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Resumo

Vieira, Gabriel da Silva. Métodos para Análise de Dano Foliar e Reconheci-
mento de Pragas na Agricultura Usando Técnicas Computacionais. Goiânia,
2024. 211p. Tese de Doutorado. Instituto de Informática (INF), Universidade
Federal de Goiás (UFG).

Técnicas computacionais aplicadas à agricultura têm aprimorado atividades rurais e con-
tribuído com o monitoramento de lavouras, proteção de plantas e melhor rendimento
geral. Nesta tese, destacamos a análise foliar como ferramenta para inspeção e melhora
contínua de plantações, bem como para subsidiar tomada de decisões e intervenções no
manejo agrícola. Alterações foliares podem significar perdas irreparáveis de produtivi-
dade, entrega de produtos de baixa qualidade, e prejuízos econômicos significativos. Para
mitigar prejuízos de produção, é necessário um monitoramento eficiente que aponte se a
presença de pragas pode levar ao comprometimento da produtividade. Contudo, danos na
silhueta foliar comprometem métodos automatizados de análise e a diversidade no for-
mato de folhas e composição de danos dificultam o delineamento das regiões de borda
comprometidas. Nesse sentido, apresentamos métodos originais baseados em computa-
dor, capazes de lidar com danos nas extremidades de folha, que viabilizam a estimativa
de desfolha, detecção de dano, reconstrução de superfície foliar, e classificação de pra-
gas. Dentre as novidades desse estudo estão o reconhecimento de padrões por meio de
correspondência de templates e classificação de pragas usando apenas vestígios de danos
foliares. O delineamento metodológico do estudo compreende revisão de literatura, inves-
tigação de técnicas de processamento digital de imagens, visão computacional e apren-
dizado de máquina, construção de software, e formulação de teste experimentais. Os re-
sultados apontam para uma alta assertividade na estimativa de perda de área foliar com
correlação linear de 0.98, detecção de dano e classificação de pragas com assertividade
acima de 90%, e recomposição visual de regiões foliares afetadas por herbivoria com
pontuações SSIM entre 0.68 e 0.94.

Palavras–chave

Análise Foliar, Herbivoria por Insetos, Estimativa de Desfolha, Detecção de
Objeto, Reconstrução de Imagem, Classificação de Insetos.



Abstract

Vieira, Gabriel da Silva. Methods for Analyzing Leaf Damage and Recog-
nizing Agricultural Pests Using Computer Techniques. Goiânia, 2024. 211p.
PhD. Thesis. Instituto de Informática (INF), Universidade Federal de Goiás
(UFG).

The application of computer techniques in agriculture has significantly improved rural ac-
tivities, particularly crop monitoring, plant protection, and overall yield. This thesis em-
phasizes leaf analysis as a valuable tool for inspecting and continually improving planta-
tions, as well as supporting decision-making and agricultural management interventions.
Changes in leaves can lead to irreparable losses in productivity, the delivery of low-quality
products, and significant economic impacts. To prevent production failures, it is crucial
to efficiently monitor and identify whether pests are affecting productivity or remaining
within acceptable levels. However, damage to the leaf silhouette can limit automated anal-
ysis, and the diversity in leaf shape and damage levels makes it challenging to delineate
the compromised edge regions. This study introduces original computer-based methods
for defoliation estimate, damage detection, leaf surface reconstruction, and pest classifi-
cation that are prepared to address damage to the leaf boundaries. Notable aspects of this
study include template matching for pattern recognition and pest classification using only
traces of leaf damage. The methodological design of the study consists of a literature re-
view, investigation of digital image processing techniques, computer vision and machine
learning, software development, and formulation of experimental tests. The results indi-
cate high accuracy in estimating leaf area loss with a linear correlation of 0.98, damage
detection and pest classification with assertiveness above 90%, and visual restoration of
regions affected by herbivory with SSIM scores between 0.68 and 0.94.

Keywords

Leaf Analysis, Herbivory by Insects, Defoliation Estimation, Object Detection,
Image Reconstruction, Insect Classification.
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CHAPTER 1
Introduction

You are the light of the world.

