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​RESUMO​

​NOVAK,​ ​SERGIO​ ​SOUZA;​ ​Instituto​ ​Federal​ ​Goiano​ ​–​ ​Campus​ ​Rio​ ​Verde​ ​–​ ​GO,​
​outubro​​de​​2025.​​Sistema​​de​​irrigação​​inteligente​​baseado​​em​​lógica​​fuzzy​​integrado​
​com​ ​internet​ ​das​ ​coisas​ ​para​ ​a​ ​cultura​ ​do​ ​tomate​ ​cereja.​ ​Orientador:​ ​Dr.​ ​Adriano​
​Soares de Oliveira Bailão, Coorientador: Dr. Marconi Batista Teixeira.​

​Este​​trabalho​​apresenta​​o​​desenvolvimento,​​a​​implementação​​e​​a​​validação​​experimental​

​de​ ​um​ ​Sistema​ ​de​ ​Irrigação​ ​Inteligente​ ​por​ ​Lógica​ ​Fuzzy​ ​(SILF),​​integrado​​à​​Internet​

​das​ ​Coisas​ ​(IoT),​ ​projetado​ ​para​ ​otimizar​ ​o​ ​uso​ ​de​ ​água​ ​na​ ​cultura​ ​do​ ​tomate​ ​cereja​

​(​​Solanum​ ​lycopersicum​ ​var.​ ​cerasiforme​​).​ ​O​ ​sistema​ ​visa​ ​a​ ​superar​ ​as​ ​limitações​ ​dos​

​métodos​​tradicionais​​de​​irrigação​​por​​tempo​​fixo,​​que,​​frequentemente,​​resultam​​em​​sub​

​ou​ ​super​ ​irrigação,​ ​lixiviação​ ​de​ ​nutrientes​ ​e​ ​desperdício​ ​de​ ​água.​ ​A​ ​arquitetura​ ​do​

​SILF​​é​​composta​​por:​​i)​​uma​​rede​​de​​sensores​​(umidade​​do​​solo,​​temperatura​​e​​umidade​

​do​ ​ar)​ ​baseada​ ​no​ ​microcontrolador​ ​ESP32;​ ​ii)​ ​um​​backend​​servidor​​desenvolvido​​em​

​Python/Flask,​ ​que​ ​hospeda​ ​o​ ​módulo​ ​de​ ​inferência​ ​fuzzy;​ ​e​ ​iii)​ ​uma​ ​interface​ ​web​

​(frontend​​em​​Angular)​​para​​monitoramento​​e​​configuração​​remota.​​O​​núcleo​​do​​sistema​

​é​​um​​controlador​​fuzzy​​do​​tipo​​Mamdani,​​cujos​​conjuntos​​e​​regras​​de​​inferência​​foram​

​definidos​ ​tendo​ ​como​ ​base​ ​consultas​ ​a​ ​um​ ​especialista​ ​em​ ​fruticultura​​e​​da​​literatura​

​fisiológica​ ​da​ ​cultura.​ ​A​ ​cada​ ​hora,​​o​​sistema​​processa​​os​​dados​​ambientais​​em​​tempo​

​real,​ ​aplica​ ​27​ ​regras​ ​fuzzy​ ​e,​ ​por​ ​meio​ ​do​ ​método​ ​de​ ​defuzzificação​ ​do​ ​centroide,​

​determina​​o​​tempo​​ótimo​​de​​acionamento​​da​​bomba​​hidráulica​​e​​da​​válvula​​solenoide​​(0​

​a​ ​60​ ​minutos).​ ​A​ ​validação​ ​experimental​ ​foi​ ​conduzida​ ​em​ ​ambiente​ ​protegido,​

​utilizando​​um​​delineamento​​em​​blocos​​casualizados​​em​​arranjo​​fatorial​​5x3,​​com​​cinco​

​volumes​​de​​substrato​​(3,​​6,​​9,​​12​​e​​15​​L)​​e​​três​​métodos​​de​​irrigação:​​i)​​tradicional​​(30​

​minutos​ ​contínuos,​ ​uma​ ​vez​ ​ao​ ​dia);​ ​ii)​ ​fracionado​ ​(6​ ​minutos​ ​a​ ​cada​ ​2​ ​horas,​

​totalizando​ ​30​ ​min/dia);​ ​e​ ​iii)​ ​inteligente​ ​(via​ ​SILF).​ ​Foram​ ​avaliadas​ ​80​ ​plantas​ ​de​

​tomate​ ​cereja,​ ​com​ ​a​ ​drenagem​ ​(água​​excedente)​​como​​variável-resposta​​principal.​​Os​

​resultados​ ​da​ ​Análise​ ​de​ ​Variância​ ​revelaram​ ​efeitos​ ​altamente​ ​significativos​ ​(p​ ​<​

​0,0001)​​tanto​​do​​método​​de​​irrigação​​quanto​​do​​volume​​de​​substrato​​sobre​​a​​drenagem,​

​sendo​ ​que​ ​a​ ​interação​ ​entre​ ​esses​ ​fatores​ ​não​ ​foi​ ​significativa​ ​(p=0,3494),​ ​indicando​

​robustez​ ​do​ ​SILF​ ​em​ ​diferentes​ ​condições.​ ​O​ ​teste​ ​de​ ​comparação​ ​múltipla​ ​de​​Tukey​

​(α=0,05)​​demonstrou​​que​​o​​SILF​​desencadeou​​redução​​estatisticamente​​significativa​​na​

​drenagem​ ​média​ ​quando​ ​comparado​ ​aos​ ​métodos​ ​tradicionais.​ ​Não​ ​houve​ ​diferença​

​significativa​ ​entre​ ​os​ ​dois​​métodos​​de​​irrigação​​por​​tempo​​fixo.​​Em​​termos​​de​​volume​
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​de​​substrato,​​os​​vasos​​de​​15​​L​​apresentaram​​drenagem​​significativamente​​menor​​que​​os​

​vasos​ ​de​ ​3​ ​L​ ​e​ ​9​​L.​​Conclui-se​​que​​o​​SILF​​é​​uma​​solução​​tecnológica​​viável​​e​​eficaz,​

​capaz​ ​de​ ​economizar,​ ​em​ ​média,​ ​200​ ​a​ ​300​ ​mL​ ​de​ ​água​ ​por​ ​planta​ ​por​ ​dia,​ ​o​ ​que​

​representa​​uma​​economia​​potencial​​de​​aproximadamente​​24​​L/dia​​em​​uma​​bancada​​com​

​80​​vasos.​​O​​sistema​​combina​​baixo​​custo,​​escalabilidade,​​controle​​remoto​​e​​uma​​lógica​

​de​ ​decisão​ ​adaptativa​​que​​imita​​o​​raciocínio​​especialista.​​O​​trabalho​​valida​​o​​potencial​

​da​ ​integração​ ​Lógica​ ​Fuzzy-IoT​ ​para​ ​a​ ​agricultura​ ​de​ ​precisão,​ ​promovendo​ ​um​ ​uso​

​mais sustentável dos recursos hídricos.​

​Palavras-chave:​ ​Sistema​ ​Especialista.​ ​Controle​ ​de​ ​Irrigação.​ ​Conservação​ ​de​ ​Água.​

​Agricultura de Precisão. Produto IoT.​

​ABSTRACT​

​NOVAK,​ ​SERGIO​ ​SOUZA;​ ​Instituto​ ​Federal​ ​Goiano​ ​–​ ​Campus​ ​Rio​ ​Verde​ ​–​ ​GO,​
​outubro​​de​​2025.​​Sistema​​de​​irrigação​​inteligente​​baseado​​em​​lógica​​fuzzy​​integrado​
​com​ ​internet​ ​das​ ​coisas​ ​para​ ​a​ ​cultura​ ​do​ ​tomate​ ​cereja.​ ​Orientador:​ ​Dr.​ ​Adriano​
​Soares de Oliveira Bailão, Coorientador: Dr. Marconi Batista Teixeira.​

​This​​work​​presents​​the​​development,​​implementation,​​and​​experimental​​validation​​of​​an​
​Intelligent​ ​Irrigation​ ​System​ ​using​ ​Fuzzy​​Logic​​(SILF),​​integrated​​with​​the​​Internet​​of​
​Things​ ​(IoT),​ ​designed​ ​to​ ​optimize​ ​water​ ​use​ ​in​ ​cherry​ ​tomato​ ​cultivation​ ​(​​Solanum​
​lycopersicum​ ​var.​ ​cerasiforme​​).​ ​The​ ​system​ ​aims​ ​to​ ​overcome​ ​the​ ​limitations​ ​of​
​traditional​​fixed-time​​irrigation​​methods,​​which​​often​​result​​in​​under-​​or​​over-irrigation,​
​nutrient​ ​leaching,​ ​and​ ​water​ ​waste.​ ​The​ ​SILF​ ​architecture​ ​consists​ ​of:​ ​i)​ ​a​ ​sensor​
​network​ ​(soil​ ​moisture,​ ​air​ ​temperature,​ ​and​ ​air​ ​humidity)​ ​based​ ​on​ ​the​ ​ESP32​
​microcontroller;​​ii)​​a​​Python/Flask​​backend​​server​​hosting​​the​​fuzzy​​inference​​module;​
​and​ ​iii)​ ​a​ ​web​ ​interface​ ​(Angular​ ​frontend)​ ​for​ ​remote​ ​monitoring​ ​and​ ​configuration.​
​The​ ​core​ ​of​ ​the​ ​system​ ​is​ ​a​ ​Mamdani-type​ ​fuzzy​ ​controller​ ​whose​ ​membership​
​functions​​and​​inference​​rules​​were​​defined​​based​​on​​consultations​​with​​a​​fruit-growing​
​specialist​​and​​the​​physiological​​literature​​of​​the​​crop.​​Every​​hour,​​the​​system​​processes​
​real-time​ ​environmental​ ​data,​ ​applies​ ​27​ ​fuzzy​ ​rules,​ ​and—using​ ​the​ ​centroid​
​defuzzification​​method—determines​​the​​optimal​​activation​​time​​for​​the​​hydraulic​​pump​
​and​ ​solenoid​ ​valve​ ​(0​ ​to​ ​60​​minutes).​​The​​experimental​​validation​​was​​conducted​​in​​a​
​protected​​environment​​using​​a​​randomized​​block​​design​​in​​a​​5×3​​factorial​​arrangement,​
​with​ ​five​ ​substrate​ ​volumes​ ​(3,​ ​6,​ ​9,​ ​12,​ ​and​ ​15​ ​L)​ ​and​ ​three​ ​irrigation​ ​methods:​ ​i)​
​traditional​ ​(30​ ​continuous​ ​minutes​ ​once​ ​per​ ​day);​ ​ii)​ ​fractionated​ ​(6​ ​minutes​ ​every​ ​2​
​hours,​ ​totaling​​30​​min/day);​​and​​iii)​​intelligent​​(via​​SILF).​​A​​total​​of​​80​​cherry​​tomato​
​plants​ ​were​ ​evaluated,​ ​with​ ​drainage​ ​(excess​ ​water)​ ​as​ ​the​ ​main​ ​response​ ​variable.​
​ANOVA​ ​results​ ​revealed​ ​highly​ ​significant​ ​effects​ ​(p​ ​<​ ​0.0001)​ ​for​ ​both​ ​irrigation​
​method​​and​​substrate​​volume​​on​​drainage,​​and​​the​​interaction​​between​​these​​factors​​was​
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​not​ ​significant​ ​(p​ ​=​ ​0.3494),​ ​indicating​ ​the​ ​robustness​ ​of​ ​SILF​ ​under​ ​different​
​conditions.​ ​Tukey’s​ ​multiple​ ​comparison​ ​test​ ​(α​ ​=​ ​0.05)​ ​showed​​that​​SILF​​triggered​​a​
​statistically​ ​significant​ ​reduction​ ​in​ ​average​​drainage​​compared​​to​​traditional​​methods.​
​No​ ​significant​ ​difference​ ​was​ ​found​ ​between​ ​the​ ​two​ ​fixed-time​ ​irrigation​ ​methods.​
​Regarding​​substrate​​volume,​​15​​L​​pots​​exhibited​​significantly​​lower​​drainage​​than​​the​​3​
​L​​and​​9​​L​​pots.​​It​​is​​concluded​​that​​SILF​​is​​a​​viable​​and​​effective​​technological​​solution,​
​capable​​of​​saving​​an​​average​​of​​200​​to​​300​​mL​​of​​water​​per​​plant​​per​​day,​​representing​​a​
​potential​ ​savings​ ​of​ ​approximately​ ​24​ ​L/day​ ​for​ ​a​ ​bench​ ​with​ ​80​ ​pots.​ ​The​ ​system​
​combines​ ​low​ ​cost,​ ​scalability,​ ​remote​ ​control,​ ​and​ ​an​ ​adaptive​​decision-making​​logic​
​that​ ​mimics​ ​expert​ ​reasoning.​ ​This​ ​work​ ​validates​ ​the​ ​potential​ ​of​ ​integrating​ ​Fuzzy​
​Logic​ ​and​ ​IoT​ ​for​ ​precision​ ​agriculture,​ ​promoting​ ​more​ ​sustainable​ ​use​ ​of​ ​water​
​resources.​

​Keywords:​ ​Expert​ ​System.​ ​Irrigation​ ​Control.​ ​Water​ ​Conservation.​ ​Precision​
​Agriculture. IoT Product.​



​17​

​1.​ ​INTRODUÇÃO​

​O​​início​​dos​​métodos​​de​​irrigação​​no​​Brasil​​remonta​​aos​​processos​​históricos​​de​

​adaptação​ ​agrícola​ ​em​ ​resposta​ ​à​ ​variabilidade​ ​hídrica,​ ​especialmente​ ​nas​ ​regiões​

​semiáridas​ ​do​ ​Nordeste.​​O​​uso​​da​​irrigação​​se​​intensificou​​a​​partir​​do​​século​​XX,​​com​

​políticas​ ​públicas​ ​voltadas​ ​ao​ ​combate​ ​às​ ​secas​ ​e​ ​à​ ​promoção​ ​do​ ​desenvolvimento​

​agrícola​ ​em​ ​áreas​ ​mais​​vulneráveis​​(Levien;​​Figueirêdo;​​Arruda,​​2021).​​Sistemas​​mais​

​organizados​ ​de​ ​irrigação​ ​foram​ ​se​ ​desenvolvendo​​a​​partir​​das​​décadas​​de​​1970,​​com​​a​

​implantação​ ​de​ ​perímetros​ ​irrigados,​ ​principalmente​ ​pelo​ ​Departamento​ ​Nacional​ ​de​

​Obras Contra as Secas.​

​Esses​​projetos​​fomentaram​​novas​​tecnologias​​de​​irrigação,​​como​​a​​irrigação​ ​por​

​superfície,​ ​aspersão​ ​e,​ ​posteriormente,​ ​o​ ​gotejamento,​ ​atingindo​ ​inicialmente​ ​grandes​

​propriedades,​ ​posteriormente​ ​se​ ​espalhando​ ​para​ ​pequenos​ ​e​ ​médios​ ​produtores.​

​Tradicionalmente,​ ​em​ ​pequenas​ ​propriedades​ ​e​ ​em​ ​cultivos​ ​extensivos​ ​como​

​cana-de-açúcar,​ ​milho​ ​e​ ​pastagens,​ ​tem​​sido​ ​utilizada​​a​ ​irrigação​​por​​períodos​​fixos,​

​sem consideração de variáveis climáticas (de Oliveira  et​​al.​​, 2025).​

​Entre​​as​​desvantagens​​da​​irrigação​​por​​tempo​​fixo​​figura​​a​​possível​​sub​​ou​​super​

​irrigação,​ ​o​ ​risco​ ​de​ ​lixiviação​ ​de​ ​nutrientes,​ ​maior​ ​consumo​ ​de​ ​energia​ ​e,​

​consequentemente,​ ​menor​ ​eficiência​ ​no​ ​uso​ ​da​ ​água.​ ​Devido​ ​a​ ​esses​ ​problemas,​ ​nos​

​últimos​ ​anos​ ​observou-se​ ​uma​ ​transição​ ​para​ ​sistemas​​mais​​eficientes​​no​​uso​​da​​água,​

​com​​maior​​presença​​de​​tecnologias​​automatizadas​​e​​agricultura​​de​​precisão,​​visando​ ​a​

​aumentar​ ​a​ ​produtividade​ ​e​​a​​sustentabilidade​​da​​produção​​agrícola​​irrigada​​(García​​et​

​al.​​, 2020).​

​Novas​ ​inovações,​ ​incluindo​ ​a​ ​inteligência​ ​artificial​ ​(IA),​ ​têm​ ​revolucionado​ ​a​

​agricultura​ ​no​ ​século​ ​21,​ ​trazendo​ ​avanços​ ​expressivos​ ​em​ ​automação,​ ​precisão​ ​e​

​sustentabilidade​​para​​o​​setor​​agroalimentar​​em​​escala​​global​​(Nascimento​​et​​al.​​,​​2025).​

​Com​​destaque​​para​​a​​detecção​​de​​frutos​​(Araújo​​et​​al.​​,​​2025),​​de​​pragas​​(Almeida​​et​​al.​​,​

​2024)​ ​e​ ​até​ ​de​ ​agentes​ ​polinizadores​ ​de​ ​certas​ ​culturas​ ​(França​ ​et​ ​al.,​ ​2025).​

​Considerando​ ​a​ ​irrigação,​ ​surgiram​ ​novos​ ​tipos​ ​de​ ​manejos,​ ​agregando​ ​o​ ​uso​ ​de​

​Algoritmos​ ​de​ ​aprendizado​ ​de​ ​máquina​ ​e​ ​modelos​ ​preditivos,​​estimando​​necessidades​

​específicas​​de​​água​​para​​cada​​cultura,​​integrando​​informações​​locais​​do​​solo​​e​​previsão​
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​do​ ​clima​ ​para​ ​ajustes​ ​automáticos​ ​e​ ​sistemas​ ​de​ ​irrigação​ ​autônomos,​ ​baseados​ ​em​

​Lógica​​Fuzzy​​(Liu;​​Zhao;​​Rezaeipanah,​​2025).​​De​​forma​​geral,​​essas​​abordagens​​visam​

​a​ ​uma​ ​maior​ ​produtividade​ ​agrícola,​ ​pelo​ ​uso​ ​de​ ​informações​ ​personalizadas​ ​e​

​automatizadas para cada lote e cultura (Silva, 2023).​

​O​ ​trabalho​ ​de​ ​García​ ​et​ ​al.​ ​(2020)​ ​denota​ ​tendências​ ​em​ ​métodos​ ​de​​irrigação​

​considerando​ ​dispositivos​ ​de​ ​Internet​ ​das​ ​coisas​ ​(IoT)​ ​e​ ​expõe​ ​que​ ​a​ ​maioria​ ​dos​

​artigos​ ​na​ ​literatura​ ​propõe​ ​o​ ​uso​ ​de​ ​bombas​ ​e​ ​válvulas​ ​para​ ​distribuir​ ​a​ ​água,​ ​em​

​conjunto​ ​com​ ​sensores,​ ​para​ ​medir​ ​parâmetros​ ​ambientais,​ ​a​ ​fim​ ​de​ ​calcular​ ​as​

​necessidades​ ​hídricas.​ ​Com​​relação​​à​​automação,​​há​​uma​​tendência​​no​​uso​​de​​placas​​e​

​microcontroladores​ ​como​ ​ESP32​ ​e​ ​Arduino,​ ​pois​ ​essas​ ​placas​ ​desempenham​ ​papel​

​fundamental​ ​na​ ​democratização​ ​de​ ​sistemas​ ​de​ ​irrigação​ ​inteligente​ ​baseados​ ​em​​IoT,​

​em​​razão​​do​ ​seu​​baixo​​custo​​e​​versatilidade.​​Esses​​dispositivos​​permitem​​que​​sensores​

​de​ ​umidade,​ ​temperatura​ ​e​​outros​​parâmetros​​ambientais​​sejam​​facilmente​​conectados,​

