluxo completo para monitoramento de pragas em campo. Esse tipo de
arquitetura, que combina detecgdo automatica, validagdo geogréfica e interpolacdo via
krigagem em um Unico ambiente computacional, ainda é pouco explorado na literatura,
em que solucdes costumam abranger apenas partes isoladas desse processo. Por exemplo,

Zhou et al. [6] apresentam um sistema baseado em YOLO para pomares, mas cuja etapa
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de mapeamento depende de servigos externos, como ArcGIS Server, aumentando a
complexidade operacional do monitoramento e 0s custos de integragéo.

O desempenho do modelo de classificacdo, com acuracia geral de 95,1%, mostra
consisténcia com avangos recentes em arquiteturas de redes leves para deteccdo em
dispositivos moveis. O trabalho de Xu et al. [40] descreve o modelo GBiDC-PEST,
otimizado para smartphones Android, alcancando elevada precisdo com forte reducéo do
custo computacional. Resultados similares foram obtidos no Agrolnsect, reforcando que
modelos comprimidos e adaptados para TFLite podem manter desempenho competitivo
mesmo operando em hardware restrito, sendo um aspecto crucial para a adocdo por
produtores rurais em contextos de baixa infraestrutura.

Além disso, o trabalho de Verma et al. (2021) contribui com uma anélise
detalhada do desempenho de diferentes versdes da familia YOLO (v3, v4 e v5) na
deteccdo de insetos em soja, alcancando mAP de até 99,5% e F1-score de 96% para o
YOLOVS5 [24]. Embora tais resultados reforcem o potencial dos modelos YOLO para
deteccdo precisa em cenarios agricolas, a abordagem permanece dependente de
processamento em GPU e foco exclusivo na etapa de deteccdo. Em contraste, o
Agrolnsect amplia significativamente esse escopo ao operar integralmente em
smartphones comuns, eliminando a necessidade de hardware especializado e integrando
modulos adicionais ausentes em estudos anteriores, como validacdo geoespacial
automatica, interpolacdo via krigagem e geracdo de mapas de infestacdo. Assim, o
presente trabalho avanca além da simples detec¢do, oferecendo um sistema funcional de
monitoramento espacial que atende diretamente as demandas praticas da agricultura de
precisao.

Uma comparacdo relevante também pode ser feita com solucdes baseadas em
computacdo em nuvem. Karar et al. (2021) propem um pipeline no qual o smartphone
atua apenas como interface, enquanto a inferéncia com Faster R-CNN ocorre
integralmente em servidores remotos [9]. Embora apresente acuracia elevada, o sistema
depende de conectividade continua, retransmissdo automatica em caso de falhas de rede
e infraestrutura de hospedagem escalavel. No contexto agricola, em que a conectividade
é frequentemente limitada, essa dependéncia pode comprometer a adogéo pratica. O
Agrolnsect avanga nesse aspecto ao eliminar completamente a necessidade de
processamento remoto, garantindo operacdo estavel, de baixa laténcia e sem custos

adicionais de infraestrutura, mesmo em regifes rurais com cobertura instavel.
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Além disso, estudos recentes demonstram avancos importantes na deteccdo de
insetos pequenos em ambientes agricolas heterogéneos. Tang et al. (2025) apresentam o
S-YOLOv5m, uma variante aprimorada do YOLOv5m projetada para tomates, que
incorpora SPD-Conv, modulos Ghost, CBAM e o bloco AEM. Essas alteracdes resultam
em aumento de 4,73% no mAP, redugdo de 31% no numero de pardmetros e ganho de
1,3 ms por imagem na inferéncia [41]. Tais melhorias refletem a evolucdo das arquiteturas
YOLO para lidar com alvos pequenos e condic¢des de iluminacéo e oclusdo complexas;
contudo, 12 o modelo permanece voltado exclusivamente a etapa de detec¢édo e depende
de GPU durante a fase de treinamento, sem incorporar elementos adicionais necessarios
a um sistema completo de monitoramento espacial. Em contraste, 0 Agrolnsect associa
deteccdo, validacdo espacial e modelagem geoestatistica em um Unico pipeline executado
integralmente em smartphones, ampliando a aplicabilidade em cenarios de baixa
infraestrutura.