Matthew 5:14

This thesis presents some computational techniques applied to constructing
leaf analysis models with attention to defoliation estimation, foliar damage detection,
leaf surface reconstruction, and pest classification. As a starting point, we worked on
identifying compromised leaf regions caused by defoliation to propose solutions with
accurate responses to agriculture. Defoliation is the process of consuming leaf area
caused by some harmful agent that affects plants’ physiology, primary production, and
photosynthetic capacity. The defoliation process generates visual effects, and inspection
guides the delineation of compromised leaf areas. With damage detection and loss
estimation, leaf regions consumed by pests can be artificially restored to a supposed
stage preceding defoliation. Likewise, the discriminating characteristics between the bite
patterns of different defoliators can be used to categorize the agents causing defoliation.

We explore different approaches to building solutions for leaf analysis and
present detailed processes that involve preparing template models, evaluating the sim-
ilarity between images, computing defoliation, and highlighting attention areas. Thus,
we group processing steps for detecting and estimating leaf loss, image restoration, and
pest classification based on bite signatures. We analyzed the results obtained by assessing
different evaluation metrics and conducted comparative studies that considered similar
works. Hence, our methods automatically detect the regions where defoliation occurs,
estimate defoliation, underline compromised leaf areas, and prepare image restoration.

Our leaf analysis models follow software architecture guidelines in which pro-
gram components are modularized; the processes are sequenced into input, transforma-
tion, and output stages; data is processed by independent functionalities; and the results
are measured and recorded for later analysis. This strategy is consistent with the con-
struction of complex systems, as it facilitates the development of maintainable solutions,
simplifies code debugging, and reduces the impact of coupling and uncoupling software
components in situations of experimental evaluation of different algorithm designs. Simi-
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larly, we presented lightweight processes that could be used on devices with low compu-
tational power and models that could be integrated into smart farming ecosystems through
the composition of services.

Another innovation of our work is the models’ ability to deal with leaf damage
inside the leaves and leaf losses in edge regions. Damage to the ends of the leaves makes
it difficult to estimate defoliation, as the curvature that connects the margin segments
is compromised. Estimating leaf loss involves recovering the shape of damaged leaves
and requires strategies that make it possible to trace the margin contours and connect the
points at the ends. We use the leaf shape as a reference to build image templates and the
constructed templates to recover the compromised leaf regions.

We also show that our leaf analysis models can be applied to different plant
species such as apple, blueberry, cherry, corn, grape, peach, pepper, potato, raspberry,
soybean, strawberry, and tomato. Regardless of the leaf structures observed, the models
can present satisfactory results even with variations in leaf shapes, sample positioning, and
image shading. Therefore, the models are effective as they present defoliation estimation,
damage detection, leaf reconstruction, and indirect pest classification. Likewise, the
models are efficient, suggesting their use on equipment with low computational power.

Divided into eight chapters, we introduce the work in Chapter 1 and present a
computational model for leaf reconstruction of areas consumed by herbivory in Chapter
2. We improved the model previously presented and discussed the segmentation of bite
marks from chewing insects in Chapter 3. In Chapter 4, we present a model for estimating
leaf loss. We keep working with the counting of injured leaf areas and present a new
version of the program to assess damage caused by insects in Chapter 5. In Chapter 6, we
present details of the software developed by the authors for leaf analysis, and in Chapter
7, we evaluate deep neural network models for classifying insects and mollusks based on
bite patterns. Finally, we present conclusions of the work in chapter 8. Besides, Appendix
A presents a list of contributions made by the authors during the research, such as original
papers, software, and new datasets.

1.1 Motivation and Significance

Technological advances in recent years have triggered a series of innovations
in various sectors of the economy, including agriculture. With an expanding world
population, the demand for agricultural products has been growing in proportion to human
subsistence needs. From 8.2 billion in 2024, population growth is estimated to reach
9.7 billion in 2050 and 10.3 billion in 2080 (UN-DESA, 2022; UN-DESA, 2024; LIU;
RAFTERY, 2024). Therefore, meeting the food demand and ensuring the agricultural
sector’s sustainable development is critical (PRESTI et al., 2023). Fortunately, the food
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supply follows population growth, and the capacity to increase global productivity is
based on some aspects, all of them with a technological basis.