​coletando​ ​dados​ ​em​ ​tempo​ ​real​ ​e​ ​viabilizando​ ​automação​ ​no​ ​gerenciamento​ ​hídrico,​

​especialmente​ ​para​ ​pequenos​ ​produtores​ ​que​ ​antes​ ​não​ ​podiam​ ​arcar​ ​com​ ​sistemas​

​comerciais mais caros (Rissino; Rocha; Correia, 2016).​

​Além​ ​do​ ​baixo​ ​custo,​ ​outra​ ​vantagem​​do​​uso​​dessas​​placas​​é​​a​​coleta​​de​​dados​

​ambientais,​ ​permitindo​ ​a​ ​análise​ ​de​ ​grandes​ ​volumes​​de​​dados​​ambientais,​ ​através​​de​

​sistemas​​na​​web,​​como,​ ​por​​exemplo,​​no​​trabalho​​de​​Rissino,​​Rocha​​e​​Correia​​(2016),​

​que​ ​utilizaram​ ​uma​ ​coleção​ ​de​ ​algoritmos​ ​para​ ​otimizar​ ​a​ ​irrigação​ ​de​ ​culturas​ ​em​

​tempo real.​

​Com​ ​relação​ ​ao​ ​método​ ​computacional,​ ​que​ ​calcula​ ​o​ ​tempo​ ​de​ ​irrigação​

​necessário,​​o​​método​​de​​decisão​​via​​Lógica​​Fuzzy​​é​​muito​​popularizado​​e​​não​​necessita​

​de​​grandes​​bancos​​de​​dados​​experimentais​​para​​sua​​implementação.​​Tendo​​em​​vista​​essa​

​vantagem,​ ​este​ ​trabalho,​ ​por​ ​meio​ ​de​ ​consultas​ ​a​ ​um​ ​especialista​ ​de​ ​fruticultura​ ​do​

​Instituto​ ​Federal​ ​Goiano,​ ​foi​ ​modelado​ ​em​ ​parâmetros​ ​ambientais​ ​segundo​​o​​modelo​

​computacional​ ​-​ ​Lógica​ ​Fuzzy.​ ​Além​ ​disso,​ ​foi​ ​estabelecido​ ​um​ ​conjunto​ ​de​ ​regras​

​tendo​ ​como​ ​base​ ​aspectos​​fisiológicos​​do​​tomate​​cereja.​​A​​cultura​​irrigada​​escolhida​

​foi​ ​o​ ​tomate​ ​cereja,​ ​nessa​ ​cultura,​ ​a​ ​água​ ​é​ ​parte​ ​central​ ​do​ ​desenvolvimento,​ ​e​ ​a​

​irrigação​ ​adequada​ ​ao​​longo​​do​​ciclo​​sustenta​​o​​crescimento,​​a​​produção​​e​​a​​qualidade​

​dos frutos.​
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​A​​construção​​das​​regras​​foi​​possível​​graças​​aos​​avanços​​de​​dados​​experimentais​

​e​ ​de​ ​estresse​ ​para​ ​a​ ​cultura​​do​​tomate,​​que​​delimitaram​​as​​condições​​de​​temperatura​​e​

​umidade​ ​do​ ​ar​ ​e​ ​de​ ​umidade​ ​de​ ​solo​​(Silva​​et​​al.​​,​​2013).​​Graças​​a​​esses​​trabalhos,​​foi​

​possível​ ​introduzir​ ​nas​ ​regras​ ​do​ ​sistema,​ ​por​ ​exemplo,​ ​a​ ​temperatura​ ​ideal​ ​(21°C​ ​a​

​24°C),​ ​elevada​ ​(32°C​ ​até​ ​35°C),​ ​entre​ ​outras​ ​condicionantes.​ ​Após​ ​a​ ​construção​ ​do​

​modelo​ ​de​ ​inferência,​ ​foi​ ​feita​ ​a​ ​validação​ ​em​ ​tempo​ ​real,​ ​por​ ​meio​ ​da​​variável​​alvo​

​drenagem​​do​​sistema.​​Buscou-se​​reduzir​​a​​drenagem,​​pois​​esse​​fenômeno​​ocorre​​quando​

​a​ ​irrigação​ ​não​ ​é​ ​adequada​ ​ao​ ​tipo​ ​de​ ​solo​​ou​​às​​exigências​​da​​cultura,​​resultando​​em​

​infiltração excessiva além da zona radicular das plantas (Baêta dos S. et​​al.​​, 2021).​

​O​​Sistema​​de​​Irrigação​​Inteligente​​por​​Lógica​​Fuzzy​​(SILF),​​software​​registrado​

​no​ ​Instituto​ ​Nacional​ ​de​ ​Propriedade​ ​Intelectual​ ​(INPI),​ ​sob​ ​o​ ​número​ ​BR​ ​51​ ​2025​

​001780-4​ ​(Bailão​ ​et​ ​al.​​,​ ​2025),​ ​foi​ ​comparado​ ​com​ ​técnicas​ ​tradicionais​ ​de​ ​irrigação,​

​como​ ​a​ ​irrigação​ ​uma​ ​vez​ ​ao​​dia​​e​​a​​irrigação​​em​​intervalos​​regulares​​(durante​​o​​dia).​

​Para​ ​essas​ ​análises,​ ​foram​ ​comparados​ ​diferentes​ ​tratamentos,​ ​segundo​ ​o​ ​volume​ ​de​

​substrato.​ ​As​ ​análises​ ​produzidas​ ​foram​ ​capazes​ ​de​ ​definir​ ​o​ ​melhor​ ​volume​ ​de​

​substrato​ ​a​ ​ser​ ​utilizado,​ ​além​ ​de​ ​representar​ ​estatisticamente​ ​a​ ​perda​ ​de​ ​água​ ​por​

​drenagem média de cada vaso do experimento.​
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​2.​ ​OBJETIVOS​

​2.1. Objetivo Geral​

​O​ ​objetivo​ ​deste​ ​estudo​ ​foi​ ​construir​ ​e​ ​validar​ ​um​ ​Sistema​ ​de​ ​Irrigação​

​Inteligente​ ​por​ ​Lógica​ ​Fuzzy​ ​(SILF),​ ​baseado​ ​em​ ​Internet​ ​das​ ​Coisas,​ ​visando​ ​à​

​redução do desperdício de recursos hídricos via drenagem.​

​2.2. Objetivos Específicos.​

​-​​Modelar​​a​​primeira​​parte​​do​​SILF,​​denominada​​definição​​dos​​Conjuntos​​Fuzzy,​​através​

​de consultas com especialistas;​

​-​​Definir​​em​​aspectos​​computacionais,​​a​​segunda​​parte​​do​​SILF,​​definição​​de​​Regras,​​que​

​são​ ​características​ ​fisiológicas​ ​da​ ​cultura​ ​do​ ​tomate​ ​cereja,​ ​utilizando​ ​a​ ​literatura​

​experimental da cultura;​

​-​​Construir​​uma​​interface​​gráfica​​de​​um​​site​​na​​internet,​​para​​monitoramento​​e​​ajuste​​dos​

​parâmetros do SILF;​

​- Estabelecer uma prova de conceito do uso dos protocolos de comunicação utilizados;​

​-​ ​Aplicar​ ​metodologias​ ​experimentais​ ​para​ ​avaliar​ ​qual​ ​o​ ​melhor​ ​volume​ ​de​ ​substrato​

​para este manejo; e​

​- Aplicar metodologias experimentais para avaliar qual   o melhor método de irrigação.​
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​3.​ ​MATERIAL E MÉTODOS​

​3.1. Delineamento Experimental​

​Para​​cultivo​​de​​tomate​​cereja​​e​​validação​​do​​Sistema​​de​​Irrigação​​Inteligente​​por​

​Lógica​​Fuzzy​​(SILF),​​foi​​construída​​uma​​área​​experimental,​​ilustrada​​na​​Figura​​1,​​com​

​plantas​​de​​tomate​​cereja.​​A​​foto​​foi​​tirada​​no​​dia​​28​​de​​maio​​de​​2025​​no​​Laboratório​​de​

​Irrigação​​do​​Instituto​​Federal​​Goiano,​​campus​​Rio​​Verde.​​No​​experimento,​​há​​4​​fileiras​

​de​ ​20​ ​plantas​ ​de​ ​tomate​ ​cereja​ ​cada​ ​uma,​ ​totalizando​ ​80​ ​plantas.​ ​O​ ​ambiente​ ​do​

​experimento é coberto, e a irrigação ocorre por gotejamento.​

​Figura 1.​​Foto do SILF. Fonte: autores.​

​A​ ​escolha​ ​do​ ​gotejamento​ ​foi​ ​feita​ ​em​ ​razão​ ​da​ ​economia​ ​de​ ​água,​ ​pois​​esse​

​método​ ​melhora​ ​a​ ​qualidade​ ​e​ ​o​ ​teor​ ​de​ ​sólidos​ ​solúveis​ ​dos​ ​frutos​ ​e​ ​promove​​maior​

​uniformidade​ ​na​ ​irrigação,​ ​o​ ​que​ ​contribui​ ​para​ ​o​ ​crescimento​​equilibrado​​das​​plantas​
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​(ALMEIDA​ ​ROQUE​ ​et​ ​al.​​,​ ​2022).​ ​A​ ​Figura​ ​2​ ​ilustra​ ​o​ ​delineamento​ ​experimental​

​adotado,​ ​o​ ​Delineamento​ ​em​ ​Blocos​ ​Casualizados​ ​(DBC),​ ​sendo​ ​cada​ ​parcela​

​composta​ ​por​ ​4​ ​vasos,​ ​e​ ​o​ ​volume​ ​de​ ​substrato​ ​indicado​ ​nas​ ​cores.​ ​As​ ​amostras​

​coletadas​ ​estão​ ​circuladas,​ ​indicando​ ​seu​ ​posicionamento​ ​no​ ​experimento.​ ​O​

​delineamento​​seguiu​​um​​arranjo​​fatorial​​5x3,​​tendo​​sido​​considerados​​cinco​​volumes​​de​

​substrato,​ ​em​ ​litros:​ ​3L,​ ​6L,​ ​9L,​ ​12L​ ​e​ ​15L.​ ​Ressalta-se​ ​que​ ​o​ ​número​ ​de​ ​unidades​

​experimentais​ ​não​ ​corresponde​ ​a​ ​80,​​mas​​a​​20,​​uma​​vez​​que​​cada​​unidade​​é​​composta​

​por​ ​quatro​ ​vasos​ ​submetidos​ ​ao​ ​mesmo​ ​tratamento,​ ​o​ ​que​ ​assegura​ ​as​ ​repetições​

​necessárias​ ​ao​ ​ensaio.​ ​Dessa​ ​forma,​ ​foram​ ​estabelecidas​ ​quatro​ ​repetições,​

​correspondentes às quatro linhas de vasos.​

​Figura 2.​​Visualização esquemática do delineamento​​experimental. Fonte: autores.​

​Tabela 1.​​Graus de liberdade do experimento. Fonte:​​autores.​

​Item​ ​Valor​

​Número de parcelas​ ​20​

​Graus de liberdade totais​ ​19​

​Graus de liberdade dos tratamentos​ ​4​

​Graus de liberdade dos blocos​ ​3​

​Graus de liberdade do erro​ ​12​



​23​

​Considerando​​o​​sistema​​envolvido​​nesse​​trabalho,​​é​​necessário​​avaliar​​os​​Graus​

​de​​Liberdade​​(Tabela​​1)​ ​que​ ​estão​​relacionados​​ao​​número​​total​​de​​observações​​feitas​

​para​ ​cada​ ​combinação​ ​desses​ ​tratamentos,​ ​subtraindo​ ​o​ ​número​ ​de​ ​parâmetros​

​estimados​ ​no​ ​modelo.​ ​A​ ​correta​ ​identificação​ ​e​ ​o​ ​uso​ ​dos​ ​graus​ ​de​ ​liberdade​ ​em​

​delineamentos​ ​experimentais​ ​asseguram​ ​a​ ​precisão​ ​dos​ ​testes​ ​estatísticos​ ​e​ ​a​

​confiabilidade​​da​​análise,​​em​​que​ ​a​​variabilidade​​de​​fatores​​pode​​ser​​elevada​​(Banzatto;​

​Kronka,​​2013).​​No​​caso​​deste​​trabalho,​​o​​Grau​​de​​Liberdade​​do​​Erro​​está​​adequado,​​tem​

​valor​ ​12.​ ​Quando​ ​há​ ​poucos​ ​graus​ ​de​ ​liberdade​ ​para​ ​o​ ​erro,​ ​a​​estimativa​​da​​variância​

​residual​ ​torna-se​ ​imprecisa,​ ​o​ ​que​ ​dificulta​ ​a​ ​detecção​ ​estatística​ ​de​ ​diferenças​ ​reais​

​entre​ ​os​ ​tratamentos​ ​e​ ​aumenta​ ​o​ ​risco​ ​de​ ​erro​ ​tipo​ ​II.​ ​Esses​ ​valores​ ​seguem​ ​as​

​recomendações​​para​​delineamentos​​fatorial​​e​​de​​blocos​​casualizados.​​A​​variável​​alvo​​do​

​experimento​​é​​a​​drenagem,​​sua​​medição​​foi​​feita​​por​ ​recipientes​​do​​tipo​​garrafa​​pet​​em​

​cada​ ​um​ ​dos​ ​vasos​ ​do​ ​conjunto​ ​de​ ​amostra.​ ​Após​ ​a​ ​coleta,​ ​foi​​utilizada​ ​uma​​proveta​

​graduada​​(ou​​cilindro​​graduado),​​que​​é​​um​​instrumento​​de​​laboratório​​usado​​para​​medir​

​o volume de líquidos.​

​Figura 3.​​Fotos do sistema de drenagem. Fonte: autores.​

​Através​ ​do​​sistema​​de​​drenagem​​(Figura​​3),​​foram​​coletados​​os​​resultados​​de​​7​

​dias​​para​​cada​​método​​de​​irrigação:​ ​a​​irrigação​​uma​​vez​​ao​​dia,​​a​​irrigação​​a​​cada​​duas​

​horas​ ​e​ ​a​ ​irrigação​ ​utilizando​ ​o​ ​Silf.​ ​Outras​ ​fotos​ ​do​ ​sistema​ ​de​ ​drenagem​​podem​​ser​

​conferidas na seção de Apêndices, Figura A.​

​A​​drenagem​​é​​consequência​​direta​​da​​irrigação​​feita​​sobre​​a​​cultura,​​e​​segundo​​a​

​literatura,​ ​a​ ​irrigação​ ​do​ ​tomate​ ​cereja​ ​diária​ ​deve​ ​ser​ ​de​ ​1,5​ ​a​ ​2,5​ ​litros​ ​por​ ​planta​

​(Santos​ ​et​ ​al.​​,​​2023).​​Dessa​​forma,​​em​​média,​​uma​​planta​​consome​​2​​litros​​de​​água​​de​

​irrigação​ ​por​ ​dia.​ ​Foi​ ​medida,​ ​experimentalmente,​ ​a​ ​vazão​ ​do​ ​experimento​ ​pelos​

​gotejadores,​ ​um​ ​gotejador​ ​irriga​ ​em​ ​média​ ​70​ ​mililitros​ ​em​ ​1​ ​minuto​ ​com​ ​a​ ​bomba​
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​ligada,​ ​isso​ ​totaliza​​4,2​​litros​​hora.​​Assim,​​cerca​​de​​30​​minutos​​diários​​são​​necessários​

​para uma irrigação ininterrupta.​

​Portanto,​ ​para​ ​comparação​ ​foram​ ​analisados​ ​três​ ​manejos​ ​de​ ​irrigação​

​diferentes:​ ​o​ ​primeiro,​ ​um​ ​manejo​ ​de​ ​irrigação​ ​de​ ​uma​ ​vez​ ​ao​ ​dia,​ ​durante​ ​trinta​

​minutos;​ ​o​ ​segundo,​ ​um​ ​manejo​ ​de​ ​irrigação​​distribuindo​​esse​​consumo​​em​​intervalos​

​de​ ​seis​ ​minutos​ ​a​ ​cada​ ​duas​ ​horas;​ ​e​ ​o​ ​terceiro​ ​e​ ​último,​​que​​é​​o​​método​​de​​irrigação​

​desse​ ​trabalho,​ ​a​ ​irrigação​ ​pelo​ ​Sistema​ ​de​ ​Irrigação​ ​Inteligente​ ​por​ ​Lógica​ ​Fuzzy​

​(SILF),​ ​que​ ​calcula​ ​o​ ​tempo​ ​de​ ​irrigação​ ​a​ ​cada​ ​hora​ ​do​ ​dia,​ ​segundo​ ​variáveis​

​ambientais.​​A​​Figura​​4​​ilustra​​uma​​visualização​​esquemática​​do​​arranjo​​fatorial,​​com​​as​

​variáveis que irão conferir variação ao experimento.​

​Figura​ ​4.​ ​Visualização​ ​esquemática​ ​dos​ ​Tratamentos​ ​e​ ​Manejos​ ​que​ ​compõem​ ​o​ ​Arranjo​

​Fatorial deste trabalho. Fonte: autores.​

​3.3. Características do Solo​
​A​ ​Tabela​ ​2​ ​mostra​ ​o​ ​resultado​ ​da​ ​análise​ ​de​ ​solo​ ​para​ ​o​ ​ambiente​ ​do​

​experimento,​​na​​Fazenda​​Experimental​​do​​Instituto​​Federal​​Goiano,​​campus​​Rio​​Verde.​

​A​​coleta​​dos​​dados​​do​​solo​​para​​amostra​​foi​​feita​​no​​dia​​10​​de​​março​​de​​2025,​​data​​em​

​que as mudas foram transplantadas para os vasos.​

​Tabela​ ​2.​ ​Laudo​ ​de​ ​Programa​ ​de​ ​Qualidade​ ​de​ ​Análise​ ​de​ ​Solo,​ ​incluindo​ ​Análise​ ​Básica,​
​referente​​ao​​ano​​de​​2025​​da​​Fazenda​​Experimental​​do​​Instituto​​Federal​​Goiano,​​em​​Rio​​Verde,​
​Goiás. Fonte: autores.​
​Propriedade (Unidade)​ ​Resultado​ ​Interpretação​

​P-resina (mg/dm³)​ ​5​ ​Baixo​

​MO (g/dm³)​ ​38​ ​Alto​

​pH (CaCl₂) (pH)​ ​5,6​ ​Alto​

​K (Potássio) (mmolc/dm³)​ ​1,6​ ​Médio​
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​Ca (Cálcio) (mmolc/dm³)​ ​26​ ​Alto​

​Mg (Magnésio) (mmolc/dm³)​ ​15​ ​Alto​

​H+Al (Ac. Potencial) (mmolc/dm³)​ ​25​ ​Alto​

​Al (Alumínio) (mmolc/dm³)​ ​0​ ​Médio​

​SB (Soma de Bases) (mmolc/dm³)​ ​42,6​ ​Alto​

​S-SO₄ (Enxofre) (mg/dm³)​ ​12​ ​Alto​

​CTC (Cap. Troca Cat.) (mmolc/dm³)​ ​67,6​ ​Alto​

​V (Sat. Bases) (%)​ ​63​ ​Médio​

​m (Sat. Alumínio) (%)​ ​0​ ​Médio​

​Ca/CTC (%)​ ​38​ ​Alto​

​Mg/CTC (%)​ ​22​ ​Alto​

​B (Boro mg/dm3)​ ​0,29​ ​Médio​

​Cu (Cobre mg/dm3)​ ​2,4​ ​Alto​

​Fe (Ferro mg/dm3)​ ​19​ ​Alto​

​Mn (Manganês mg/dm3)​ ​10,7​ ​Alto​

​Zn (Zinco mg/dm3)​ ​0,3​ ​Baixo​

​Com​ ​essas​ ​características,​ ​o​ ​solo​ ​é​ ​apto​ ​para​ ​o​ ​cultivo​ ​de​ ​tomate,​ ​contudo​ ​é​