Um avanco complementar é observado no trabalho de Kargar et al. (2025), que
apresentam um modelo ultraleve projetado para segmentacdo e contagem de insetos
diretamente em microcontroladores com apenas 1 MB de RAM e 2 MB de memoria flash
[42]. Apesar da expressiva reducdo de complexidade, aproximadamente 0,75 M de
parametros, o modelo alcanca desempenho sélido (DSC de 85% e loU de 73%),
demonstrando a viabilidade de execucdo totalmente embarcada em dispositivos de
baixissimo custo energético. No entanto, assim como outros estudos focados em
arquiteturas leves, a aplicacdo restringe-se a tarefa de segmentacdo e contagem, sem
incorporar validacdo geografica, integracdo com sistemas espaciais ou geracdo de mapas
de distribuicdo. Nesse sentido, o aplicativo diferencia-se ao expandir esse paradigma de
processamento local para um pipeline completo de monitoramento, integrando deteccao,
georreferenciamento, interpolacdo e geracdo automatica de mapas diretamente em
smartphones convencionais.

No campo dos modelos leves, Wang et al. (2025) introduzem o Insect-YOLO, que
incorpora 0 modulo CBAM para aprimorar a extracdo de caracteristicas em imagens de
baixa resolugdo. O modelo atinge mAP50 de 93,8% com aproximadamente 3 milhGes de
parametros, demonstrando boa relacdo entre eficiéncia e desempenho. Ainda assim, a
aplicacdo e descrita em cendrios que requerem infraestrutura dedicada, tipicamente
integrada a sistemas 10T com processamento remoto. Os autores também destacam
limitagdes importantes, como sensibilidade as condigdes ambientais, desempenho

desigual entre espécies, especialmente planthoppers e risco de sobreajuste devido ao uso
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de base de dados regional [21]. O Agrolnsect supera esses entraves ao operar diretamente
sobre imagens capturadas em campo, mitigando vieses geograficos e dispensando
cameras dedicadas ou servidores externos.

Adicionalmente, solugdes recentes baseadas em armadilhas inteligentes
equipadas com visdo computacional e 10T, como as descritas por Guo et al. (2023),
possibilitam coleta automatizada de grandes volumes de dados, mas exigem sensores
fixos, infraestrutura permanente e conectividade estavel para transmissdo e analise [22].
Em contraste, o Agrolnsect democratiza o0 monitoramento ao utilizar o proprio
smartphone do produtor como dispositivo de captura e processamento, ampliando
significativamente o alcance do sistema em regibes em que sensores dedicados sé&o
economicamente inviaveis.

A andlise geoestatistica realizada neste estudo revelou padrdes espaciais
consistentes com investigacdes classicas que aplicam krigagem ao monitoramento de
pragas. Os efeitos de suavizagdo observados com subestimacdo em &reas de maior
densidade e superestimacdo nas bordas, também sdo relatados em trabalhos sobre
Helicoverpa armigera, Billbugs e grape root borer [43]. Além disso, as diferencas
espaciais entre as espécies analisadas, como o padrdo pontual de Diabrotica e a
distribuicdo mais difusa de Dalbulus, refletem comportamentos ecoldgicos amplamente
documentados, relacionados a mobilidade, agregacéo e dispersao.