Cutting-edge technologies have contributed to intensifying production systems,
and new computer-assisted approaches have increased success in rural activities. Agri-
cultural management supported by technological devices helps monitor and continuously
improve the quality of soil and crops so that they are compatible with high productivity.
Genetic materials are investigated in situations of adaptation to local climatic conditions
and resistance to pests, and technical harvesting and storage protocols are constantly re-
viewed to avoid loss and preserve the quality of products (JÚNIOR; LOPES, 2023).

The insertion of technological innovations in typically rural activities launches
daily micro-revolutions in agriculture. Due to the number of solutions available for agri-
culture, rural activities that use innovative instruments for measurement, monitoring, anal-
ysis, management, control, and projections are conventionally called precision agricul-
ture. Precision agriculture is a conceptual term that marks a new stage in agricultural
production. Essentially marked by the introduction of technological advances in agricul-
ture, it is characterized by the presentation of detailed information for decision-making,
improvement of rural management based on reliable data, and maintenance of production
within global consumption expectations (KARUNATHILAKE et al., 2023; SARANYA
et al., 2023).

Since countless innovations have entered rural activities, it was also necessary
to investigate and discuss the integration of these solutions. Datasets from different in-
stances could be processed to create even more sophisticated attention processes, such as
soil and plant conservation, pest control, and future harvest projections. As a result, we
can observe the combination of different solutions in communication protocols with stan-
dardized input and output for integrated computing processes. As integration has become
critical, advanced technologies were integrated into agriculture systems, transforming pre-
cision agriculture to Agriculture 4.0, or smart farming (KARUNATHILAKE et al., 2023;
JAVAID et al., 2022).

In smart farming, many parameters, such as environmental conditions, soil status,
production and plant management, and pest and damage estimates, are observed to reduce
the costs of agricultural process inputs (PRAKASH et al., 2023; NUKALA et al., 2016).
In this context, data processing devices are mainly used to automate manual processes,
control and coordinate equipment remotely, measure and estimate production and loss,
detect production failures such as in planting lines, mechanize pest control, expand the
monitoring space, scan using unmanned aerial and ground vehicles, and inspect the
quality of grains, flowers, and fruits.

Among the research possibilities in precision agriculture, leaf analysis is a cru-
cial tool for classifying and judging agricultural management options. Leaves are elemen-
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tary plant organs with interconnected functional elements directed toward strategies for
improving productivity with limited resources and are considered the leading site for pho-
tosynthesis and plant carbon acquisition (ROTH-NEBELSICK; KRAUSE, 2023; LAW-
SON; MILLIKEN, 2023). Changes in leaf structures can compromise plant development
by reducing its energy capacity, affecting its physiology and primary production, conse-
quently reducing the size, weight, and overall quality of fruits, grains, flowers, and seeds.
For large-scale production, foliar changes can mean an irreparable loss in productivity,
delivery of low-quality products, and significant economic impact (PRESTI et al., 2023;
FERNANDES et al., 2022).

Leaf damage and loss can occur naturally, with rain and winds breaking the leaf
surface or promoting premature leaf fall. When the cause is natural and sporadic, the
loss can be repaired by strengthening the plants. However, abiotic and biotic stresses
can influence plant morphological traits and physiological processes (PANDEY et al.,
2015). The first refers to environmental conditions such as temperature, irradiance, water
availability, salinity, and atmospheric carbon dioxide (CO2). The second refers to the
damage caused by pests and pathogens such as insects, bacteria, fungi, viruses, and
nematodes that progressively consume the leaves as they grow and multiply in the crop
(PRESTI et al., 2023; ESGARIO et al., 2022).