​necessário​ ​avaliar​ ​sua​ ​granularidade​ ​para​ ​conhecer​ ​suas​ ​propriedades​ ​físicas,​ ​como​

​retenção​ ​de​ ​água,​ ​drenagem,​ ​fertilidade​ ​e​ ​compactação​ ​(ABNT,​ ​2016).​ ​A​ ​Tabela​ ​3​

​apresenta​​a​​Análise​​Granulométrica​​do​​Solo,​​coletado​​no​​mesmo​​dia​​e​​local​​da​​Análise​

​de Solo Básica (tabela anterior).​

​Tabela​ ​3.​ ​Laudo​ ​de​ ​Programa​ ​de​ ​Qualidade​ ​de​ ​Análise​ ​de​ ​Solo​ ​da​ ​Análise​ ​Granulométrica​
​referente​​ao​​ano​​de​​2025​​da​​Fazenda​​Experimental​​do​​Instituto​​Federal​​Goiano,​​em​​Rio​​Verde,​
​Goiás. Fonte: autores.​

​Amostra​ ​Identificação​ ​Profundidade (cm)​ ​Argila (g/kg)​ ​Areia Total (g/kg)​ ​Silte (g/kg)​

​1​ ​Latossolo vermelho​ ​0-20​ ​398​ ​443​ ​159​

​2​ ​Solo experimental vaso​ ​0-25​ ​375​ ​446​ ​178​

​Foram​​coletadas​​amostras​​do​​solo​​presente​​no​​Laboratório​​de​​Irrigação​​(amostra​

​1),​​bem​​como​​dos​​vasos​​que​​compõem​​o​​delineamento​​experimental​​(amostra​​2).​​Com​

​essa​ ​proporção,​ ​o​ ​solo​ ​apresenta​ ​textura​ ​franco-argilosa​ ​(franco​ ​argiloso),​ ​sendo​ ​um​

​solo​ ​equilibrado,​ ​com​ ​boa​ ​capacidade​ ​de​ ​retenção​ ​de​ ​água.​ ​Ele​ ​apresenta​ ​também​

​drenagem​ ​intermediária,​ ​não​ ​encharca​ ​facilmente,​ ​nem​ ​seca​ ​rapidamente.​ ​Tem​ ​ainda​

​baixa​​plasticidade​​e​​pegajosidade.​​Já​​o​​solo​​da​​amostra​​2​​é​ ​aquele​​utilizado​​nos​​vasos.​
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​Esse​ ​solo​ ​é​ ​um​ ​pouco​ ​mais​ ​leve,​ ​mais​ ​drenado​ ​e​ ​adequado​ ​ao​ ​cultivo​ ​em​ ​recipiente.​

​Considerando​​o​​Silte,​​a​​amostra​​2​​é​​um​​pouco​​mais​​fértil​​que​​a​​amostra​​1.​​Contudo,​​em​

​outras características, as amostras são parecidas em sua granularidade.​

​3.4. Fluxo Experimental​

​Além​ ​de​ ​ter​ ​delineamento​ ​experimental​ ​em​ ​DBC,​ ​o​ ​experimento​ ​seguiu​ ​o​

​seguinte​ ​cronograma​ ​de​ ​desenvolvimento:​ ​na​ ​Tabela​ ​4​ ​o​ ​cronograma​ ​cumprido​ ​de​

​montagem do experimento  e na Tabela 5 o cronograma da coleta de resultados.​

​Tabela 4.​​Cronograma de estágios do experimento.​

​Etapa​ ​Início​ ​Fim​

​Preparação das mudas​ ​10/03/2025​ ​03/04/2025​

​Desenvolvimento Vegetativo e Reprodutivo​ ​03/04/2025​ ​01/07/2025​

​Formação de frutos​ ​01/07/2025​ ​20/07/2025​

​Colheita dos frutos e Coleta de resultados​ ​20/07/2025​ ​11/08/2025​

​Tabela 5.​​Cronograma de coleta de resultados.​

​Etapa​ ​Início​ ​Fim​

​Coleta de resultados de irrigação 1 vez ao dia​ ​20/07/2025​ ​27/07/2025​

​Coleta de resultados de irrigação 5 vezes ao dia​ ​27/07/2025​ ​03/08/2025​

​Coleta de resultados do sistema de irrigação inteligente​ ​03/08/2025​ ​10/08/2025​

​Na​ ​literatura,​ ​os​ ​estágios​ ​de​ ​formação​​vegetal​​seguem​​Dias​​Após​​a​​Semeadura​

​(DAS).​ ​Segundo​ ​fdasfdsa,​ ​a​ ​germinação​ ​das​​sementes​​ocorre​​entre​ ​5​​e​​10​​DAS,​ ​e​​a​

​muda​​estará​​pronta​​para​​plantio​​entre​ ​20​​e​​30​​DAS.​​O​​experimento​​conduziu​​o​​plantio​

​em​​24​​DAS,​ ​faixa​​correta​​para​​esse​​plantio.​​Durante​​o​​crescimento​​vegetativo​​e​​início​

​da​​formação​​de​​flores​​(estágio​​reprodutivo),​​estimado​​até​​no​​máximo​​com​​término​​entre​

​70​​e​​90​​DAS,​​foi​​utilizado​​manejo​​de​​irrigação​​de​​5​​vezes​​ao​​dia,​​perfazendo​​2​​litros​​de​

​irrigação,​ ​o​ ​que​ ​é​ ​indicados​ ​pela​ ​literatura.​​Em​​89​​DAS,​​teve​​início​ ​o​​período​​de​

​frutificação,​ ​tendo​ ​sido​ ​necessários​ ​22​ ​dias​ ​para​ ​garantir​ ​que​ ​os​ ​frutos​ ​fossem​
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​adequadamente​ ​formados,​ ​garantindo​ ​que​ ​diferentes​ ​estágios​ ​da​ ​frutificação​ ​não​

​causassem problemas na coleta dos resultados.​

​3.2. Dispositivos de internet das coisas e seu posicionamento​

​Segundo​ ​Carr​ ​et​ ​al.​ ​(2023),​ ​a​ ​Internet​ ​das​ ​Coisas​ ​(IoT)​ ​é​ ​um​ ​conceito​ ​que​ ​se​

​refere​​à​​conexão​​de​​objetos​​físicos​​do​​dia​​a​​dia​​à​​Internet,​​permitindo​​que​​esses​​objetos​

​se​ ​comuniquem​ ​entre​ ​si​ ​e​ ​possam​ ​ser​ ​monitorados​ ​e​ ​controlados​ ​remotamente.​ ​Essa​

​conexão​ ​possibilita​ ​a​ ​automação​ ​e​ ​a​ ​simplificação​ ​de​ ​atividades​ ​rotineiras,​ ​trazendo​

​eficiência​ ​e​ ​visualização​ ​em​ ​tempo​ ​real​ ​de​ ​dados​ ​coletados​ ​por​ ​sensores,​ ​como​

​temperatura,​​umidade,​​entre​​outros.​​A​​IoT​​integra​​o​​mundo​​físico​​ao​​virtual,​​gerando​​e​

​transmitindo​ ​grandes​ ​volumes​ ​de​ ​dados​ ​para​ ​diversas​ ​aplicações,​ ​desde​ ​ambientes​

​residenciais​​até​​industriais​​e​​agrícolas.​​Neste​​trabalho,​​a​​internet​​das​​coisas​​é​​o​​grupo​

​de​ ​equipamentos,​ ​composto​ ​por​ ​placas​ ​e​ ​circuitos​ ​digitais,​ ​sensores​ ​e​ ​outros​

​equipamentos periféricos associados.​

​A​ ​Figura​ ​5​ ​ilustra​ ​uma​ ​visão​ ​geral​ ​do​ ​posicionamento​ ​dos​ ​equipamentos​ ​de​

​internet​ ​das​ ​coisas​ ​utilizados​ ​neste​ ​trabalho.​ ​Esses​ ​equipamentos​ ​serão​ ​divididos​ ​em​

​dois​ ​grupos:​ ​Circuito​ ​de​ ​Leitura​ ​e​ ​Circuito​ ​de​ ​Acionamento.​ ​Ambos​ ​os​ ​circuitos​ ​são​

​protegidos​​por​​uma​​estrutura​​fechada,​​que​​promove​​o​​isolamento​​do​​SILF​​a​​intempéries​

​do tempo, que poderiam oxidar sensores, placas e módulos.​
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​Figura 5.​​Visualização esquemática do experimento.​​Fonte: autores.​

​A​​Figura​​6​​é​​a​​ilustração​​do​​modelo​​3D​​para​​melhor​​visualização.​​Observe​​que​

​há​​uma​​separação​​espacial​​entre​​o​​circuito​​de​​acionamento​​(caixa​​com​​tamanho​​maior)​​e​

​circuito​ ​de​ ​leitura​ ​(caixa​ ​com​ ​tamanho​ ​menor).​ ​Esses​ ​dois​ ​circuitos​ ​são​ ​conectados​ ​à​

​internet,​ ​por​ ​isso​ ​conseguem​ ​trabalhar​ ​em​ ​conjunto,​ ​apesar​ ​de​ ​estarem​ ​em​ ​caixas​

​separadas.​ ​Há​ ​também​ ​na​ ​caixa​ ​menor,​ ​um​ ​roteador​ ​de​ ​internet,​ ​possibilitando​ ​uma​

​automação​ ​controlada​ ​remotamente​ ​via​ ​internet.​ ​Detalhes​ ​acerca​ ​dos​ ​dois​ ​circuitos,​

​sensores e atuadores serão abordados a seguir.​
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​Figura​​6.​​Modelo​​3D​​da​​estação​​de​​controle​​do​​experimento,​​juntamente​​com​​sua​​comparação,​

​foto real. Fonte: autores.​

​3.2.1. Microcontrolador ESP32​
​Segundo​ ​Oliveira​ ​e​ ​Dusse​ ​(2024),​ ​o​ ​ESP32​ ​é​ ​um​ ​microcontrolador​ ​de​ ​baixo​

​custo​ ​com​ ​conectividade​ ​Wi-Fi​ ​e​ ​Bluetooth​ ​integrada,​ ​amplamente​ ​utilizado​ ​em​

​aplicações de IoT. Ele está ilustrado na Figura 7.​

​Figura 7.​​ESP32, o microcontrolador utilizado neste​​trabalho. Fonte: autores.​

​Essa​ ​placa​ ​permite​ ​conectar​ ​dispositivos​ ​à​ ​internet​ ​para​ ​coletar,​ ​processar​ ​e​

​transmitir​​dados,​​sendo​​usado​​em​​projetos​​como​​automação​​residencial,​​monitoramento​

​ambiental,​ ​sistemas​ ​agrícolas​ ​inteligentes​ ​e​ ​muitos​ ​mais.​ ​O​ ​ESP32​ ​é​​popular​​por​​seu​
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​desempenho,​ ​eficiência​ ​energética​ ​e​ ​versatilidade,​ ​suportando​ ​linguagens​ ​de​

​programação​ ​como​ ​Python​ ​e​ ​Linguagem​​C,​ ​oferecendo​​também​​uma​​rica​​biblioteca​

​de​​recursos​​para​​desenvolvedores​​(Ionescu;​​Enescu,​​2020).​​Neste​​trabalho,​​a​​escolha​​do​

​ESP32,​ ​em​ ​detrimento​ ​de​ ​outras​ ​placas,​​como​​Arduíno,​​por​​exemplo,​​foi​​por​​conta​​de​

​seu​ ​suporte​ ​nativo​ ​a​​Wi-Fi,​​sendo-lhe​ ​possível​ ​então​ ​se​​conectar​​com​​a​​internet​​sem​

​precisar de adaptadores.​

​3.2.2. Sensores​
​Neste​ ​trabalho,​ ​conforme​ ​ilustrado​ ​no​ ​esquema​ ​da​ ​Figura​ ​2,​ ​foram​ ​utilizados​

​cinco​ ​sensores​ ​de​​umidade​​de​​solo​​e​​um​ ​sensor​​de​​umidade​​e​​temperatura​​do​​ar​​do​

​tipo​​DHT11.​​A​​escolha​​do​​sensor​​DHT11​​(Figura​​8)​​deve-se​​ao​​fato​​de​​ser​​amplamente​

​empregado​ ​na​ ​medição​ ​de​ ​temperatura​ ​e​​umidade,​​destacando-se​​pela​​simplicidade​​de​

​operação e pelo baixo custo.​

​Figura 8.​​Sensores utilizados no trabalho. Fonte:​​autores.​

​Este​​sensor​​de​​temperatura​​e​​umidade​​do​​ar​​tem​ ​faixa​​de​​medição​​de​​0​​a​​50​​°C​

​para​​temperatura​​e​​de​​20%​​a​​80%​​para​​umidade​​relativa,​​com​​precisão​​de​​±2​​°C​​e​​±5%,​

​respectivamente​ ​(Oliveira​ ​Júnior;​ ​Vicentin;​ ​Cunha,​ ​2014).​ ​Foi​ ​utilizado​ ​também​ ​um​

​resistor​ ​pull-up​ ​para​ ​a​ ​leitura​ ​dos​ ​dados​ ​do​ ​sensor​ ​DHT11,​ ​conforme​ ​indicado​ ​na​

​literatura por Alfith et​​al.​​(2022).​

​Também​​foi​​empregado​​um​​sensor​​de​​umidade​​do​​solo​​do​​tipo​​anticorrosivo​​—​

​característica​ ​que​ ​contribui​ ​para​ ​a​ ​maior​ ​durabilidade​ ​do​ ​equipamento​ ​—​ ​destinado​ ​à​

​obtenção​ ​de​ ​leituras​ ​diretamente​ ​no​ ​solo.​ ​A​ ​fabricante​ ​do​ ​sensor​ ​é​ ​a​ ​empresa​ ​WJ​

​Componentes​​Eletrônicos.​​Ao​​todo,​​foram​​utilizados​​cinco​​sensores​​desse​​modelo​​para​

​as​ ​medições,​ ​sendo​ ​que​ ​esse​ ​sensor​ ​tem​ ​um​ ​módulo​ ​que​​converte​​a​​leitura​​analógica​
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​que​ ​o​ ​sensor​ ​recebe​ ​para​ ​dois​ ​tipos​ ​de​ ​saída,​ ​digital​ ​e​ ​analógica,​ ​adaptando​ ​essas​

​leituras às entradas que o ESP32 tem.​

​3.2.3 Circuito de leitura dos dados​

​No​ ​SILF,​ ​como​ ​ambas​ ​as​ ​placas​ ​ESP32​ ​estão​ ​conectadas​ ​à​ ​internet,​ ​a​

​comunicação​ ​entre​ ​as​ ​placas​ ​de​ ​leitura​ ​e​ ​o​ ​acionamento​ ​de​ ​motores​ ​ocorre​ ​a​ ​cada​

​instante.​​A​​visualização​​do​​circuito​​de​​leitura​​está​​presente​​na​​Figura​​9.​​Nesse​​fluxo,​​os​

​dados​ ​de​ ​umidade​ ​de​ ​solo​ ​são​ ​lidos​ ​em​ ​5​ ​sensores​​de​​umidade​​de​​solo,​​contudo,​​para​

​fins​ ​didáticos​​está​​presente​​na​​Figura​​9​ ​um​​esquema​​de​​circuito​​de​​um​​sensor​​DHT11​

​em conjunto com o sensor de umidade de solo.​

​Figura​​9.​​Circuito​​de​​ligação​​dos​​cinco​​sensores​​de​​umidade​​de​​solo​​e​​do​​sensor​​DHT11.​​Fonte:​

​autores.​

​Após​​a​​leitura​​pela​​placa​​ESP32,​​é​​feito​​um​​tratamento​​para​​verificar​​se​​o​​sensor​

​está​ ​realmente​ ​ligado​ ​e​ ​coletando​ ​dados​ ​corretamente,​ ​em​ ​seguida,​ ​é​ ​feita​ ​a​ ​média​

​considerando​ ​apenas​ ​os​ ​sensores​ ​que​ ​estiverem​​ligados.​​Depois,​​a​​média​​e​ ​o​​valor​​de​

​umidade​ ​coletado​ ​em​ ​cada​ ​sensor​​são​​enviados​​a​​uma​​API​​Python​​Flask​​na​​internet,​​a​

​fim​​de​​persistir​​esses​​dados​​em​​um​​banco​​de​​dados​​relacional​​MySQL.​​Os​​dois​​sensores​

​não​ ​precisam​ ​de​ ​quaisquer​ ​equipamentos​ ​transformadores​ ​para​ ​funcionar,​ ​isso​

​ocorrendo por  trabalharem na voltagem em que o microcontrolador ESP32 opera: 3,3V.​



​32​

​Para​​obtenção​​de​​um​​valor​​de​​umidade​​de​​solo​​confiável,​​neste​​trabalho​ ​foram​

​desenvolvidos​​códigos​​de​​programação​​para​​detectar​​se​​os​​sensores​​de​​umidade​​de​​solo​

​estão​​funcionando,​​dessa​​forma,​​após​​verificar​​quais​​sensores​​estão​​realmente​​ligados,​​é​

​feita a média dos valores dos que estão ligados.​

​3.2.4. Circuito de Acionamento da Bomba​
​Para​ ​a​ ​irrigação​ ​do​ ​sistema,​ ​foram​ ​utilizadas​ ​uma​ ​bomba​ ​hidráulica​ ​e​ ​uma​

​válvula solenoide, equipamentos ilustrados na Figura 10.​

​Figura 10.​​Atuadores do SILF. Fonte: autores.​

​No​ ​SILF,​ ​a​ ​bomba​ ​escolhida​ ​foi​ ​a​ ​Bomba​ ​Periférica​ ​BB​ ​500P​ ​da​ ​fabricante​

​BRANCO-9036,​​de​​220​​V,​​em​​conjunto​​com​​a​​válvula​​solenoide​​Hunter​​de​​24​​V.​​O​​uso​

​da​ ​válvula​ ​solenoide​ ​é​ ​requerido​ ​em​ ​razão​ ​da​ ​ação​ ​da​ ​força​ ​gravitacional​ ​da​ ​coluna​

​d'água​ ​do​ ​reservatório.​ ​A​ ​pressão​ ​hidrostática​ ​é​ ​diretamente​ ​proporcional​ ​à​ ​altura​ ​do​

​reservatório,​ ​por​ ​consequência,​ ​a​ ​válvula​ ​solenoide​ ​oferece​ ​resistência​ ​à​ ​passagem​ ​de​

​água na tubulação (Halliday; Resnick; Walker, 2023).​

​A​ ​válvula​ ​solenoide​ ​escolhida​ ​opera​ ​em​ ​uma​ ​voltagem​ ​de​ ​24​ ​V​ ​de​ ​corrente​

​alternada,​ ​dessa​ ​forma​ ​não​ ​suporta​ ​ser​ ​ligada​ ​em​ ​paralelo​ ​com​ ​o​ ​motor,​ ​sendo​

​necessário​ ​um​ ​transformador​ ​para​ ​essa​ ​válvula.​ ​O​ ​microcontrolador,​ ​através​ ​do​ ​relé,​

​consegue​ ​controlar​ ​o​ ​acionamento​ ​do​ ​motor,​​e​​como​​esta​​placa​​é​​ligada​​à​​internet,​​faz​

​consultas​ ​a​ ​cada​ ​segundo​ ​a​ ​um​ ​software​ ​(API​ ​Flask,​ ​que​ ​será​ ​descrito​ ​nas​ ​próximas​

​sessões),​ ​a​ ​fim​ ​de​ ​buscar​​o​​estado​​lógico​​da​​bomba​​no​​SILF​​(ligada​​ou​​desligada).​​Os​

​equipamentos Contator e Relé estão ilustrados na Figura 11.​
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​Figura 11.​​Contator e Relé. Fonte: autores.​