Outro aspecto relevante é o tratamento automatico da informacéo espacial. A
validagdo georreferenciada baseada em metadados EXIF e no raio operacional da
propriedade reduz falhas de posicionamento, problema comum em sistemas que
dependem de entrada manual de coordenadas ou do uso de GPS externo. Tal abordagem
atende a uma lacuna frequentemente apontada em aplicagdes maéveis agricolas, tornando
a base espacial do Agrolnsect mais robusta que a de solucdes existentes. Notadamente,
nenhum dos estudos revisados, incluindo modelos 10T, arquiteturas leves recentes e
métodos baseados em nuvem, integra analise geoespacial, interpolacdo ou geracao
automatizada de mapas. Assim, o aplicativo desenvolvido diferencia-se ao unificar
deteccdo, validacdo espacial e modelagem geoestatistica em um U(nico ambiente
computacional.

De modo geral, os resultados demonstram que este software avanca o estado da
arte ao integrar um pipeline completo, desde a captura e detec¢do e anotacdo até a geracao
de mapas derivados de interpolacdo espacial, proporcionando uma ferramenta pratica,

precisa e operacionalmente eficiente para suporte ao manejo integrado de pragas.
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5. Concluséo e trabalhos futuros

O Agrolnsect mostrou ser uma solugdo robusta para 0 monitoramento automatizado de
pragas agricolas, combinando deteccdo eficiente, validacdo geografica rigorosa e
modelagem espacial por krigagem. A elevada acuracia do modelo de classificacdo e a
baixa necessidade de ajustes manuais reforcam o potencial da plataforma em reduzir o
esforco humano na etapa de triagem, aumentando a confiabilidade dos registros e
permitindo analises mais rapidas e objetivas.

Os mapas gerados pela krigagem revelaram padrdes coerentes com a ecologia das
espécies avaliadas, destacando diferencas importantes na intensidade e dispersédo das
ocorréncias. A integracao dessas informacgdes em um unico painel oferece aos produtores
uma visdo clara sobre a dindmica espacial das pragas no talhdo, auxiliando na tomada de
deciséo para intervencGes pontuais e eficientes.

Comparado a solucdes existentes, o aplicativo se destaca pela operagéo totalmente
embarcada em smartphone, pela validacao espacial automatizada e pela geracdo imediata
de mapas de incidéncia, caracteristicas que o tornam adequado para uso em campo,
inclusive em propriedades com infraestrutura limitada.

Como trabalhos futuros, a incorporacdo de covariaveis ambientais, como indices
de vegetacdo, umidade do solo e variaveis climaticas, podera ampliar a precisdo das
estimativas em cenarios com baixa densidade amostral. Estratégias de aprendizado ativo
também poderdo ser exploradas para 0 aprimoramento continuo do modelo,
especialmente em condicBes de grande variabilidade morfoldgica e luminosa. Em sintese,
0 Agrolnsect se apresenta como ferramenta promissora para modernizar praticas de

monitoramento e apoiar decisdes no manejo integrado de pragas.
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CONCLUSAO GERAL

Esta tese apresentou o desenvolvimento integrado de um sistema inteligente para
deteccdo e monitoramento espacial de insetos-praga em lavouras de soja e milho,
combinando modelos avancados de visdao computacional, bases de dados especializadas
e técnicas de geoestatistica. A abordagem proposta contemplou desde a construcéo e
curadoria do conjunto de dados Agrolnsect, passando pelo treinamento e avaliacdo de
modelos de deep learning, até a implementacgédo de um aplicativo movel capaz de realizar
inferéncias embarcadas e gerar mapas de incidéncia em tempo quase real.

A experimentacdo conduzida com diferentes versdes dos modelos YOLO (v5, v7,
v8, v9-gelan e v9-c) e com o Detectron2 demonstrou que é possivel alcancar elevado
desempenho mesmo em cenarios de recursos limitados. Os resultados obtidos com o
conjunto de dados completo (Agrolnsect) confirmaram a robustez dos modelos, mas um
achado relevante foi que o uso de um conjunto reduzido (Reduced), composto por apenas
100 imagens por espécie, ndo comprometeu significativamente a acuracia. Modelos como
0 YOLOV9-c e 0 YOLOvV9-gelan apresentaram diferencas de apenas 0,03% e 1,96% entre
0s conjuntos completo e reduzido, refor¢cando que, com curadoria adequada, é possivel
treinar redes de alta performance mesmo com bases menores. Esse resultado representa
um avanco importante, pois facilita a inclusdo de novas espécies de insetos em futuras
versbes do sistema, permitindo escalabilidade com baixo custo de anotacéo.