In the case of insects, their presence in farming is inevitable. Plants and insects
are in a co-evolution process that started millions of years ago, ensuring the survival
of both in the terrestrial ecosystem (SANTOS, 2011). Many of them bring benefits by
helping to pollinate flowers and decompose organic matter (WIETZKE et al., 2018;
VERMA et al., 2023). Others, such as chewing and sucking insects, can lead to productive
loss when their reproduction is rapid, and the abundance of insects leads to unrestrained
consumption of crops and forests (ERGASHEVA; MAKHMUDOVA, 2023; RAFFA et

al., 2023). To mitigate situations of this type, efficient crop monitoring is necessary, in
which pest detection and leaf loss are used to check whether the presence of insects is
within expected levels (QIN et al., 2024; MACHADO et al., 2016). When the estimate
points to a relevant loss, the degree of infestation guides pest management strategies
and the adoption of insect-pest control strategies (BERECIARTUA-PÉREZ et al., 2023;
SILVA et al., 2019).

The estimation of leaf loss has been the subject of interdisciplinary study
between areas of interest in agriculture and computing. This has led to structuring semi-
automatic (MALOOF et al., 2013; EASLON; BLOOM, 2014) or fully automated systems
based on knowledge from conventional manual approaches (SILVA et al., 2021; VIEIRA
et al., 2021a). Process automation has been investigated to deal with some limitations of
traditional methods due to erroneous estimates, excessive human work, and dependence
on specialized knowledge (BERECIARTUA-PÉREZ et al., 2023; VIEIRA et al., 2023).
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Although equipment is available for estimating leaf area, they fail for leaves with edge
damage, are expensive, and require maintenance (VIEIRA et al., 2024). For these reasons,
computing-based solutions have been good alternatives, as they present low cost and very
assertive results.

In the same way, detecting leaf surface regions attacked by pests is essential for
directing actions to combat infestations (VIEIRA et al., 2022; ZHU et al., 2024). With
computer-assisted leaf analysis, it is possible to restrict compromised leaf regions and
outline pest identification strategies. In a plantation, the computer can point out the ar-
eas with the highest incidence of damage and establish an alert point for directing insect
collection, pest control, and damage counting. Therefore, detecting leaf damage and es-
timating defoliation are potent tools for discriminating healthy plants from injured plants
and are valid for feeding selective spraying systems, reducing production costs, and con-
tingency chemical applications in plantations. It is worth mentioning that approximately
90% of agricultural lands are affected by environmental stresses, and it is estimated that
insects consume about 14% of the total global crop yields (PRESTI et al., 2023; NABITY
et al., 2009). Consequently, foliar analysis can help increase crop productivity by assisting
agricultural producers in providing food for a growing global population.

1.2 Problems

The initial research problem involves analyzing damaged leaves to identify and
quantify areas compromised by herbivorous defoliators. The goal is to measure the
percentage of leaf loss by calculating the pixel count corresponding to damaged regions
in digital images. The computational model must accurately detect and quantify these
compromised areas to estimate the extent of the damage. Figure 1.1 illustrates a damaged
leaf with different types of damage.

(a) damaged leaf (b) internal damage (trivial) (c) edge damage (complex)

Figure 1.1: Trivial and complex challenges in automatic leaf analysis.



1.2 Problems 31

(a) straight line (b) curved line (c) ideal line

Figure 1.2: Connecting compromised leaves endpoints using different line patterns
to determine the leaf silhouette.

Thus, this research problem was divided into two categories. The first concerns
damage inside the leaf, while the second considers damage at the edges. The first category
can be solved with logical and morphological operations because the leaf silhouette is not
compromised. Therefore, it is a trivial problem. On the other hand, in the second category,
the compromised leaf edges need to be estimated, which is difficult given the diversity of
leaf shapes. Thus, this is a complex problem.

To provide a clear view of the complexity of estimating the leaf contour, Figure
1.2 shows two alternatives for connecting compromised leaf endpoints. The first used a
straight line, and the second a curved line. As can be seen, neither strategy was sufficient
to approximate the actual shape of the compromised leaf silhouette, which is characterized
by a unique layout that is difficult to predict.