​De​ ​acordo​ ​com​ ​Braga​ ​(2019),​ ​a​ ​função​ ​de​ ​um​ ​contator​ ​é​ ​controlar​ ​o​

​acionamento​ ​e​ ​o​ ​desligamento​ ​de​ ​circuitos​ ​elétricos​ ​de​ ​alta​ ​potência,​ ​como​ ​motores​

​elétricos,​ ​aquecedores,​ ​sistemas​ ​de​ ​iluminação​ ​e​ ​outros​ ​dispositivos​ ​industriais​ ​e​

​comerciais.​ ​Ela​ ​funciona​ ​como​ ​um​ ​interruptor​ ​eletromecânico​ ​que​ ​permite​ ​ligar​ ​ou​

​desligar​ ​cargas​ ​elétricas​ ​a​ ​distância​ ​de​ ​forma​ ​segura​ ​e​ ​eficiente,​ ​por​ ​meio​ ​do​ ​efeito​

​eletromagnético​ ​gerado​ ​pela​ ​bobina​ ​interna​ ​do​ ​contator.​ ​Isso​ ​possibilita​ ​o​ ​controle​

​remoto​ ​ou​ ​automático​ ​do​ ​fluxo​​de​​energia,​​além​​de​​proporcionar​​segurança,​​economia​

​de energia e maior vida útil aos equipamentos conectados.​

​Figura 12.​​Circuito de acionamento do motor. Fonte:​​autores.​

​Ainda​​segundo​​Braga​​(2019),​​a​​função​​do​​relé​​é​​permitir​​que​​o​​microcontrolador​

​controle​ ​cargas​ ​elétricas​ ​de​ ​maior​ ​potência,​ ​como​ ​motores,​ ​lâmpadas​ ​ou​ ​válvulas,​

​isolando​​eletricamente​​o​​circuito​​de​​controle​​(3,3​​V)​​do​​circuito​​de​​potência​​(5​​V,​​12​​V​

​ou​ ​220​ ​V).​ ​É​ ​importante​ ​utilizar​ ​uma​ ​contatora​ ​para​ ​proteger​ ​o​ ​relé,​ ​uma​ ​vez​ ​que​ ​a​
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​potência​​da​​bomba​​proporciona​ ​aumento​​na​​corrente​​elétrica,​​o​​que​​poderia​​danificar​​o​

​relé​ ​e​ ​até​ ​mesmo​ ​o​ ​microcontrolador​ ​ESP32.​ ​O​ ​circuito​ ​completo​ ​está​ ​denotado​ ​na​

​Figura​ ​12.​ ​Observe​ ​que​ ​o​ ​acionamento​ ​do​ ​Relé​ ​está​ ​sujeito​ ​a​ ​um​ ​sinal​ ​(fio​ ​verde)​

​enviado​ ​pelo​​ESP32.​​Já​​o​​Relé​​controla​​diretamente​​as​​entradas​​A1​​e​​A2​​da​​contatora,​

​dessa​ ​forma​ ​a​ ​alimentação​ ​dos​ ​dois​ ​atuadores,​ ​Bomba​ ​e​ ​Solenoide​ ​(este​ ​último​ ​via​

​transformador),​ ​é​ ​comutada.​ ​Solenoide​ ​e​ ​motor​ ​são​ ​ligados​ ​em​ ​paralelo​ ​ao​ ​contator,​

​dessa​ ​forma,​ ​nunca​ ​ocorrerá​ ​de​​a​​bomba​​ser​​ligada​​concomitantemente​​ao​​solenoide​

​fechado, condição que poderia reduzir a vida útil do motor.​

​3.3. Lógica Fuzzy​
​A​ ​lógica​ ​fuzzy​ ​é​ ​o​ ​método​ ​utilizado​ ​neste​ ​trabalho​ ​para​​tomada​​de​​decisão​​no​

​manejo​​da​​irrigação​​automatizada.​​Ela​​também​​é​​conhecida​​como​​lógica​​difusa,​​trata-se​

​de​ ​um​​sistema​​lógico​​desenvolvido​​para​​lidar​​com​​a​​incerteza​​e​​a​​imprecisão​​presentes​

​em​​diversos​​fenômenos​​do​​mundo​​real.​​Diferentemente​​da​​lógica​​clássica​​ou​​booleana,​

​que​ ​trabalha​ ​com​ ​valores​ ​binários​ ​—​ ​verdadeiro​ ​(1)​ ​e​ ​falso​ ​(0)​ ​—,​ ​a​ ​lógica​ ​fuzzy​

​permite​ ​que​ ​variáveis​ ​tenham​ ​valores​ ​contínuos​ ​dentro​ ​de​ ​um​ ​intervalo​ ​entre​ ​0​ ​e​ ​1,​

​representando​ ​diferentes​ ​graus​ ​de​ ​verdade​ ​(Zadeh,​ ​1965).​ ​Essa​ ​característica​ ​a​ ​torna​

​especialmente​ ​útil​ ​em​ ​situações​ ​nas​ ​quais​ ​as​ ​fronteiras​ ​entre​ ​os​ ​conceitos​ ​não​ ​são​

​claramente definidas, como "quente", "morno" ou "frio", que não têm  limites exatos.​

​O​ ​conceito​ ​foi​ ​introduzido​ ​por​ ​Lotfi​ ​A.​ ​Zadeh,​ ​professor​ ​da​ ​Universidade​ ​da​

​Califórnia,​​em​​1965,​​por​​meio​​de​​seu​​artigo​​“Fuzzy​​Sets”.​​A​​proposta​​de​​Zadeh​​buscava​

​formalizar​ ​a​ ​maneira​ ​como​ ​o​ ​raciocínio​ ​humano​ ​lida​ ​com​ ​informações​ ​vagas​ ​ou​

​subjetivas,​​criando​​um​​modelo​​matemático​​capaz​​de​​descrever​​fenômenos​​complexos​​de​

​forma aproximada (Zadeh, 1965).​

​Figura 13.​​Desenho esquemático do modelo lógica fuzzy.​​Fonte: autores.​

​Assim,​ ​a​ ​lógica​ ​fuzzy​ ​é​ ​amplamente​ ​aplicada​ ​em​ ​áreas​ ​como​ ​automação​

​industrial,​ ​controle​ ​de​ ​processos,​ ​inteligência​​artificial​​e​​sistemas​​especialistas​​(ROSS,​

​2010).​ ​O​ ​funcionamento​ ​da​ ​lógica​ ​fuzzy​ ​baseia-se​ ​em​ ​três​ ​etapas​ ​principais:​

​fuzzificação,​​inferência​​fuzzy​​e​​defuzzificação​​(Ross,​​2010;​​Simões;​​Shaw,​​2007).​​Esses​

​processos estão diagramados na Figura 13.​
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​Fuzzificação:​ ​nesta​ ​etapa,​ ​as​ ​variáveis​ ​de​ ​entrada​ ​—​ ​geralmente​ ​valores​

​numéricos​​obtidos​​de​​sensores​​ou​​de​​medições​​—​​são​​convertidas​​em​​valores​​fuzzy,​​ou​

​seja,​ ​em​ ​graus​ ​de​ ​pertinência​ ​a​ ​determinados​ ​conjuntos​ ​fuzzy.​ ​Por​ ​exemplo,​ ​a​

​temperatura​ ​de​ ​28°C​ ​pode​ ​ter​ ​grau​ ​de​ ​pertinência​ ​0,8​ ​ao​ ​conjunto​ ​“quente”​ ​e​ ​0,2​ ​ao​

​conjunto​ ​“morno”.​ ​Essa​ ​transformação​​é​​feita​​por​​meio​​de​​funções​​de​​pertinência,​​que​

​podem​ ​assumir​ ​formas​ ​triangulares,​ ​trapezoidais,​ ​gaussianas,​ ​entre​ ​outras​ ​(Silva;​

​Nogueira; Santos, 2019).​

​Inferência​ ​Fuzzy:​ ​Após​ ​a​ ​fuzzificação,​ ​o​ ​sistema​ ​aplica​​um​​conjunto​​de​​regras​

​linguísticas​​do​​tipo​​“Se...​​então...”.​​Por​​exemplo:​​“Se​​a​​temperatura​​é​​alta​​e​​a​​umidade​​é​

​baixa,​​então​​o​​ventilador​​deve​​girar​​rapidamente”.​​Essas​​regras​​são​​processadas​​por​​um​

​mecanismo​ ​de​ ​inferência,​ ​que​ ​combina​ ​os​ ​graus​ ​de​ ​pertinência​ ​e​ ​calcula​ ​o​ ​resultado​

​fuzzy​ ​correspondente​ ​(Simões;​ ​Shaw,​ ​2007).​ ​Esse​ ​processo​ ​busca​ ​imitar​ ​o​ ​raciocínio​

​humano​ ​ao​ ​tomar​ ​decisões​ ​baseadas​ ​em​ ​expressões​ ​linguísticas,​ ​não​ ​apenas​ ​em​

​equações matemáticas exatas.​

​Figura 14.​​O processo de inferência Fuzzy. Fonte:​​autores.​

​Por​​fim,​​o​​resultado​​fuzzy​​é​​convertido​​em​​um​​valor​​numérico​​preciso,​​capaz​​de​

​ser​​interpretado​​ou​​utilizado​​por​​sistemas​​eletrônicos​​e​​controladores.​​Os​​métodos​​mais​

​comuns​ ​de​ ​defuzzificação​ ​incluem​ ​o​ ​centro​ ​de​ ​gravidade​ ​(centroid),​ ​média​ ​dos​

​máximos​​e​​máximo​​do​​máximo​​(Ross,​​2010).​​O​​resultado​​dessa​​etapa​​é​​uma​​saída​​que​

​traduz​ ​a​ ​decisão​ ​do​ ​sistema​ ​fuzzy​ ​em​ ​termos​ ​quantitativos,​ ​como.​ ​por​ ​exemplo,​ ​2​

​minutos de irrigação.​

​Neste​ ​trabalho,​ ​o​ ​sistema​ ​de​ ​irrigação​ ​toma​ ​decisões​ ​com​ ​base​ ​em​ ​valores​​de​

​umidade​​do​​solo,​​umidade​​do​​ar​​e​​temperatura​​do​​ar.​​Com​​base​​nessas​​três​​variáveis,​​o​
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​SILF​ ​determina,​ ​em​ ​intervalos​​fixos​​de​​uma​​hora,​​o​​tempo​​de​​acionamento​​da​​bomba,​

​expresso​ ​em​ ​minutos.​ ​Uma​ ​representação​ ​esquemática​ ​desse​ ​processo​ ​decisório​ ​é​

​apresentada na Figura 14.​

​O​ ​modelo​ ​recebe​ ​como​​entrada​​três​​valores​​reais,​​por​​exemplo,​​(87%,​​65%,​​29​

​°C).​ ​Tendo​ ​esses​ ​dados​ ​como​ ​referência,​ ​o​ ​SILF​ ​infere​ ​um​ ​tempo​ ​de​ ​irrigação​​na​

​faixa​ ​de​​0​​a​​60​​minutos.​​Inicialmente,​​é​​feito​ ​o​​processo​​de​​fuzzificação​​das​​variáveis​

​de​ ​entrada,​ ​conforme​ ​os​ ​conjuntos​ ​fuzzy​ ​definidos.​ ​Em​ ​seguida,​ ​ocorre​ ​a​ ​avaliação​

​fuzzy,​​conduzida​​por​​meio​​de​​regras​​do​​tipo​​SE...​​ENTÃO.​​Por​​fim,​​aplica-se​​o​​processo​

​de​​defuzzificação,​​que​​gera​​como​​saída​​o​​tempo​​de​​irrigação,​​em​​minutos,​​a​​ser​​enviado​

​ao​ ​circuito​ ​de​ ​acionamento.​ ​Detalhes​ ​sobre​ ​os​ ​processos​ ​de​ ​fuzzificação​ ​e​ ​de​

​defuzzificação  podem ser encontrados no trabalho de Ojha, Abraham e Snasel (2019).​

​A​ ​construção​ ​do​ ​sistema​ ​de​ ​decisão​ ​para​​irrigação​​foi​​feita​ ​segundo​​o​​método​

​de​ ​Mamdani​ ​(Ojha;​ ​Abraham;​ ​Snasel,​ ​2019).​ ​Inicialmente,​ ​foram​ ​conduzidas​

​entrevistas​ ​com​ ​especialistas​ ​na​ ​cultura​ ​do​ ​tomate​ ​cereja,​ ​a​ ​partir​ ​das​ ​quais​ ​foram​

​definidos​ ​os​ ​conjuntos​ ​fuzzy​ ​referentes​ ​ao​ ​tempo​ ​de​ ​irrigação,​ ​à​ ​umidade​ ​do​ ​solo,​ ​à​

​umidade​ ​do​ ​ar​ ​e​ ​à​ ​temperatura​ ​do​ ​ar.​ ​Para​ ​esse​ ​processo,​ ​foi​ ​entrevistado​ ​um​

​especialista em fruticultura do Instituto Federal Goiano – Campus Rio Verde.​

​3.3.1. Conjuntos Fuzzy​
​Neste​ ​trabalho,​ ​os​ ​Conjuntos​ ​Fuzzy​ ​foram​ ​produtos​ ​diretos​ ​da​ ​entrevista​ ​com​

​um​ ​doutor​ ​em​ ​Agronomia​ ​e​ ​especialista​ ​em​ ​fruticultura​ ​do​ ​Instituto​ ​Federal​ ​Goiano,​

​campus​ ​Rio​ ​Verde.​ ​Com​ ​respaldo​ ​na​ ​resposta​ ​das​ ​perguntas​ ​feitas​ ​ao​ ​agrônomo,​ ​foi​

​possível​ ​modelar​ ​os​ ​conjuntos​ ​do​ ​Sistema​ ​de​ ​Irrigação​ ​Inteligente​ ​por​ ​Lógica​ ​Fuzzy​

​(SILF).​​As​​questões​​foram​​questões​​práticas​​como​ ​“Qual​​faixa​​de​​temperatura​​é​​muito​

​quente​ ​para​ ​a​ ​cultura​ ​do​ ​tomate​ ​cereja?”​ ​ou​ ​perguntas​ ​como​ ​“Qual​ ​seria​ ​a​ ​faixa​ ​de​

​umidade​ ​considerada​ ​normal​ ​para​ ​a​ ​cultura?”.​ ​Depois​ ​de​ ​respondidas​ ​as​ ​perguntas,​

​foram​ ​definidas​ ​as​ ​funções​ ​presentes​ ​na​​Tabela​​6​​e,​​graficamente,​​na​​Figura​​15.​​Esses​

​conjuntos de funções são chamados de Conjuntos Fuzzy.​
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​Figura 15.​​Os conjuntos fuzzy definidos neste trabalho.​​Fonte: autores.​

​Tabela 6.​​Conjuntos Fuzzy   definidos para o SILF.​​Fonte: autores.​

​Variável​ ​Classe​ ​Função​ ​Parâmetros​ ​Intervalo​

​Temperatura do Ar​ ​Frio​ ​Trapezoidal​ ​a = 1, b = 2, c = 18, d = 21​ ​[1, 21]​

​Temperatura do Ar​ ​Normal​ ​Gaussiana​ ​μ = 28, σ = 10​ ​(−∞, +∞)​

​Temperatura do Ar​ ​Quente​ ​Trapezoidal​ ​a = 31, b = 36, c = 99, d = 100​ ​[31, 100]​

​Umidade do Ar​ ​Seco​ ​Trapezoidal​ ​a = 1, b = 3, c = 70, d = 71​ ​[1, 71]​

​Umidade do Ar​ ​Normal​ ​Triangular​ ​a = 70, b = 78, c = 82​ ​[70, 82]​

​Umidade do Ar​ ​Úmido​ ​Gaussiana​ ​μ = 100, σ = 20​ ​(−∞, +∞)​

​Umidade do Solo​ ​Seco​ ​Trapezoidal​ ​a = 1, b = 2, c = 80, d = 81​ ​[1, 81]​

​Umidade do Solo​ ​Normal​ ​Triangular​ ​a = 80, b = 90, c = 100​ ​[80, 100]​

​Umidade do Solo​ ​Úmido​ ​Trapezoidal​ ​a = 89, b = 96, c = 99, d = 100​ ​[89, 100]​

​Tempo de Irrigação​ ​Pouco​ ​Triangular​ ​a = 0, b = 1, c = 2​ ​[1, 2]​

​Tempo de Irrigação​ ​Mediano​ ​Triangular​ ​a = 2, b = 4, c = 6​ ​[2, 6]​

​Tempo de Irrigação​ ​Muito​ ​Triangular​ ​a = 4, b = 6, c = 8​ ​[4, 8]​

​Conjuntos​ ​fuzzy,​ ​ou​ ​conjuntos​ ​difusos,​ ​são​ ​uma​ ​generalização​ ​dos​ ​conjuntos​

​clássicos​ ​que​​permitem​​tratar​​a​​incerteza​​e​​a​​imprecisão​​na​​classificação​​de​​elementos.​

​Diferentemente​ ​dos​ ​conjuntos​ ​tradicionais,​ ​em​ ​que​ ​um​ ​elemento​ ​pertence​ ​ou​ ​não​

​pertence​ ​ao​ ​conjunto​ ​(valores​ ​0​ ​ou​ ​1),​ ​nos​ ​conjuntos​ ​fuzzy​ ​a​ ​pertença​ ​é​ ​gradual,​
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​representada​ ​por​ ​um​ ​valor​ ​numérico​ ​entre​ ​0​ ​e​ ​1,​ ​chamado​ ​grau​ ​de​ ​pertinência.​ ​Isso​

​significa​ ​que​ ​um​ ​elemento​ ​pode​ ​pertencer​ ​a​ ​um​ ​conjunto​ ​fuzzy​ ​em​ ​diferentes​ ​níveis,​

​refletindo​ ​a​ ​ambiguidade​ ​ou​ ​a​ ​incerteza​ ​inerente​ ​a​ ​muitas​ ​situações​ ​do​ ​mundo​ ​real​

​(Zadeh, 1965).​

​Estes​ ​conjuntos​ ​são​ ​utilizados​ ​para​ ​modelar​ ​fenômenos​ ​em​​que​ ​os​​limites​​são​

​imprecisos,​ ​como​ ​em​ ​lógica​​fuzzy​​aplicada​​a​​sistemas​​de​​controle,​​tomada​​de​​decisão,​

​inteligência​ ​artificial​ ​e​ ​outras​ ​áreas​ ​em​ ​que​ ​dados​​incertos​​ou​​subjetivos​​precisam​​ser​

​interpretados.​​A​​teoria​​dos​​conjuntos​​fuzzy​​foi​​proposta​​por​​Lotfi​​Zadeh​​em​​1965,​​sendo​

​fundamentada​ ​em​ ​funções​ ​de​ ​pertinência​ ​que​ ​quantificam​ ​o​ ​grau​​de​​pertencimento​​de​

​elementos a um conjunto específico.​

​Nesse​ ​contexto,​ ​os​ ​conjuntos​ ​fuzzy​ ​representam​ ​categorias​ ​linguísticas​ ​que​

​traduzem​ ​variáveis​ ​contínuas​ ​em​ ​faixas​ ​interpretáveis.​ ​A​ ​Figura​ ​14​ ​ilustra​ ​essa​

​definição​ ​para​ ​o​ ​SILF.​ ​Por​ ​exemplo,​ ​no​ ​universo​ ​de​ ​temperatura​ ​do​ ​ar,​ ​definido​ ​no​

​intervalo​ ​de​ ​0​ ​a​ ​100​ ​°C,​ ​é​ ​possível​ ​estabelecer​ ​os​ ​subconjuntos​ ​“frio”,​ ​“normal”​ ​e​

​“quente”.​ ​Com​ ​base​ ​nas​ ​entrevistas​ ​técnicas​ ​feitas​ ​com​​especialistas​​em​​fruticultura,​

​foram​​construídos​​os​​conjuntos​​fuzzy​​listados​​na​​Tabela​​2.​​Essas​​funções​​referentes​​aos​