A conversao dos melhores modelos para os formatos TFLite e ONNX confirmou
a viabilidade de execucdo eficiente em dispositivos de borda, como smartphones. Em
particular, o0 YOLOv5 mostrou reducdo minima de desempenho ap0s a conversdo, e 0
YOLOV7 chegou a apresentar melhoria com o conjunto de dados reduzido. Esses achados
ressaltam que o emprego de modelos leves em campo ndo é apenas factivel, mas desejavel
para solucdes que exigem operacao offline, baixa laténcia e baixo consumo energético.

A implementacdo do aplicativo Agrolnsect consolidou o sistema como uma
plataforma operacional completa. A deteccdo embarcada, a extracdo automética de
metadados e a sincronizagdo com a nuvem permitiram 0 registro padronizado das
ocorréncias, reduzindo erros humanos e possibilitando analises integradas. A validagéo
geogréfica das deteccBes garantiu coeréncia espacial, evitando registros inconsistentes e

aumentando a confiabilidade das informag0es coletadas.
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As andlises espaciais realizadas por meio da krigagem ordinaria revelaram
padrBes consistentes com a ecologia das espécies avaliadas, indicando &reas de maior
incidéncia e possiveis rotas de dispersdo. A geracdo imediata de mapas de calor e
superficies interpoladas demonstrou o potencial do sistema para apoiar 0 manejo
integrado de pragas, fornecendo aos produtores informagOes claras, objetivas e
espacialmente explicitas para intervengdes mais eficientes e sustentaveis.

Em comparacdo com solucdes disponiveis na literatura e no mercado, 0
Agrolnsect diferencia-se por operar completamente embarcado em smartphone,
dispensando conexdo continua com a internet e permitindo uso em propriedades rurais
com infraestrutura limitada. A integracdo entre deteccdo, validagdo espacial,
armazenamento estruturado e analise geoestatistica torna a plataforma uma ferramenta
completa, moderna e aplicavel em situacfes reais de campo.

Como desdobramentos futuros, recomenda-se a incorporagdo de covariaveis
ambientais, como indices de vegetacdo, umidade do solo e varidveis climaticas, com o
objetivo de aprimorar a precisdo das estimativas em contextos de baixa densidade
amostral. Sugere-se também a adocao de estratégias de aprendizado ativo, permitindo que
0 proprio sistema selecione novas imagens relevantes para rotulagem, acelerando o
processo de adaptacdo a diferentes condi¢des morfoldgicas, luminosas e ambientais.
Além disso, a inclusdo de imagens provenientes de armadilhas amarelas, luminosa e
feromo6nios ampliard a capacidade do modelo de lidar com cenarios visuais mais
desafiadores, contribuindo para uma solucdo ainda mais robusta.

Em sintese, o sistema proposto — composto pelo dataset Agrolnsect, pelos
modelos YOLO otimizados e pelo aplicativo movel Agrolnsect — representa uma
contribuicdo significativa para o avango da Agricultura 4.0. Ao integrar deteccdo
embarcada, validacdo espacial e analise geoestatistica em um Unico ecossistema
operacional, a tese demonstra que é possivel viabilizar solucGes inteligentes, escalaveis e
de alto desempenho para 0 monitoramento automatizado de pragas agricolas. Essa
abordagem abre caminho para novas investigacoes e aplicacdes capazes de transformar
estratégias de manejo integrado, promovendo maior eficiéncia, sustentabilidade e

precisao na producéo agricola.