The second research problem is related to the indirect classification of pests,
i.e., the association between leaf damage and the species that caused the observed
deterioration. When a plant is healthy, it becomes attractive to many insects and other
pests. Some chewing insects, for example, use leaves as a primary food source or use them
to build nests or cultivate other organisms on which they feed (IMENES; IDE, 2002). In
any case, traces are left on the leaf surface that can be visually perceived. Although each
species has its mandibular characteristic, the traces of damage caused by them are difficult
to distinguish due to the size of each bite, whose magnitude is millimetric. In addition,
observed damage may result from consecutive biting actions that overlap the injury and
generate damage compositions of different sizes and shapes on the leaf surface. Figure 1.3
shows simulated leaf damage caused by different species of chewing insects and mollusks.
In a purely visual assessment, it is difficult to relate the damage to the right defoliator
without having the labels or annotations at hand.

The third problem involves building low-cost computational models with
lightweight processes for systems with limited processing power and memory. Although
there are trends to modernize equipment, access is very limited or expensive, making the
application of high-cost solutions unfeasible for many agricultural producers. Modeling
effective and low-cost solutions is essential to ensure access to the most modern tools
for monitoring and decision-making in farming businesses. However, computationally ef-

1The insect leaf predation dataset is publicly available. See Appendix A.
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(a) Anticarsia gemmatalis (Insecta: Lepi-
doptera: Noctuidae) (Caterpillar)

(b) Phylum of Mollusca (slugs and snails)
(Gastropods)

(c) Rhammatocerus schistocercoides (Or-
thoptera: Acrididae: Gomphocerinae)
(Grasshopper)

(d) Diabrotica speciosa (Coleoptera:
Chrysomelidae) (Green cow)

Figure 1.3: Simulated leaf damage caused by different pests on soybean leaves1.

ficient methods requiring little computational power must present results as assertive as
those produced using cutting-edge techniques. Therefore, low-cost models must be effi-
cient considering computational limitations and perform comparably to modern tools.

The fourth problem is the limitation of image datasets with samples of damaged
leaves caused by herbivory. Image databases are necessary because computational models
encode the most relevant features of target objects so that the recognized patterns are
used in categorization or prediction tasks. An appropriate set of exemplars is required
to identify common properties between objects, and observing selected patterns makes it
possible to build representative models. Therefore, to build computational models, it is
necessary to have databases with significant samples of the objects of interest, which can
be a major challenge in modeling systems for agriculture. For example, a plant species
may have different leaf shapes depending on its level of maturity. Genetic modifications in
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plants lead to changes in leaf shape, and various leaf damage can make pattern recognition
difficult. Furthermore, it is quite complex to build databases with foliar damage caused
by insects and other pests as they can vary in stages of development, species, and severity
of the damage caused. To overcome these challenges, researchers have presented leaf
reconstruction approaches based on artificial filling and applying synthetic alterations that
simulate foliar predation.

1.3 Questions

The research problems can be summarized into four questions:

1. How can we trace the contour of the leaf surface when the foliar silhouette is
compromised?

2. Is it possible to find out which defoliator caused the leaf damage considering only
the bite traces?

3. What computer techniques are suitable for preparing efficient and low-cost algo-
rithms for leaf analysis?

4. How can we simulate defoliation and prepare image datasets with leaf samples of
damaged leaves?

1.4 Hypothesis

To answer the research questions, we formulated four hypotheses as follows.

1. The leaves have a certain "standardization" in shape, which can be used to find
foliar patterns.

2. Each pest produces its own "marks" when feeding so that traces left on the leaf
surface indicate the pest that caused the damage.

3. Template matching is a qualified technique to perform efficient and low-cost solu-
tions for leaf analysis.

4. A reasonable way to simulate the diversity of damage caused by defoliation pro-
cesses is by using actual samples of pest bites.

1.5 Aims

In this thesis, we investigate the development of leaf analysis models for esti-
mating leaf loss, detecting damaged areas, reconstructing leaf surfaces, and classifying
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pests according to their bite traces. In this sense, we aim to prepare computer-based so-
lutions for precision agriculture with attention to lightweight computing processes with
high assertiveness and algorithms capable of generalizing to different crop species.

More precisely, we investigate the following research topics related to the agri-
cultural area:

1. Measurements of foliar damage caused by herbivory.
2. Estimate of leaf damage for planning agricultural management actions.
3. Demarcation of compromised leaf areas, including edge regions.
4. Preparation of visual inspections of injured leaf areas in addition to numerical

evaluations.
5. Classification of pests in farming.