​conjuntos​ ​fuzzy​ ​foram​ ​inseridas​ ​utilizando​ ​a​ ​interface​ ​gráfica​ ​do​ ​site,​ ​conforme​

​ilustrado na Figura 16.​

​Figura​​16.​​Interface​​gráfica​​no​​site​​para​​inserção​​de​​funções​​de​​pertinência​​dos​​conjuntos​​fuzzy.​

​Fonte: autores.​

​No​ ​site,​ ​o​ ​usuário​ ​pode​​adicionar​​uma​​lista​​de​​várias​​funções​​para​​uma​​mesma​

​variável,​ ​podendo​​ser​​Gaussiana,​​Triangular​​e​​Trapezoidal.​​Funções​​Degrau​​podem​​ser​

​inseridas​​a​​partir​​de​​variações​​nas​​funções​​Trapezoidais.​​Dessa​​forma,​​o​​sistema​​poderá​

​ser​ ​utilizado​ ​para​ ​outras​ ​culturas​ ​além​​do​​tomate​​cereja,​​bastando​​o​​usuário​​manipular​



​39​

​essas​ ​funções.​ ​O​ ​profissional​ ​pode​ ​criar,​ ​excluir​ ​e​ ​alterar​ ​as​ ​funções,​ ​desde​ ​que​​essas​

​funções estejam de acordo com a fisiologia da cultura.​

​A​ ​escolha​ ​dessas​ ​três​ ​funções​ ​possíveis​ ​ocorreu​ ​porque,​ ​além​ ​de​ ​estarem​

​implementadas​ ​na​ ​biblioteca​ ​de​ ​programação​ ​scikit-fuzzy​ ​(ferramenta​ ​de​

​desenvolvimento​ ​de​ ​software),​ ​as​ ​funções​ ​Triangular​ ​e​ ​Trapezoidal,​ ​por​ ​exemplo,​​são​

​conhecidas​ ​por​ ​serem​ ​simples​ ​de​ ​parametrizar​ ​e​ ​rápidas​ ​de​ ​computar,​ ​conforme​ ​já​

​relatado​ ​em​ ​outros​ ​sistemas​ ​fuzzy​ ​(Maranduba​ ​et​ ​al.​​,​ ​2017).​ ​Essas​ ​funções,​

​especialmente​​as​​Triangulares​​e​​Trapezoidais,​ ​são​​intuitivas​​para​​especialistas,​​tornando​

​mais​ ​fácil​ ​traduzir​ ​conhecimento​ ​empírico​ ​ou​ ​descrição​ ​verbal​ ​para​ ​modelos​

​matemáticos.​ ​Por​ ​exemplo,​ ​é​ ​simples​ ​comunicar​ ​regras​ ​do​ ​tipo​ ​"umidade​ ​próxima​ ​do​

​ideal", associando a uma função triangular ou trapezoidal.​

​Adicionalmente,​ ​foram​ ​incluídas​ ​no​ ​site​ ​as​ ​funções​ ​Gaussianas,​ ​pois,​ ​segundo​

​Maranduba​​et​​al.​​(2017),​​essas​​funções​​são​​escolhidas​​quando​​são​ ​desejadas​​suavidade​

​nos​ ​limites​ ​do​ ​conjunto​ ​fuzzy​ ​e​ ​maior​ ​robustez​ ​para​ ​modelar​ ​situações​ ​em​ ​que​ ​a​

​transição​ ​entre​ ​categorias​ ​é​ ​progressiva,​ ​como​ ​temperatura,​ ​por​ ​exemplo.​ ​E​ ​a​

​modelagem​ ​de​ ​normalidade​ ​de​​temperatura​​foi​​justamente​​feita​​através​​de​​uma​​função​

​desse tipo (Figura 13).​

​Dos​ ​conjuntos​ ​de​ ​funções​ ​definidos,​ ​a​ ​variável​​de​​saída​​do​​SILF​​é​​o​​tempo​​de​

​irrigação,​​enquanto​ ​Temperatura​​do​​Ar,​​umidade​​do​​ar​​e​​umidade​​do​​solo​​são​​entradas​

​para​ ​o​ ​SILF.​ ​Por​ ​decisão​ ​de​ ​projeto,​ ​o​ ​software​ ​armazena​ ​o​ ​tempo​ ​como​ ​uma​

​porcentagem,​​por​​exemplo,​​na​​Tabela​​2,​​o​​tempo​​de​​irrigação​​“pouco”​​seria​​uma​​função​

​triangular​​modelada​​de​​(0%​​;​​1%​​;​​2%).​​Considerando​​que,​​se​​o​​usuário​​definiu​​a​​escala​

​de​ ​tempo​ ​no​ ​site​​de​​0​​até​​60​​minutos,​​esses​​valores​​são​​porcentagem​​do​​universo​​para​

​esta​ ​variável,​ ​sendo,​ ​portanto,​ ​0​ ​;​ ​0,6​ ​;​ ​1,2,​ ​assim​ ​sendo,​ ​de​​0​​a​​0,6​​minutos​​a​​função​

​pouco​​subiria​​sua​​pertinência,​​assumindo​​pertencimento​​máximo​ ​em​​0.6​​minutos.​​Já​​de​

​0,6 a 1,2 minutos,  sua pertinência seria diminuída.​
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​Figura 17.​​Processo de decodificação da saída. Fonte:​​autores.​

​O​​processo​​de​​inferência​​produz​​uma​​saída​​em​​percentis,​​conforme​​ilustrado​​na​

​Figura​ ​17.​ ​Para​ ​uma​ ​saída​ ​de,​ ​por​ ​exemplo​ ​1,7%,​ ​a​​inferência​​produziu​​uma​​saída​​de​

​um​ ​minuto​ ​de​ ​irrigação,​ ​pertencendo,​ ​portanto,​ ​ao​ ​conjunto​ ​“pouco”​ ​para​ ​tempo​ ​de​

​irrigação.​ ​Essa​ ​inferência​ ​levou​ ​em​ ​consideração​​os​​conjuntos​​de​​entrada,​​temperatura​

​do​ ​ar,​ ​umidade​ ​do​ ​ar​ ​e​ ​umidade​ ​do​ ​solo.​ ​Para​ ​fazer​ ​essa​ ​inferência,​ ​o​​SILF​​precisou,​

​além​ ​dos​ ​Conjuntos​ ​Fuzzy,​ ​de​ ​uma​ ​outra​ ​definição​ ​por​ ​parte​ ​do​ ​usuário​ ​às​ ​Regras​

​Fuzzy, que serão abordadas a seguir.​

​3.3.2. Regras Fuzzy​

​De​ ​forma​ ​introdutória​ ​e​ ​simples,​ ​as​ ​Regras​ ​Fuzzy​ ​são​ ​regras,​ ​como,​ ​por​

​exemplo,​ ​“SE​ ​solo​ ​seco​ ​E​ ​ar​ ​quente​ ​E​ ​ar​ ​seco​ ​ENTÃO​ ​tempo​ ​de​ ​irrigação​ ​muito”.​

​Apesar​ ​de​ ​ser​ ​simples​ ​pensar​ ​que​ ​o​ ​tempo​ ​de​ ​irrigação​ ​seja​ ​muito,​ ​em​ ​uma​ ​situação​

​hipotética​​de​​um​​dia​​seco​​e​​quente​​de​​verão​​com​​solo​​seco,​​pode​​ser​​que​​seja​​necessário​

​variar​​o​​tempo​​de​​irrigação.​​Pense​​em​​duas​​situações​​diferentes:​ ​às​​9:30​​da​​manhã​​e​​ao​

​meio​ ​dia.​ ​Pode​ ​ocorrer​ ​de​ ​ao​ ​meio​ ​dia​ ​a​ ​temperatura​ ​do​ ​ar​ ​estar​ ​mais​ ​quente​ ​que​ ​o​

​observado​​às​​9:30​​da​​manhã,​​apesar​​de​​ambas​​serem​​muito​​quentes.​​O​​sistema​​é​​capaz​

​de,​ ​nesse​ ​caso,​ ​produzir​ ​um​ ​tempo​ ​de​ ​saída​ ​de​ ​5​ ​minutos​ ​para​ ​as​ ​9:30​ ​da​ ​manhã​ ​e​​7​

​minutos​ ​para​ ​o​ ​meio​ ​dia,​ ​isso​​porque​​ele​​precisa​​calcular​​a​​proporcionalidade​​entre​​os​

​conjuntos fuzzy, e as Regras Fuzzy são   parte fundamental desse processo.​
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​As​ ​Regras​ ​Fuzzy​ ​representam​ ​o​ ​núcleo​ ​do​ ​processo​ ​de​ ​tomada​ ​de​ ​decisão​​em​

​sistemas​​baseados​​em​​lógica​​fuzzy​​(Almeida;​​Silva,​​2021).​​Elas​​são​​fundamentais​​para​

​que​ ​o​ ​modelo​ ​consiga​ ​transformar​ ​informações​ ​incertas​ ​ou​ ​subjetivas,​ ​típicas​ ​do​

​ambiente​ ​agrícola,​ ​em​ ​ações​ ​automáticas.​​Em​​outras​​palavras,​​essas​​regras​​traduzem​​o​

​conhecimento​​agronômico​​e​​a​​experiência​​de​​especialistas​​em​​proposições​​linguísticas,​

​como,​ ​por​​exemplo,​ ​“Se​​o​​solo​​está​​seco​​e​​a​​temperatura​​está​​alta,​​então​​irrigar​​mais”.​

​Dessa​​forma,​​o​​SILF​​é​​capaz​​de​​simular​​o​​raciocínio​​humano​​no​​processo​​de​​tomada​​de​

​decisão,​​e​​o​​motor​​de​​inferência​​construído​​consegue​​calcular,​​de​​maneira​​proporcional,​

​o tempo de irrigação adequado.​

​A​​Tabela​​7​​apresenta​​o​​conjunto​​de​​regras​​fuzzy​​definidas​​para​​o​​período​​diurno​

​no​​sistema​​de​​irrigação​​desenvolvido.​​Todas​​as​​regras​​seguem​​o​​formato​​de​​implicação​

​com​ ​antecedente​ ​conjuntivo.​ ​Em​ ​lógica​ ​fuzzy,​ ​o​ ​antecedente​ ​conjuntivo​ ​consiste​ ​na​

​combinação​​de​​duas​​ou​​mais​​condições​​antecedentes​​por​​meio​​de​​operadores​​lógicos​​—​

​geralmente​​o​​operador​​E​​(AND)​​—​​no​​interior​​de​​uma​​regra​​fuzzy​​(Mamdani;​​Assilian,​

​1975).​

​Um​​exemplo​​de​​regra​​com​​antecedente​​conjuntivo​​é​ ​“SE​​solo​​seco​​E​​ar​​quente​

​E​​ar​​seco​​ENTÃO​​tempo​​de​​irrigação​​muito​​alto”.​​Essa​​estrutura​​permite​​representar​​de​

​forma​ ​mais​ ​realista​ ​a​ ​interação​ ​entre​ ​múltiplas​ ​variáveis​ ​ambientais.​ ​Em​ ​situações​

​caracterizadas​​por​​altas​​temperaturas​​e​​baixos​​níveis​​de​​umidade​​do​​solo​​e​​do​​ar,​​o​​SILF​

​determina a necessidade de períodos de irrigação mais prolongados.​

​Nessa​ ​fase,​ ​o​ ​processo​ ​de​ ​defuzzificação​ ​da​ ​variável​ ​de​ ​saída​ ​—​ ​tempo​ ​de​

​irrigação​ ​—​ ​converte​ ​o​ ​resultado​ ​fuzzy​ ​em​ ​um​ ​valor​ ​numérico​ ​em​ ​minutos,​

​proporcional​ ​ao​ ​grau​ ​de​ ​pertinência​ ​associado​ ​às​ ​variáveis​ ​de​ ​entrada​ ​obtidas​ ​pelos​

​sensores de umidade do solo e pelo sensor DHT11.​

​Tabela 7.​​Regras Fuzzy. Fonte: autores.​

​Regra​ ​Temperatura​ ​Umidade do Ar​ ​Umidade do Solo​ ​Tempo​

​1​ ​Frio​ ​Seco​ ​Seco​ ​Mediano​

​2​ ​Frio​ ​Seco​ ​Normal​ ​Pouco​

​3​ ​Frio​ ​Seco​ ​Úmido​ ​Pouco​

​4​ ​Frio​ ​Normal​ ​Seco​ ​Pouco​
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​5​ ​Frio​ ​Normal​ ​Normal​ ​Pouco​

​6​ ​Frio​ ​Normal​ ​Úmido​ ​Pouco​

​7​ ​Frio​ ​Úmido​ ​Seco​ ​Mediano​

​8​ ​Frio​ ​Úmido​ ​Normal​ ​Pouco​

​9​ ​Frio​ ​Úmido​ ​Úmido​ ​Pouco​

​10​ ​Normal​ ​Seco​ ​Seco​ ​Muito​

​11​ ​Normal​ ​Seco​ ​Normal​ ​Mediano​

​12​ ​Normal​ ​Seco​ ​Úmido​ ​Pouco​

​13​ ​Normal​ ​Normal​ ​Seco​ ​Muito​

​14​ ​Normal​ ​Normal​ ​Normal​ ​Pouco​

​15​ ​Normal​ ​Normal​ ​Úmido​ ​Pouco​

​16​ ​Normal​ ​Úmido​ ​Seco​ ​Mediano​

​17​ ​Normal​ ​Úmido​ ​Normal​ ​Pouco​

​18​ ​Normal​ ​Úmido​ ​Úmido​ ​Pouco​

​19​ ​Quente​ ​Seco​ ​Seco​ ​Muito​

​20​ ​Quente​ ​Seco​ ​Normal​ ​Muito​

​21​ ​Quente​ ​Seco​ ​Úmido​ ​Muito​

​22​ ​Quente​ ​Normal​ ​Seco​ ​Mediano​

​23​ ​Quente​ ​Normal​ ​Normal​ ​Mediano​

​24​ ​Quente​ ​Normal​ ​Úmido​ ​Mediano​

​25​ ​Quente​ ​Úmido​ ​Seco​ ​Mediano​

​26​ ​Quente​ ​Úmido​ ​Normal​ ​Pouco​

​27​ ​Quente​ ​Úmido​ ​Úmido​ ​Pouco​

​Para​​proceder​​à​ ​inferência​​do​​tempo​​de​​irrigação​​por​​meio​​do​​método​​fuzzy,​​foi​

​utilizada​ ​a​ ​biblioteca​ ​Scikit-Fuzzy​ ​em​ ​Python​ ​(Warner;​ ​Roberts;​ ​Contributors,​ ​2024).​

​Essa​ ​biblioteca​ ​implementa​ ​os​ ​processos​ ​de​ ​fuzzificação​ ​e​ ​defuzzificação​ ​necessários​

​para​​gerar​​a​​saída​​em​​tempo,​​adotando,​​como​​metodologia​​de​​defuzzificação,​​o​​método​
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​do​ ​Centro​ ​de​ ​Gravidade.​ ​A​ ​definição​ ​dos​​Conjuntos​​Fuzzy​​foi​​baseada​​em​​entrevistas​

​com​ ​um​ ​especialista​ ​em​ ​fruticultura,​ ​enquanto​ ​a​ ​formulação​ ​das​ ​regras​ ​do​ ​SILF​

​considerou aspectos fisiológicos específicos do tomateiro, presentes na literatura.​

​3.3.3. Regras para a temperatura fria (Regras 1 a 9)​

​Em​ ​condições​ ​de​ ​temperatura​ ​fria​​(<15​​°C),​​a​​atividade​​metabólica​​da​​planta​​é​

​reduzida​ ​(Taiz​ ​et​ ​al.,​ ​2015).​ ​A​ ​transpiração​ ​diminui​ ​significativamente,​ ​pois​ ​os​

​estômatos​​tendem​​a​​ficar​​fechados​​para​​conservar​​água​​e​​energia​​(Taiz​​et​​al.,​​2015).​ ​No​

​entanto,​ ​a​ ​umidade​ ​do​ ​solo​ ​ainda​ ​é​ ​crítica​ ​para​ ​evitar​ ​déficit​ ​hídrico.​ ​Considerando​ ​a​

​primeira​ ​regra,​ ​apesar​ ​da​ ​baixa​ ​transpiração,​ ​causada​ ​pelo​ ​frio,​ ​o​ ​solo​ ​seco​ ​exige​

​irrigação​​moderada​​para​​evitar​​estresse​​hídrico​​(Taiz​​et​​al.,​​2015).​​Plantas​​em​​solo​​seco​

​podem sofrer danos radiculares mesmo em temperaturas baixas.​

​Já​​na​​segunda​​regra,​​estando​​o​​solo​​em​​condições​​normais​​(umidade​​adequada),​

​ele​ ​supre​ ​a​ ​demanda​ ​reduzida​ ​de​ ​água​ ​em​ ​temperaturas​ ​frias​ ​(Taiz​ ​et​ ​al.,​ ​2015).​ ​A​

​irrigação​​mínima​​é​​suficiente​​para​​manter​​o​​equilíbrio.​​Considerando​​a​​terceira​​regra,​​o​

​solo​ ​úmido​ ​compensa​ ​a​ ​baixa​ ​umidade​ ​do​ ​ar,​ ​eliminando​ ​a​ ​necessidade​ ​de​ ​irrigação​

​significativa.​ ​Excesso​​de​​água​​poderia​​levar​​à​​hipóxia​​radicular.​​Hipóxia​​é​​a​​deficiência​

​de oxigênio nos tecidos. No caso das raízes, ocorre quando o solo fica saturado de água,​

​reduzindo​ ​a​ ​difusão​ ​de​ ​oxigênio​ ​até​ ​as​ ​células​ ​radiculares,​ ​o​ ​que​ ​compromete​ ​a​

​respiração celular e o funcionamento da planta (Taiz et al., 2015).​

​Na​ ​quarta​ ​regra,​ ​a​​umidade​​do​​ar​​normal​​reduz​​a​​transpiração,​​mas​​o​​solo​​seco​

​ainda​​requer​​irrigação​​mínima​​para​​evitar​​ressecamento.​ ​A​​quinta​​regra​​denota​​situação​

​de​ ​normalidade​ ​ambiental,​ ​condições​ ​equilibradas​ ​em​ ​todas​ ​as​ ​variáveis.​ ​A​ ​demanda​

​hídrica​ ​é​ ​mínima.​ ​Para​ ​a​ ​regra​ ​6,​ ​é​ ​importante​ ​considerar​ ​que​ ​o​ ​solo,​ ​já​ ​úmido,​

​combinado com temperatura fria, torna a irrigação quase desnecessária.​

​Considerando​ ​a​ ​regra​ ​7,​ ​o​ ​ar​ ​úmido​ ​reduz​ ​ainda​ ​mais​ ​a​ ​transpiração,​​mas​​o​​solo​​seco​

​exige​ ​reposição​ ​hídrica​ ​para​ ​evitar​ ​déficit​ ​hídrico.​ ​Na​ ​construção​ ​da​ ​regra​ ​8,​ ​há​

​condições​​ideais​​com​​baixa​​demanda.​​A​​planta​​não​​sofre​​estresse​​hídrico​​ou​​térmico.​​Já​

​na​​regra​​9,​​em​​razão​​do​ ​risco​​alto​​de​​encharcamento,​​a​​irrigação​​deve​​ser​​mínima​​para​

​evitar apodrecimento radicular.​
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​3.3.4. Regras para a temperatura moderada (Regras 10 a 18)​
​Esse​ ​conjunto​ ​de​ ​regras​ ​denota​ ​temperaturas​ ​moderadas​ ​(15–25​ ​°C),​ ​que​

​representam​​a​​faixa​​ótima​​para​​a​​maioria​​das​​plantas​​(Taiz​​et​​al.,​​2015).​ ​A​​transpiração​

​é equilibrada, e o balanço hídrico depende principalmente da umidade do solo e do ar.​

​Considerando​​a​​décima​​regra,​​o​​ar​​seco​​aumenta​​a​​transpiração,​​e​​o​​solo​​seco​​agrava​​o​

​estresse hídrico, assim  a irrigação máxima é necessária.​

​Considerando​​a​​décima​​primeira,​​o​​solo​​normal​​atenua​​parcialmente​​o​​efeito​​do​

​ar​​seco,​​mas​​ainda​​requer​​irrigação​​moderada.​ ​Tendo​​em​​vista​​a​​décima​​segunda​​regra,​

​o solo úmido compensa a umidade baixa do ar, reduzindo a necessidade de irrigação.​

​Na​ ​décima​ ​terceira​ ​regra,​ ​o​ ​solo​ ​seco​ ​é​ ​o​ ​fator​​limitante​​crítico,​​o​​que​​exige​​irrigação​

​abundante.​ ​Analisando​​a​​regra​​décima​​quarta,​​há​​condições​​ideais​​para​​manutenção​​do​

​balanço hídrico, demandando irrigação moderada para  manter esse equilíbrio.​

​Nas regras 15 e 17, há água suficiente no solo, dispensando irrigação significativa.​

​Já​ ​a​ ​irrigação​ ​mediana​ ​da​ ​regra​ ​16​ ​ocorre,​ ​considerando​ ​que​ ​o​ ​ar​ ​úmido​ ​reduz​ ​a​

​transpiração,​ ​mas​ ​o​ ​solo​ ​seco​ ​ainda​ ​demanda​ ​irrigação.​ ​A​ ​regra​ ​18​ ​infere​ ​pouca​

​irrigação por conta do risco de hipóxia radicular.​

​3.3.5. Regras para a temperatura quente (Regras 19 a 27)​
​Em​​altas​​temperaturas​​(>25​​°C),​​são​ ​aceleradas​ ​a​​transpiração​​e​​a​​evaporação​

​do​​solo.​​A​​demanda​​por​​água​​é​​crítica,​​especialmente​​se​​combinada​​com​​solo​​seco​​ou​​ar​

​seco,​​como​​ocorre​​na​​regra​​19,​​condição​​de​​máximo​​estresse.​ ​Calor​​e​​ar​​seco​​aumentam​

​a​​perda​​de​​água,​​e​​o​​solo​​seco​​não​​a​​repõe.​ ​Na​​regra​​20,​​o​​solo​​normal​​não​​é​​suficiente​

​para​ ​compensar​ ​a​ ​alta​ ​transpiração​ ​induzida​ ​pelo​ ​calor​ ​e​ ​pelo​ ​ar​ ​seco,​ ​demandando​

​irrigação maior.​

​Na​​regra​​21,​​o​​solo​​úmido​​atenua​​parcialmente​​o​​estresse,​​mas​​o​​calor​​mantém​​a​

​demanda.​ ​Na​ ​regra​ ​22,​ ​há​ ​prioridade​ ​absoluta​ ​para​​irrigação,​​pois​​o​​solo​​está​​seco​​e​​a​

​temperatura​ ​quente.​ ​Na​ ​regra​ ​23,​ ​o​ ​sistema​ ​deve​ ​irrigar​ ​muito,​ ​pois,​ ​apesar​ ​de​ ​as​

​variáveis​​estarem​​normais,​​está​​muito​​quente.​​Tendo​​em​​vista​​a​​regra​​24,​​o​​solo​​úmido​

​reduz​​a​​necessidade,​​mas​​o​​calor​​persiste,​​demandando​​uma​​irrigação​​média.​ ​As​​demais​

​regras​ ​são​ ​justificadas​ ​pelas​ ​altas​ ​temperaturas,​ ​que​ ​demandam​ ​mais​ ​irrigação​ ​para​

​compensar a elevada transpiração da planta.​
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​3.3.6. Método de Inferência pelo Centroide​

​O​ ​método​ ​do​ ​centroide​​na​​lógica​​fuzzy​​é​​uma​​técnica​​utilizada​​para​​proceder​​à​

​defuzzificação,​ ​ou​ ​seja,​ ​converter​ ​o​ ​resultado​ ​de​​um​​sistema​​fuzzy​​(normalmente​​uma​

​função​​de​​pertinência​​agregada)​​em​​um​​valor​​numérico​​único​​e​​preciso.​​Este​​processo​​é​

​fundamental​ ​para​ ​transformar​ ​os​ ​dados​ ​interpretados​ ​pela​ ​lógica​ ​fuzzy​ ​em​ ​ações​ ​ou​

​decisões concretas em sistemas reais (Leite Dias de Mattos; Coelho, 2015).​

​O​​método​​do​​centroide,​​também​​chamado​​de​​Centro​​de​​Gravidade,​​ou​​"center​​of​

​gravity"​ ​em​ ​inglês,​ ​calcula​ ​o​ ​centro​ ​de​ ​massa​ ​da​ ​função​ ​de​ ​pertinência​ ​resultante​ ​da​

​inferência​ ​fuzzy.​ ​Consiste​ ​em​ ​identificar​ ​o​ ​ponto​ ​de​ ​equilíbrio​ ​da​ ​área​​sob​​a​​curva​​da​

​função​​de​​saída​​agregada,​​fornecendo​​um​​valor​​representativo​​para​​essa​​saída​​(Maria​​de​

​Menezes et​​al.​​, 2024). Em termos matemáticos, é obtido​​por:​

​De​ ​forma​ ​que​ ​é​ ​Centroide,​ ​ou​ ​valor​ ​defuzzificado,​ ​é​ ​o​ ​resultado​ ​final​ ​da​

​defuzzificação,​ ​o​​valor​​“crisp”​ ​representa​​o​​centro​​de​​massa​​da​​área​​sob​​a​​função​​de​

​pertinência​ ​de​ ​saída.​ ​Já​ ​o​ ​representa​ ​o​ ​eixo​ ​do​ ​universo​ ​de​ ​discurso​​da​​variável​​de​

​saída,​​que,​​no​​caso​​deste​​trabalho,​​é​​o​​tempo​​de​​irrigação.​​O​​μ​​é​​a​​função​​de​​pertinência​

​da​​saída,​​que​​é​​o​​grau​​(0–1)​​que​​indica​​quanto​​cada​​tempo​​pertence​​ao​​Conjunto​​Fuzzy​

​Tempo​ ​de​ ​Irrigação​ ​após​ ​a​ ​agregação​ ​das​ ​regras.​​Resultado​​da​​combinação​​das​​regras​

​que​​usam​​temperatura,​​umidade​​do​​ar​​e​​umidade​​do​​solo.​​Representa​​a​​soma​​(integral)​

​dos tempos x ponderados pelo grau de pertinência μ(x).​

​A​ ​integral​ ​presente​ ​no​ ​numerador​ ​faz​ ​com​ ​que​ ​valores​ ​de​ ​x​ ​com​ ​μ(x)​ ​maior​

​“puxam”​ ​o​ ​resultado​​para​​si,​​e​​se​​as​​regras​​favorecerem​​tempos​​longos,​​esse​​momento​

​aumenta,​ ​resultando​ ​em​ ​um​ ​x​ ​maior.​ ​Essa​ ​operação​ ​faz​ ​com​ ​que​ ​os​ ​valores​ ​de​ ​x,​ ​ou​

​seja,​​os​​tempos​​de​​irrigação​​possíveis,​ ​com​​maiores​​graus​​de​​pertinência​​μ(x),​​exerçam​

​maior​ ​influência​ ​sobre​ ​o​ ​resultado​ ​final.​ ​Assim,​ ​quando​ ​as​ ​regras​ ​fuzzy​ ​favorecem​

​tempos​ ​de​ ​irrigação​ ​longos​ ​—​​por​​exemplo,​​em​​condições​​de​​alta​​temperatura​​e​​baixa​

​umidade​ ​do​ ​solo​ ​—​ ​o​ ​valor​ ​do​ ​momento​ ​aumenta,​ ​deslocando​ ​o​ ​centroide​ ​(xₐ)​ ​para​

​regiões de maior duração de irrigação.​

https://www.codecogs.com/eqnedit.php?latex=x_c%20%3D%20%5Cfrac%7B%5Cint%20x%20%5Ccdot%20%5Cmu(x)%5C%2C%20dx%7D%7B%5Cint%20%5Cmu(x)%5C%2C%20dx%7D#0
https://www.codecogs.com/eqnedit.php?latex=x_c#0
https://www.codecogs.com/eqnedit.php?latex=x#0
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​Já​ ​a​ ​integral​ ​presente​ ​no​ ​denominador​ ​corresponde​ ​à​ ​soma​ ​total​ ​dos​​graus​​de​

​pertinência​ ​da​ ​função​ ​de​ ​saída,​ ​ou​ ​seja,​ ​à​ ​“massa”​ ​total​ ​da​ ​distribuição​ ​fuzzy​ ​obtida​

​após​ ​a​ ​agregação​ ​das​ ​regras.​ ​Essa​ ​área​ ​tem​ ​a​ ​função​ ​de​ ​normalizar​ ​o​ ​numerador,​

​permitindo​ ​o​ ​cálculo​ ​do​ ​ponto​ ​médio​ ​ponderado,​ ​ou​​seja,​ ​o​​valor​​defuzzificado​​que​

​representa o tempo de irrigação final a ser aplicado pelo sistema.​

​3.4. Linguagens de programação, códigos, software e protocolos utilizados​

​Esta​ ​seção​ ​discorre​ ​sobre​ ​as​ ​linguagens​ ​de​ ​programação,​ ​software,​ ​códigos​ ​e​

​protocolos​ ​que​ ​foram​ ​utilizados​ ​na​ ​construção​ ​do​ ​Sistema​​de​​Irrigação​​Inteligente​​por​

​Lógica​​Fuzzy​​(SILF),​​e​​sobre​​a​​sua​​arquitetura.​​O​​SILF​​funciona​​segundo​​a​​arquitetura​

​cliente-servidor.​​A​​arquitetura​​cliente-servidor​​é​​um​​modelo​​de​​organização​​de​​sistemas​

​de​​computação​​em​​que​​as​​tarefas​​são​​divididas​​entre​​dois​​tipos​​de​​entidades:​​clientes​​e​

​servidores.​​Nesse​​modelo,​​o​​cliente​​geralmente​​é​​o​​componente​​que​​faz​​solicitações​​de​

​serviços​ ​ou​ ​recursos,​ ​enquanto​ ​o​ ​servidor​ ​é​ ​o​ ​responsável​ ​por​ ​processar​ ​essas​

​solicitações e fornecer as respostas ou os  dados necessários (Stallings, 2017).​

​A​ ​Figura​ ​18​ ​ilustra​ ​o​ ​esquema​ ​de​ ​comunicação​ ​do​ ​SILF.​ ​Os​ ​dois​

​microcontroladores​ ​ESP32,​ ​telefones​ ​celulares​ ​e​ ​computadores​ ​atuam​ ​como​ ​clientes,​

​enquanto​ ​um​​programa​​de​​computador,​​o​​API​​REST​​Python​​Flask,​ ​atua​​como​​servidor.​

​O site também atua como cliente.​

​Figura 18.​​Esquema de comunicação dos dispositivos​​do sistema. Fonte: autores.​
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​Segundo​ ​Valle​ ​Román​ ​et​ ​al.​ ​(2023),​ ​a​ ​comunicação​ ​entre​ ​microcontroladores​

​pode​​ocorrer​​por​​meio​​do​​protocolo​​HTTP.​​O​​Hypertext​​Transfer​​Protocol​​(HTTP)​​é​​um​

​protocolo​​de​​nível​​de​​aplicação​​fundamental,​​projetado​​para​​sistemas​​de​​informação​​de​

​hipertexto​​distribuídos​​e​​colaborativos.​​Trata-se​​de​​um​​protocolo​​sem​​estado​​(stateless),​

​o​​que​​significa​​que​​cada​​requisição​​feita​​pelo​​cliente​​ao​​servidor​​é​​processada​​de​​forma​

​independente,​ ​sem​ ​armazenamento​ ​de​ ​informações​ ​de​ ​sessão.​ ​O​ ​HTTP​ ​facilita​ ​a​

​transferência​ ​de​ ​documentos​ ​de​ ​hipertexto​ ​e​ ​constitui​ ​um​ ​componente​ ​essencial​ ​do​

​funcionamento​ ​da​ ​World​ ​Wide​ ​Web.​ ​Esse​ ​protocolo​ ​suporta​ ​diversos​ ​métodos​ ​de​

​comunicação,​ ​como​ ​GET​ ​e​ ​POST,​ ​além​ ​de​ ​definir​ ​um​ ​formato​ ​estruturado​ ​para​ ​as​

​mensagens trocadas entre cliente e servidor.​

​Na​ ​arquitetura​ ​cliente-servidor,​ ​o​ ​cliente​ ​é​ ​responsável​ ​pela​ ​interface​ ​e​ ​pelas​

​solicitações​ ​do​ ​usuário,​ ​enquanto​ ​o​ ​servidor​ ​executa​ ​o​ ​processamento​ ​de​ ​dados​ ​e​ ​o​

​gerenciamento​ ​de​ ​recursos​ ​(Orfali,​ ​1999).​ ​No​ ​presente​ ​projeto,​​foi​​implementada​​uma​

​API​ ​REST​ ​no​ ​servidor​ ​em​ ​nuvem,​ ​desenvolvida​ ​em​ ​linguagem​ ​Python,​ ​utilizando​ ​o​

​framework​ ​Flask.​ ​Esse​ ​programa​​de​​computador​​foi​​registrado​​no​​INPI,​​sob​​o​​número​

​BR​ ​51​ ​2025​ ​002370-7​ ​(Bailão​ ​et​ ​al.​​,​ ​2024c).​ ​As​ ​APIs​ ​REST​ ​(Representational​ ​State​

​Transfer​ ​Application​ ​Programming​ ​Interfaces)​ ​são​ ​amplamente​ ​empregadas​ ​no​

​desenvolvimento​ ​do​ ​web​ ​moderno​ ​por​ ​proporcionarem​ ​uma​ ​comunicação​ ​eficiente​

​entre aplicações cliente e servidor (Fielding, 2000).​

​Essa​​abordagem​​se​​baseia​ ​em​​chamadas​​HTTP​​padronizadas,​​o​​que​​simplifica​​a​

​integração​ ​e​ ​o​ ​intercâmbio​ ​de​ ​informações.​ ​Nesse​ ​contexto,​ ​a​ ​API​ ​desenvolvida​ ​em​

​Python​​constitui​​o​​back-end​​do​​SILF,​​o​​qual,​​segundo​​Orfali,​​Harkey​​e​​Edwards​​(1999),​

​compreende​ ​todas​ ​as​ ​operações​ ​do​ ​lado​ ​do​ ​servidor,​ ​incluindo​ ​armazenamento,​

​processamento​ ​e​ ​recuperação​ ​de​​dados,​​elementos​​fundamentais​​para​​o​​funcionamento​

​do aplicativo.​

​Além​ ​do​ ​servidor​ ​back-end,​ ​foi​ ​implementado​ ​o​ ​serviço​​front-end​​utilizando​​o​

​framework​​Angular.​​No​​escopo​​deste​​trabalho,​​o​​front-end​​corresponde​​à​​interface​​pela​

​qual​​o​​usuário​​interage​​com​​as​​funcionalidades​​do​​SILF.​​O​​Angular,​​desenvolvido​​pela​

​Google,​ ​é​ ​um​ ​framework​ ​amplamente​ ​utilizado​ ​na​ ​construção​ ​de​ ​aplicações​ ​web​

​modernas​ ​e​ ​oferece​ ​suporte​ ​nativo​ ​ao​ ​protocolo​ ​HTTP,​ ​atuando​ ​como​ ​cliente​ ​nesse​

​modelo de comunicação (Monk, 2017).​
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​Figura 19.​​Foto de um trecho do código fonte implementado​​na placa ESP32. Fonte: autores.​

​Adicionalmente,​ ​foram​ ​implementadas​ ​soluções​​de​​software​​nas​​placas​​ESP32,​

​empregando​ ​a​ ​linguagem​ ​C​ ​e​ ​o​ ​framework​ ​Arduino​ ​(Freeman;​ ​Freeman,​ ​2022).​ ​A​

​Figura​ ​19​ ​é​ ​uma​ ​foto​ ​do​ ​código​ ​embarcado.​ ​O​ ​código​ ​fonte​ ​responsável​ ​pelo​

​acionamento​ ​da​ ​bomba​ ​hidráulica​ ​embarcado​ ​no​ ​microcontrolador​ ​foi​ ​registrado​ ​no​

​INPI,​ ​sob​ ​o​ ​número​ ​BR​ ​51​ ​2025​ ​001771-5​ ​(Bailão​ ​et​ ​al.​​,​ ​2024a),​ ​já​ ​o​ ​software​

​embarcado​​de​​leitura​​de​​dados​​dos​​sensores​​foi​​registrado​​também​​no​​INPI​​no​​processo​

​BR​​51​​2025​​001771-5​​(Bailão​​et​​al.​​,​​2024b).​​Nesse​​projeto,​​o​​código​​desenvolvido​​nos​

​microcontroladores​​desempenhou​​o​​papel​​de​​cliente​​HTTP,​​realizando​​requisições​​para​

​controlar o experimento e transmitir os dados obtidos pelos sensores.​

​3.5. Aspectos Arquiteturais do sistema​

​Para​ ​explicar​ ​aspectos​ ​arquiteturais​ ​do​ ​sistema,​ ​este​ ​trabalho​ ​se​ ​utilizará​ ​de​

​diagramas​ ​UML.​ ​Segundo​ ​Booch,​ ​Rumbaugh​ ​e​ ​Jacobson​ ​(2006),​ ​os​ ​diagramas​ ​UML​

​permitem​ ​estruturar​ ​e​ ​visualizar​ ​diferentes​ ​aspectos​ ​de​ ​um​ ​sistema,​ ​incluindo​ ​sua​

​arquitetura​​de​​componentes.​​Em​​um​​nível​​mais​​alto,​ ​é​​utilizado​ ​o​​diagrama​​UML​​de​

​componentes​ ​para​ ​mostrar​ ​como​ ​os​ ​“blocos”​ ​de​ ​implementação​ ​(componentes)​ ​se​

​organizam e se conectam para entregar as funcionalidades previstas.​

​A​ ​Figura​ ​20​ ​ilustra​ ​o​ ​diagrama​ ​de​ ​componentes​ ​geral​ ​do​ ​sistema.​ ​O​ ​SILF​ ​é​

​dividido em três módulos principais,  denominados clientes, que estão presentes no​
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​Figura 20.​​Diagrama de componentes. Fonte: autores.​

​módulo​​“Dispositivos​​e​​Frontend”,​​que​​é​​responsável​​por​​consumir​​os​​dados​​(acionando​​a​​bomba​​hidráulica​​e​​exibir​​a​​interface​​gráfica​​no​

​site),​ ​bem​ ​como​ ​por​ ​enviar​ ​dados​ ​dos​ ​sensores​ ​(Dispositivos​ ​ESP32)​ ​e​ ​permitir​ ​ao​ ​usuário​ ​fazer​ ​suas​ ​alterações​ ​nos​ ​parâmetros​ ​de​

​otimização​​de​​irrigação​​(via​​Site).​ ​Já​​o​​Módulo​​Backend​​API​​(Flask)​​é​​responsável​​pela​​tomada​​de​​decisão​​de​​irrigação​​ante​​os​​parâmetros​

​configurados.​​É​​esse​​módulo​​que​​também​​persiste​​os​​dados​​em​​um​​banco​​de​​dados​​na​​nuvem,​​e​​também​​implementa​​o​​módulo​​de​​controle​

​de​ ​acesso​ ​aos​ ​dados​ ​do​ ​sistema.​ ​A​ ​existência​ ​do​ ​Backend​ ​API​ ​(Flask)​ ​possibilita​ ​que​ ​a​ ​comunicação​ ​seja​ ​padronizada​ ​para​ ​diferentes​

​clientes.​ ​Há​ ​também​ ​bibliotecas​​externas,​​pacotes​​que​​são​​importados​​diretamente​​no​​código​​do​​servidor,​​para​​realização​​da​​criptografia,​

​validações e, o mais importante, para o cálculo de fuzificação e defuzificação do método pelo centroide.​
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​Figura 21.​​Diagrama de classes para o Módulo Arquitetural​​Backend API (Flask). Fonte: autores.​
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​3.5.1. Módulo Arquitetural Backend API (Flask)​

​Segundo​​Sommerville​​(2019),​​nas​​arquiteturas​​cliente-servidor,​​a​​maior​​parte​​do​

​processamento,​​da​​lógica​​da​​aplicação​​e​​do​​gerenciamento​​de​​dados​​ocorre​​no​​servidor,​

​que​ ​responde​ ​às​ ​solicitações​ ​feitas​ ​pelos​ ​clientes.​ ​Esse​ ​conjunto​ ​de​ ​funcionalidades​

​corresponde​​ao​​que,​​atualmente,​​se​​denomina​​backend.​​Este​​módulo​​corresponde​​à​​parte​

​do​​sistema​​que​​faz​ ​o​​processamento​​interno,​​executa​​regras​​de​​negócio,​​gerencia​​dados​

​e​ ​responde​ ​às​ ​requisições​ ​feitas​ ​pelo​ ​cliente.​ ​É​ ​a​ ​camada​ ​responsável​ ​pela​ ​lógica​ ​do​

​software​ ​e​ ​pela​ ​comunicação​ ​com​ ​o​ ​banco​ ​de​​dados,​​operando​​em​​servidores​​que​​não​

​são diretamente acessados pelo usuário final.​

​A​​Figura​​21​​ilustra​​em​​detalhes​​as​​entidades​​de​​código​​presentes​​no​​backend​​do​

​SILF.​ ​O​ ​backend​ ​é​ ​dividido​ ​em​​Models​​–​​classes​​que​​representam​​entidades​​do​​banco​

​de​ ​dados;​ ​em​ ​Controllers​ ​–​ ​classes​ ​que​ ​tratam​ ​regras​ ​de​ ​negócio;​ ​em​ ​External​​Libs​​–​

​bibliotecas​ ​externas​ ​usadas​ ​pelos​ ​controllers;​ ​e​ ​em​ ​Routes​ ​–​ ​endpoints​ ​da​ ​API​ ​que​

​conversam​ ​com​ ​controllers​ ​e​ ​modelos.​ ​No​ ​backend,​ ​as​ ​rotas​ ​SensorRoutes​​,​

​IrrigacaoRoutes​ ​e​ ​FuzzyRoutes​ ​recebem​ ​requisições​ ​do​ ​ESP32​ ​e​ ​do​ ​site​ ​TomAI​ ​e​

​repassam​ ​para​ ​os​ ​Controllers​ ​elaborarem​ ​os​ ​cálculos​​de​​tempo​​de​​irrigação​​segundo​​o​

​método​ ​configurado.​ ​As​ ​rotas​ ​de​ ​ConfiguracoesRoutes​ ​permitem​ ​ao​ ​site​ ​habilitar​ ​o​

​método​ ​de​ ​irrigação​ ​que​ ​será​ ​utilizado:​ ​irrigação​ ​1​ ​vez​ ​ao​ ​dia,​ ​5​ ​vezes​ ​ao​ ​dia​ ​ou​

​irrigação​​fuzzy.​​Já​​as​​rotas​​LoginRoutes​​irão​​gerenciar​​os​​usuários​​do​​site​​e​​configurar​​o​

​acesso remoto ao sistema de irrigação.​

​Para​ ​realização​ ​da​ ​persistência​ ​das​ ​irrigações​ ​que​ ​não​ ​se​ ​utilizam​ ​de​ ​fatores​

​ambientais,​ ​o​ ​sistema​ ​se​ ​utiliza​ ​de​ ​uma​ ​entidade​ ​chamada​ ​de​ ​IrrigacaoManual​​,​ ​que​

​representa​ ​uma​ ​irrigação​ ​agendada​ ​manualmente​ ​pelo​ ​usuário,​ ​ou​ ​via​ ​automações​ ​no​

​sistema.​​Para​​efetivamente​​fazer​​essa​​persistência,​​o​​sistema​​se​​utiliza​​da​​classe​​DB​​,​​que​

​encapsula a sessão do​​SQLAlchemy​​(middleware de banco​​de dados MySQL).​

​O​ ​pacote​ ​Controllers​ ​tem​ ​muitas​ ​das​ ​regras​ ​de​ ​negócio​ ​do​ ​sistema,​ ​com​

​destaque​ ​para​ ​a​ ​classe​ ​FuzzyController,​ ​que​ ​implementa​ ​chamadas​ ​a​ ​skfuzzy,​ ​que​

​efetivamente​ ​faz​ ​o​ ​cálculo​ ​da​ ​irrigação​ ​pelo​ ​método​ ​do​ ​centroide.​ ​Nessa​ ​classe,​ ​o​

​método​ ​applyFuzzy()​ ​executa​ ​a​ ​inferência​ ​fuzzy​ ​com​ ​os​ ​dados​ ​atuais,​ ​e​ ​o​ ​método​

​getRulesFuzzy()​​busca​​as​​regras​​fuzzy,​​que​​podem​​variar​​entre​​dia/noite​​no​​sistema.​​Já​​o​

​método​ ​getFuzzyClasses()​ ​faz​ ​a​ ​busca​ ​dos​ ​conjuntos​ ​fuzzy​ ​definidos​ ​pelo​ ​usuário,​
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​como,​ ​por​ ​exemplo,​ ​definições​ ​de​ ​umidade​ ​de​ ​solo​ ​“seco”,​ ​“normal”​ ​e​ ​“úmido”,​ ​que​

​foram devidamentes definidos através da interface gráfica do site.​

​O​ ​método​ ​decidirClasseSkFuzzy()​ ​é​ ​um​ ​método​ ​que​ ​armazena​ ​em​ ​memória​ ​a​

​decisão​​de​​irrigação​​usando​​skfuzzy,​​porém​​não​​aplica​​essa​​decisão,​​pois​​a​​efetivação​​da​

​ação​ ​ocorre​ ​pelo​ ​método​ ​applyFuzzy()​​.​ ​Os​ ​métodos​ ​auxiliares​

​verificaSeTemTempoDeEspera()​ ​fazem​ ​verificações​ ​de​ ​colisão​ ​entre​ ​tempos​ ​de​

​irrigação,​ ​tratando​ ​os​ ​diferentes​ ​casos​ ​de​ ​irrigação,​ ​como,​ ​por​ ​exemplo,​ ​irrigação​

​manual​ ​e​ ​fuzzy​ ​habilitadas​ ​colidem​ ​horários,​ ​dessa​ ​forma,​ ​o​ ​método​

​verificaSeTemTempoDeEspera()​​escalona as irrigações.​

​O​​método​​verificaDefinicoesDiaNoite()​​é​​um​​método​​que​​checa​​a​​hora​​atual​​no​

​servidor​ ​e​ ​verifica​ ​se​ ​é​ ​dia​ ​ou​ ​noite.​ ​Esse​ ​método​ ​é​ ​importante​​no​​dimensionamento​

​automático​ ​do​ ​sistema,​ ​pois​ ​se​ ​for​ ​período​ ​diurno,​ ​o​ ​SILF​ ​irá​ ​se​ ​utilizar​ ​da​ ​base​ ​de​

​regras​ ​diurnas,​ ​se​ ​for​ ​período​ ​noturno,​ ​irá​ ​se​ ​utilizar​ ​de​ ​regras​ ​noturnas.​ ​A​ ​classe​

​Calibrador​​é​​uma​​classe​​responsável​​por​​fazer​​a​​calibração​​dos​​sensores​​analógicos​​de​

​umidade​ ​de​ ​solo,​ ​umidade​ ​de​ ​ar​ ​e​ ​temperatura​ ​do​ ​ar.​ ​Essa​ ​classe​ ​implementa​ ​uma​

​calibração​​linear​​para​​esses​​dados,​​convertendo​​valores​​absolutos​​para​​porcentagem,​ ​no​

​caso da umidade do ar e de solo,  e para graus Celsius, no caso da temperatura do ar.​

​Figura 22.​​Diagrama de Sequência para consulta do​​estado da bomba. Fonte: autores.​
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​A​ ​classe​ ​BombaController​ ​é​ ​responsável​ ​pela​ ​confiabilidade,​ ​integridade​ ​e​

​disponibilidade​ ​da​ ​consulta​ ​dos​ ​dados​​do​​motor​​hidráulico​​do​​sistema.​​Nessa​​classe,​​o​

​método​ ​getBombaData()​ ​é​ ​um​ ​método​ ​para​ ​consultar​ ​o​ ​estado​ ​da​ ​bomba,​ ​e​

​updateBombaStatus()​ ​é​ ​um​ ​método​ ​para​ ​atualizar​ ​o​ ​estado​ ​da​ ​bomba​ ​no​ ​sistema.​ ​Há​

​também​ ​os​ ​métodos​ ​temIrrigacaoAgendada()​ ​e​​temIrrigacaoFuzzy(),​​que​​são​​métodos​

​que​​tratam​​colisões​​entre​​a​​possibilidade​​de​​o​​usuário​​ter​​habilitado​​diferentes​​métodos​

​de​ ​irrigação,​​bem​​como​​ter​​agendado​​anteriormente​​irrigações​​que​​possam​​chocar​​com​

​irrigações​ ​automáticas.​ ​O​ ​diagrama​ ​da​ ​Figura​ ​22​ ​ilustra​ ​o​ ​encadeamento​ ​dessas​

​consultas​ ​com​ ​o​ ​banco​ ​de​ ​dados.​ ​O​ ​método​ ​estaHabilitadaMetodoIrrigacao()​ ​é​ ​um​

​método​ ​que​ ​verifica​ ​se​ ​existe​ ​algum​​método​​de​​irrigação​​habilitado,​​se​​houver​ ​algum​

​habilitado​​ele​​é​​retornado.​ ​A​​Figura​​23​​ilustra​​o​​encadeamento​​de​​ações​​de​​atualização​

​do estado da bomba.​

​Figura 23.​​Diagrama de Sequência para atualização​​da bomba. Fonte: autores.​

​3.5.2. Módulo Arquitetural Sistemas Embarcados​

​O​ ​sistema​ ​apresentado​ ​no​ ​diagrama​ ​da​ ​Figura​ ​22​ ​mostra​ ​a​ ​arquitetura​ ​de​

​comunicação​​entre​​o​​ESP32​​e​​o​​servidor​​backend​​responsável​​por​​informar​​se​​a​​bomba​
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​deve​​ser​​ligada​​ou​​desligada.​​No​​ESP32,​​o​​fluxo​​principal​​é​​conduzido​​pelo​​setup,​​que​

​inicializa​ ​Wi-Fi,​ ​configura​ ​pinos​ ​e​ ​prepara​ ​o​ ​dispositivo,​ ​e​ ​pelo​ ​loop,​ ​que​ ​executa​

​continuamente​ ​a​ ​lógica​ ​de​ ​monitoramento.​ ​Dentro​ ​desse​ ​loop,​ ​o​ ​microcontrolador​

​verifica​​a​​conexão​​com​​a​​rede,​​acessa​​os​​serviços​​responsáveis​​por​​consultar​​o​​backend​

​e​ ​aplica​ ​o​ ​estado​ ​recebido​ ​à​ ​bomba,​ ​garantindo​ ​que​ ​o​ ​funcionamento​​seja​​dinâmico​​e​

​atualizado em tempo real.​

​Figura​​24.​​Diagrama​​de​​componentes​​para​​o​​Módulo​​Arquitetural​​Sistemas​​Embarcados.​​Fonte:​

​autores.​

​Para​ ​que​ ​isso​ ​ocorra,​ ​o​​ESP32​​utiliza​​três​​componentes​​essenciais:​​a​​biblioteca​

​de​​WiFi​​para​​manter​​a​​conectividade,​​o​​cliente​​HTTP​​para​​fazer​​requisições​​ao​​servidor​

​Flask​ ​e​ ​a​ ​biblioteca​ ​ArduinoJson​ ​para​ ​interpretar​ ​o​ ​JSON​ ​recebida​​da​​API.​​Com​​base​

​nessas​ ​informações,​ ​duas​ ​funções​ ​de​ ​controle​ ​entram​ ​em​ ​atuação:​ ​checkPumpState​​,​

​responsável​ ​por​ ​consultar​ ​diretamente​ ​o​ ​endpoint​ ​da​ ​bomba​ ​e​ ​interpretar​ ​o​ ​retorno,​ ​e​
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​applyPumpState​​,​​que​​coordena​​o​​processo​​de​​atualização,​​acionando​​o​​relé​​conforme​​o​

​estado informado pelo backend.​

​O​ ​sistema​ ​também​ ​incorpora​ ​um​ ​mecanismo​ ​de​ ​segurança​ ​e​ ​confiabilidade.​

​Componentes​ ​como​ ​contabilizarErro​ ​e​ ​zerarErros​ ​monitoram​ ​falhas​ ​de​​comunicação,​

​seja​ ​por​ ​erros​ ​HTTP,​ ​problemas​ ​no​ ​JSON​ ​ou​​queda​​do​​Wi-Fi,​​e​​registram​​ocorrências​

​para​ ​impedir​ ​que​ ​a​ ​bomba​ ​opere​ ​em​ ​condições​ ​inseguras.​ ​Quando​ ​erros​ ​consecutivos​

​ultrapassam​ ​o​​limite​​permitido​​ou​​a​​conexão​​Wi-Fi​​falha​​repetidamente,​​o​​componente​

​desligar_bomba​ ​é​ ​acionado​ ​para​ ​garantir​ ​o​ ​desligamento​ ​automático,​ ​evitando​

​acionamentos indevidos.​

​Por​​fim,​​o​​backend​​em​​Flask​​disponibiliza​​um​​endpoint,​​que​​fornece​​ao​​ESP32​​o​

​estado​ ​da​ ​bomba​ ​no​ ​formato​ ​JSON,​ ​informando​ ​se​ ​ela​ ​deve​ ​permanecer​ ​ligada​ ​ou​

​desligada.​ ​Esse​ ​endpoint​ ​desempenha​ ​papel​ ​de​ ​“centro​ ​de​ ​decisão”​ ​do​ ​sistema,​

​permitindo​ ​que​ ​o​ ​controle​ ​da​ ​bomba​ ​seja​ ​remoto​ ​e​ ​atualizado​ ​conforme​ ​a​ ​lógica​

​definida​ ​no​ ​servidor.​ ​A​ ​integração​ ​entre​ ​os​ ​componentes​ ​do​ ​ESP32,​ ​as​ ​bibliotecas​ ​de​

​comunicação​ ​e​ ​o​ ​backend​ ​resulta​ ​em​ ​um​ ​sistema​ ​robusto,​ ​seguro​ ​e​ ​modular​ ​para​ ​o​

​controle automatizado da irrigação.​

​Figura 25.​​Diagrama de classes para o Módulo Arquitetural​​Sistemas Embarcados.​

​Fonte: autores.​
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​O​​sistema​​mostrado​​no​​diagrama​​da​​Figura​​25​​descreve​​como​​o​​ESP32​​controla​

​uma​ ​bomba​ ​de​ ​irrigação​ ​através​ ​de​​classes,​​conectando-se​​ao​​Wi-Fi​​e​​consultando​​um​

​servidor​ ​HTTP​ ​para​ ​saber​ ​se​ ​deve​ ​ligar​ ​ou​ ​desligar​​a​​bomba.​​A​​arquitetura​​é​​dividida​

​em​ ​quatro​ ​classes​ ​principais.​ ​A​ ​classe​ ​ESP32Controller​ ​é​ ​a​ ​classe​ ​principal​ ​do​

​controlador​ ​eletrônico,​ ​essa​ ​classe​ ​inicializa​ ​Wi-Fi,​ ​configura​ ​pinos​ ​e​ ​objetos,​ ​faz​ ​a​

​leitura do servidor, a atualização da bomba  e refaz a conexão WiFi, se necessário.​

​3.6 Interface Gráfica do Site​

​No​ ​site​ ​do​ ​SILF​ ​há​ ​configurações​ ​para​ ​dois​ ​tipos​ ​de​ ​irrigações​ ​principais:​

​Irrigação​ ​Fuzzy​ ​Inteligente,​ ​que​ ​compreende​ ​a​ ​irrigação​ ​considerando​ ​fatores​

​ambientais,​​e​​a​​Irrigação​​Manual,​​que​​permite​​que​​a​​irrrigação​​seja​​feita​ ​1​​vez​​ao​​dia​​e​

​5​ ​vezes​ ​ao​ ​dia,​ ​não​ ​considerando​ ​essa​ ​última​ ​fatores​ ​ambientais,​ ​apenas​ ​horário​ ​do​

​início e do fim.​

​3.6.1. Tela de Inserção de Classes Fuzzy da Irrigação Fuzzy Inteligente​

​Figura 26.​​Tela de Inserção de Classes Fuzzy.​
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​Na​ ​tela​ ​ilustrada​ ​na​ ​Figura​ ​26,​ ​o​ ​usuário​ ​pode​ ​definir​ ​os​ ​conjuntos​​fuzzy​​para​

​cada​ ​uma​ ​das​ ​variáveis​ ​ambientais,​ ​bem​ ​como​ ​para​ ​a​ ​variável​ ​de​ ​saída,​ ​o​ ​tempo​ ​de​

​irrigação.​ ​Há​ ​duas​ ​abas​ ​principais:​ ​Programação​ ​diurna​ ​e​ ​Noturna.​ ​Dessa​ ​forma,​ ​o​

​usuário​ ​consegue​ ​definir​ ​conjuntos​ ​e​ ​regras​ ​fuzzy​ ​diferentes​ ​para​ ​o​ ​período​ ​diurno​​e​

​noturno.​​Além​​disso,​​nessa​​tela​​há​​uma​​tabela​​contendo​​o​​histórico​​de​​irrigações​​fuzzy​

​realizadas.​​As​​Figuras​​27​​e​​28​​representam​​a​​interface​​gráfica​​do​​site​​para​​definição​​de​

​variáveis.​ ​O​ ​usuário​ ​pode​ ​utilizar​ ​funções​ ​Trapezoidal,​ ​Triangular​ ​e​ ​Sigmoide​ ​para​

​definir​​cada​​conjunto​​de​​cada​​variável.​​Tudo​​é​​feito​​através​​de​​cliques​​do​​mouse​​ou​​via​

​teclado.​

​Figura 27.​​Inserção e alteração de conjuntos fuzzy​​para umidade do solo.​

​Figura 28​​Inserção e alteração de conjuntos fuzzy​​para temperatura do ar.​

​O​​Local​​onde​​o​​usuário​​constrói​​a​​lógica​​que​​relaciona​​as​​classes​​fuzzy​​entre​​si​

​é​​o​​ambiente​​de​​regras​​fuzzy,​​presente​​na​​Figura​​26.​​Características​​da​​interface:​​Tabela​

​com​ ​várias​ ​linhas,​ ​em​ ​que​ ​cada​ ​linha​ ​representa​ ​uma​ ​regra​ ​fuzzy.​ ​Comboboxes​
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​permitem​​escolher,​​para​​cada​​variável,​​a​​classe​​fuzzy​​correspondente​​(ex.:​​solo​​=​​seco,​

​umidade​​ar​​=​​baixa,​​temperatura​​=​​alta).​​Há​​também​​um​​campo​​para​​definir​​a​​classe​​de​

​saída​​(tempo​​de​​irrigação:​​pouco,​​médio,​​muito).​​Botões​​de​​adicionar,​​editar​​ou​​excluir​

​regras.​ ​A​ ​interface​ ​é​ ​semelhante​ ​a​ ​um​ ​editor​ ​de​ ​regras​ ​especialista,​ ​facilitando​ ​a​

​construção visual da lógica.​

​Figura 29​​Inserção e alteração de regras.​

​3.6.2. Tela de Irrigação Atual da Irrigação Fuzzy Inteligente​
​A​ ​tela​ ​de​ ​irrigação​ ​atual​ ​(Figura​ ​27)​ ​é​ ​dedicada​ ​ao​ ​monitoramento​ ​visual​ ​das​

​irrigações​​no​​exato​​momento​​em​​que​​ocorrem.​​Funcionalidades​​apresentadas:​​Indicador​

​visual​​exibindo​​se​​a​​bomba​​está​​ligada​​ou​​desligada​​no​​minuto​​atual;​ ​Gráfico​​ou​​painel​

​mostrando​ ​Tempo​​total​​disponível​​(60​​minutos);​ ​Tempo​​inferido​​pelo​​sistema​​(ex.:​​42​

​minutos​ ​de​ ​irrigação);​ ​e​ ​Tempo​ ​restante​ ​sem​ ​irrigação.​ ​Quando​ ​não​ ​há​ ​irrigação​

​acontecendo,​ ​um​ ​painel​ ​informativo​ ​comunica​ ​a​ ​situação.​ ​Quando​ ​uma​ ​irrigação​ ​está​

​ativa,​ ​a​ ​interface​ ​demonstra​ ​dinamicamente​ ​o​ ​andamento​ ​do​ ​ciclo,​ ​mostrando​ ​a​

​proporção de minutos da bomba ligada e desligada.​

​A​ ​Figura​ ​28​ ​ilustra​ ​o​ ​estado​ ​desta​ ​tela​ ​quando​ ​a​ ​bomba​ ​está​ ​desligada,​ ​nesse​

​caso​​o​​sistema​​inferiu​​apenas​​1​​minuto​​de​​irrigação.​​Enquanto​​essa​​irrigação​​acontecia,​

​o​​painel​​estava​​com​​estado​​semelhante​​à​​Figura​​27,​​contudo,​​nos​​próximos​​59​​minutos,​

​permaneceu com o estado semelhante à interface da Figura 28.​
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​Figura 30​​Tela de irrigação atual com irrigação acontecendo.​

​Figura 31​​Tela de irrigação atual com irrigação inativa.​

​3.6.3. Tela de Visão de Irrigação para irrigação agendada​
​A​ ​tela​ ​da​​Figura​​29​​ilustra​​a​​tela​​de​​visão​​de​​irrigação​​para​​a​​irrigação​​manual,​

​método​ ​que​ ​permite​ ​configuração​ ​de​ ​irrigação​ ​1​ ​vez​ ​ao​ ​dia​ ​e​ ​5​ ​vezes​ ​ao​ ​dia,​ ​pois​

​permite​​cadastro​​de​​irrigação​​com​​data,​​horário​​de​​início​​e​​horário​​de​​fim.​​Na​​tabela​​de​

​visão de irrigação (Figura 29) é possível incluir, excluir e editar irrigação manual.​

​A​ ​Figura​ ​30​ ​apresenta​ ​o​ ​modal​ ​de​ ​inserção​ ​de​ ​irrigação​ ​agendada​ ​com​ ​os​

​respectivos​​campos​​citados.​​Esse​​modal​​é​​acessado​​a​​partir​​da​​tabela​​anterior,​​no​​botão​

​de adicionar.​



​60​

​Figura 32​​Tela de Visão de Irrigação para irrigação​​agendada.​

​Figura 33​​Modal de inserção de irrigação agendada.​
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​4.​ ​RESULTADOS​

​A​​Análise​​de​​Variância,​​Tabela​​8,​ ​foi​​utilizada​​para​​verificar​​se​​existe​​diferença​

​estatisticamente​​significativa​​entre​​as​​médias​​de​​diferentes​​tratamentos​​(substratos​​de​​3​

​L,​ ​6L,​ ​9L,​ ​12L​​e​​15​​L)​​e​​Manejos​​(irrigação​​1​​vez​​ao​​dia​​sem​​interrupção,​​irrigação​​5​

​vezes ao dia em tempo espaçado e, por fim, irrigação inteligente via SILF).​

​Tabela 8.​​Fontes de variação.​

​Fonte de variação​ ​Soma dos Quadrados​ ​GL​ ​F​ ​p-valor​

​Bloco​ ​190825,4​ ​1​ ​7,31​ ​0,0097​

​Tratamento (Volume)​ ​844928,5​ ​4​ ​8,09​ ​0,0001​

​Manejo​ ​935193,9​ ​2​ ​17,92​ ​0,0000​

​Interação (Tratamento×Manejo)​ ​240485,6​ ​8​ ​1,15​ ​0,3494​

​Residual​ ​1148416​ ​44​ ​-​ ​-​

​No​ ​fator​ ​Bloco,​ ​foi​ ​obtido​ ​p-valor​ ​de​ ​0.0097,​ ​que​ ​é​ ​menor​ ​que​ ​0.05,​ ​até​

​menor​ ​que​ ​0.01,​ ​tendo​ ​sido​ ​o​ ​efeito​ ​do​ ​Bloco​ ​estatisticamente​ ​significativo.​ ​Não​ ​há​

​uma​ ​diferença​ ​significativa​ ​na​ ​drenagem​ ​entre​ ​os​ ​diferentes​ ​blocos​ ​experimentais.​

​Nesse​​caso,​​significa​​que​​a​​estratégia​​de​​bloqueio​​foi​​eficaz​​em​​controlar​​uma​​parte​​da​

​variabilidade​​experimental.​ ​Considerando​​o​​Tratamento​​Volume​​de​​Substrato,​​o​​p-valor​

​de​​0.0001​​é​​extremamente​​baixo,​​muito​​menor​​que​​0.05.​​Isso​​significa​​que​​esse​​volume​

​tem​ ​um​ ​efeito​ ​altamente​ ​significativo​ ​na​ ​drenagem.​ ​Ou​ ​seja,​ ​a​ ​drenagem​ ​média​ ​é​

​significativamente​ ​diferente​ ​entre​ ​os​ ​diferentes​ ​volumes​ ​de​ ​substrato.​ ​Vamos​ ​agora​

​verificar​ ​a​ ​variação​ ​entre​ ​os​ ​métodos​ ​de​ ​irrigação​ ​para​ ​averiguar​ ​se​​os​​métodos​​são​

​estatisticamente diferentes.​
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​Figura 34.​​Gráfico de contribuições. Fonte: autores.​

​No​ ​fator​ ​Método​​de​​Irrigação,​ ​o​​p-valor​​é​​virtualmente​​zero.​​Isso​​indica​​que​​o​

​Método​​de​​irrigação​​tem​​um​​efeito​​altamente​​significativo​​na​​drenagem.​​Tratando​​agora​

​da​ ​relação​ ​Método​ ​de​ ​irrigação​ ​versus​ ​Volume​ ​de​ ​substrato​ ​escolhido,​ ​o​ ​p-valor​ ​de​

​0.3494​ ​é​ ​maior​ ​que​ ​0.05.​ ​Sendo​ ​assim,​ ​a​ ​interação​ ​entre​ ​Volume​ ​de​ ​Substrato​ ​e​ ​o​

​método​​não​​é​​estatisticamente​​significativa.​​Em​​outras​​palavras,​​o​​efeito​​de​​um​​método​

​de​ ​irrigação​ ​na​ ​drenagem​ ​é,​ ​de​ ​modo​ ​geral,​ ​consistente​ ​em​ ​todos​ ​os​ ​volumes​ ​de​

​substrato​ ​testados​ ​e​ ​vice-versa.​ ​Não​ ​há​ ​um​ ​efeito​ ​combinado​ ​ou​ ​dependente​ ​do​

​complexo​​entre​​eles.​​Por​​exemplo,​​se​​um​​método​​é​​melhor​​para​​um​​volume,​​ele​​tende​​a​

​ser​ ​melhor​ ​(ou​ ​pelo​ ​menos​ ​manter​ ​seu​ ​padrão)​ ​para​ ​outros​ ​volumes.​ ​Considerando​

​agora​ ​o​ ​impacto​ ​de​ ​cada​ ​fator​ ​nos​ ​resultados,​ ​o​ ​gráfico​ ​da​ ​Figura​ ​31​ ​mostra​ ​a​

​contribuição relativa de diferentes fatores para a variância total dos dados.​

​4.1 Comparação entre volumes de substrato​

​Foi​​feito​​então​​o​​Teste​​de​​Tukey,​​para​​identificar​​quais​​pares​​de​​médias​​entre​​os​

​grupos​ ​são​ ​significativamente​ ​diferentes,​ ​controlando​​a​​taxa​​de​​erro​​para​​comparações​

​múltiplas​ ​(FWER​ ​=​ ​Family-Wise​​Error​​Rate).​​O​​nível​​de​​significância​​utilizado​​foi​​de​

​0.05.​ ​Na​ ​Tabela​ ​9,​ ​os​ ​grupos​ ​são​ ​os​ ​volumes​ ​de​ ​substrato​ ​comparados.​​Nessa​​mesma​

​tabela,​ ​Diferença​ ​Média​ ​denota​ ​a​ ​diferença​ ​entre​ ​as​ ​médias​ ​dos​ ​dois​ ​grupos.​ ​Há​ ​uma​

​diferença​​estatisticamente​​significativa​​na​​drenagem​​média​​entre​​o​​volume​​de​​15​​L​​e​​de​
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​3​ ​L​ ​e​ ​9​ ​L​ ​(p<0,05),​ ​exibindo​ ​menor​ ​drenagem​ ​média.​ ​Nos​ ​demais​ ​pares​ ​não​ ​houve​

​diferença​​estatística,​​sinalizando​​que,​​nas​​condições​​do​​ensaio,​​volumes​​maiores​​tendem​

​a reduzir o excedente de água.​

​Tabela 9.​​Comparações múltiplas de médias da drenagem.​​Fonte: autores.​

​Grupo 1​ ​Grupo 2​ ​Diferença média​ ​p-valor​ ​IC 95% (Inferior ; Superior)​ ​Rejeitar H0​

​1 (3L)​ ​2 (6L)​ ​-139,3988​ ​0,5058​ ​(-385,6083 ; 106,8107)​ ​Não​

​1 (3L)​ ​3 (9L)​ ​-46,9167​ ​0,9830​ ​(-293,1262 ; 199,2928)​ ​Não​

​1 (3L)​ ​4 (12L)​ ​-112,9464​ ​0,6961​ ​(-359,1559 ; 133,2631)​ ​Não​

​1 (3L)​ ​5 (15L)​ ​-345,0238​ ​0,0020​ ​(-591,2333 ; -98,8143)​ ​Sim​

​2 (6L)​ ​3 (9L)​ ​92,4821​ ​0,8262​ ​(-153,7273 ; 338,6916)​ ​Não​

​2 (6L)​ ​4 (12L)​ ​26,4524​ ​0,9981​ ​(-219,7571 ; 272,6619)​ ​Não​

​2 (6L)​ ​5 (15L)​ ​-205,6250​ ​0,1434​ ​(-451,8345 ; 40,5845)​ ​Não​

​3 (9L)​ ​4 (12L)​ ​-66,0298​ ​0,9418​ ​(-312,2392 ; 180,1797)​ ​Não​

​3 (9L)​ ​5 (15L)​ ​-298,1071​ ​0,0102​ ​(-544,3166 ; -51,8977)​ ​Sim​

​4 (12L)​ ​5 (15 L)​ ​-232,0774​ ​0,0737​ ​(-478,2869 ; 14,1321)​ ​Não​

​Há​ ​também​ ​uma​ ​diferença​ ​estatisticamente​ ​significativa​ ​entre​ ​o​ ​volume​ ​de​

​substrato​​de​​9L​​e​​o​​de​​15L​​(p-adj​​=​​0.0102).​​A​​drenagem​​em​​15L​​é​​significativamente​

​menor​​do​​que​​em​​9L.​​Todas​​as​​outras​​comparações​​entre​​volumes​​de​​substrato​​(ex:​​3L​

​vs.​ ​6L,​​6L​​vs.​​9L,​​12L​​vs.​​15L)​​não​​mostram​​diferenças​​estatisticamente​​significativas​

​na​ ​drenagem​ ​média.​ ​Embora​ ​existam​ ​diferenças​ ​numéricas,​ ​elas​ ​não​ ​são​ ​grandes​ ​o​

​suficiente​ ​para​ ​serem​ ​consideradas​ ​reais​ ​e​ ​não​ ​aleatórias,​ ​com​ ​base​ ​no​ ​critério​ ​de​

​significância de 0.05.​

​4.2. Comparação entre manejos de irrigação​
​A​ ​Tabela​ ​10​ ​apresenta​ ​a​ ​síntese​ ​das​ ​comparações​ ​entre​ ​os​ ​três​ ​esquemas​ ​de​

​irrigação​ ​avaliados:​ ​aplicação​ ​contínua​ ​de​ ​30​ ​minutos​ ​diários,​ ​cinco​ ​aplicações​ ​de​ ​6​

​minutos​​cada​​e​​ajuste​​dinâmico​​por​​lógica​​fuzzy​​em​​intervalos​​horários.​​Verifica-se​​que​

​o​​sistema​​baseado​​em​​lógica​​fuzzy​​proporcionou​​redução​​significativa​​da​​drenagem​​em​

​relação​ ​aos​ ​manejos​ ​convencionais​ ​de​ ​30​ ​minutos​ ​diários​ ​e​ ​cinco​ ​irrigações​ ​diárias​
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​(p<0,05).​ ​Entre​ ​os​ ​dois​ ​regimes​ ​de​ ​tempo​ ​fixo​ ​não​ ​foram​ ​constatadas​ ​diferenças​

​estatisticamente​​relevantes,​​o​​que​​evidencia​​a​​vantagem​​prática​​e​​adaptativa​​do​​método​

​fuzzy.​

​Tabela​ ​10.​ ​Comparações​ ​múltiplas​ ​de​ ​médias​ ​da​ ​drenagem​ ​(Tukey​ ​HSD)​ ​–​ ​Manejos​ ​de​
​irrigação.​

​Grupo 1​ ​Grupo 2​ ​Diferença média​ ​p-valor​ ​IC 95%​ ​Rejeitar H0​

​Fuzzy​ ​Irrig_1​ ​300,3929​ ​0,0001​ ​143,4438 — 457,3419​ ​Sim​

​Fuzzy​ ​Irrig_5​ ​199,8214​ ​0,0092​ ​42,8724 — 356,7705​ ​Sim​

​Irrig_1​ ​Irrig_5​ ​-100,5714​ ​0,2793​ ​-257,5205 — 56,3776​ ​Não​

​5.​ ​CONCLUSÃO​

​O​ ​sistema​ ​de​ ​irrigação​ ​inteligente​​baseado​​em​​lógica​​fuzzy​​(SILF)​​demonstrou​

​redução​ ​significativa​ ​na​ ​drenagem​ ​(perda​ ​de​ ​água)​ ​em​ ​comparação​ ​com​ ​métodos​

​tradicionais​ ​(irrigação​ ​fixa​ ​diária​ ​ou​ ​intervalos​ ​regulares).​ ​Há,​ ​em​ ​média,​ ​200​ ​ml​ ​de​

​economia​ ​de​ ​água​ ​para​ ​cada​ ​planta​ ​ao​ ​adotar​ ​SILF​ ​em​ ​detrimento​ ​de​ ​um​ ​manejo​ ​de​

​irrigação​​em​​intervalos​​regulares.​​E​​também​​há​​uma​​economia​​em​​média​​de​​300​​mL​​por​

​planta​ ​ao​ ​adotar​ ​o​ ​SILF​ ​em​ ​comparação​ ​com​ ​o​ ​manejo​ ​de​​irrigação​​de​​2​​litros​​por​

​planta uma única vez ao dia.​

​Ao​​comparar​​com​​esse​​manejo​​tradicional​​de​​uma​​vez​​ao​​dia,​​nesse​​experimento​

​com​​80​​vasos,​​o​​SILF​​alcança​​24​​litros​​por​​dia​​de​​economia​​de​​água,​​sendo​​que​ ​em​​um​

​mês​ ​consumiria​ ​720​ ​litros​ ​de​ ​água.​ ​Apenas​ ​para​ ​comparar,​ ​pessoas​ ​em​​comunidades​

​urbanas​​de​​baixa​​renda​​usam​​de​​75L​​a​​117L​​por​​dia​​para​​todas​​as​​atividades​​pessoais​​e​

​domésticas​ ​(Sultana​ ​et​​al.,​​2022),​​então​​essa​​economia​​seria​ ​suficiente​​para​​abastecer​

​as necessidades domésticas de uma pessoa por cerca de 6 a 9 dias.​

​A​ ​consistência​ ​do​ ​SILF​ ​foi​ ​superior​​em​​volumes​​de​​substrato​​entre​​3L​​e​​12L.​

​Com​​relação​​a​​aspectos​​arquiteturais​​do​​sistema,​​os​​dispositivos​​(sensores​​DHT11​​e​​de​

​solo​ ​anticorrosivo,​ ​ESP32,​ ​comunicação​ ​HTTP​​e​​APIs​​REST​​em​​Flask)​​provaram​​sua​

​viabilidade,​​permitindo​​controle​​remoto​​e​​atualizações​​centralizadas.​ ​O​ ​uso​ ​de​

​microcontroladores​ ​como​ ​"clientes​ ​magros"​ ​simplificou​ ​a​ ​manutenção​ ​e​ ​a​
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​escalabilidade,​ ​podendo​ ​utilizar​ ​essa​ ​arquitetura​ ​de​ ​sistema​​para​​testar​​outros​​métodos​

​de irrigação, principalmente outros agentes inteligentes, como redes neurais.​

​A​ ​ANOVA​ ​confirmou​ ​que​ ​o​ ​método​ ​de​ ​irrigação​ ​(42.3%​ ​da​ ​variância)​ ​e​ ​o​

​volume​ ​do​ ​substrato​ ​(38.2%)​ ​são​ ​os​ ​fatores​ ​mais​ ​críticos​ ​para​ ​a​ ​drenagem​ ​(p-valor​

​próximo​ ​de​ ​0).​ ​A​ ​interação​ ​entre​ ​ambos​ ​não​ ​foi​ ​significativa​ ​(p-valor=0.3494),​

​indicando​ ​que​ ​o​ ​desempenho​​do​​SILF​​é​​consistente,​​independentemente​​do​​volume​​de​

​substrato.​

​Como​ ​trabalhos​ ​futuros,​ ​pode-se​​pensar​​em​​combinar​​lógica​​fuzzy​​com​​redes​

​neurais​​e​​algoritmos​​de​​aprendizado​​de​​máquina​​para​​ajuste​​automático​​das​​regras​​com​

​base​ ​em​ ​dados​ ​históricos,​ ​para​ ​testar​ ​o​ ​desempenho​ ​de​ ​outros​ ​sistemas​ ​baseados​ ​em​

​Inteligência​​Artificial.​​Outra​​perspectiva​​promissora​​consiste​​na​​integração​​de​​sensores​

​de​ ​condutividade​ ​elétrica,​ ​permitindo​ ​o​ ​monitoramento​ ​da​ ​salinidade​ ​do​ ​solo​ ​e​ ​a​

​inclusão​ ​desse​ ​fator​ ​no​ ​cálculo​ ​do​ ​tempo​ ​de​ ​irrigação.​ ​Além​ ​disso,​ ​sugere-se​ ​a​

​adaptação​ ​das​ ​regras​ ​fuzzy​ ​para​ ​outras​ ​culturas,​ ​como​ ​morango​ ​ou​ ​pimentão,​ ​que​

​apresentam diferentes exigências hídricas.​
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​APÊNDICES​

​Figura​ ​A.​ ​Sistema​ ​de​ ​Drenagem.​ ​Construção​ ​do​ ​sistema​ ​e​ ​drenagem​ ​sendo​ ​coletada​

​para compor os resultados.​

​Figura B.​​Teste para verificar a equidade na vazão​​dos gotejadores.​
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​Figura C.​​Apresentação do SILF em um evento.​
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