Also, we investigate the following research topics related to the computing area:

1. Digital image techniques for image analysis.
2. Pattern recognition based on template matching.
3. Similarity evaluation between pairs of images.
4. Image segmentation, object detection, and image restoration.
5. Image classification with machine learning algorithms.
6. Performance of experimental tests considering assertiveness and execution time.

1.6 Methodology

The research methodology used during this work consisted of the following
steps:

• Literature review with research on leaf analysis, precision agriculture, and modeling
of computer-based solutions for agriculture.
• Investigation of digital image processing techniques in leaf analysis studies and

outcomes provided by computer vision approaches.
• Researching public databases to identify useful data for leaf analysis research.
• Construction of algorithm projects with attention to implementing lightweight

processes and high-performance programs for leaf analysis.
• Development of software architectural models with code modularization and self-

contained functionalities.
• Planning and implementing algorithms capable of simulating leaf damage caused

by crop defoliators.
• Formulating experimental tests to evaluate the computational models presented in

this research study.
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• Preparation of comparative essays with related works considering quantitative and
qualitative aspects.
• Organization and presentation of research results as scientific papers for publication

in journals and international conferences.

1.7 Contributions

This thesis results from investigative research on constructing computational
models for precision agriculture, whose central focus is the automation of leaf analysis
through computing processes. This study examines four main aspects of foliar analysis:
measurement of leaf loss caused by herbivory, detection of predation on plants, foliar
reconstruction of injured leaves, and pest classification. Each of the examined points led
to the development of algorithms suitable for executing automated tasks in which results
are obtained without human intervention or expert dependence.

The presence of experts is significant for decision-making in agricultural man-
agement. Greater levels of specialization result in greater prosperity. However, specialized
professionals can be challenging to find. As farming is generally far from large urban cen-
ters, hiring committed employees to conduct fieldwork can be difficult. For this reason,
computational tools for leaf analysis are essential to reduce human labor and operational
costs with tedious manual operations and increase accuracy with subjectivity-free pro-
cesses (MACHADO et al., 2016; ZHANG et al., 2022a; YANG et al., 2023).

Subjectivity in leaf analysis tasks can be risky, leading to inaccurate information
and mistaken judgments (SILVA et al., 2019). Depending on the crop size, the number
of leaf samples can be ample to represent a significant population group. As the work
increases and the pressure to deliver results is accentuated, the quality of the information
can be notably compromised. Process automation assists in tasks requiring significant data
sets and supports assessments by experts, indicating points of attention for more in-depth
analysis. This work presents solutions based on image processing techniques, computer
vision, and machine learning to automate leaf analysis processes.

The desired automation faced some challenges inherent to operating with digital
images. Image acquisition can lead to variations in image scale, positioning of target
objects at different viewing angles, and sensitivity to noise and lighting (ROCHA et al.,
2022; TANG et al., 2022). To address these issues, we model the programs to work
independently of the scale, rotation, or noise applied to leaf images. Additionally, we
explored solutions for analyzing leaves with damage in the edge region. Some existing
solutions from related work present poor performance for leaf edge damage or were
not designed for this task (MALOOF et al., 2013; EASLON; BLOOM, 2014). In this
thesis, we present leaf analysis models in which image acquisition can be performed
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without restricted control, and good performance can be achieved even in leaf samples
with damage in the edge region. Also, we developed algorithms for generating synthetic
damage on leaves with actual damage characteristics.

Another highlight of this work is the concern with building computational mod-
els with cohesive software components and lightweight processes suitable for smart farm-
ing. Low-cost models are crucial for agricultural environments with limited computing
resources and processing power (INTARAVANNE; SUMRIDDETCHKAJORN, 2015;
PIVOTO et al., 2018; ROCHA et al., 2022; LIN et al., 2022). In this sense, we measure
the results in terms of the effectiveness and efficiency of the proposed methods for auto-
matic leaf analysis. The experiments present highly assertive results and involve the timely
execution of models. Furthermore, we explored the models in different plant species, ver-
ifying that our work can be extended to various crops while maintaining similar execution
time and accuracy. The models’ ability to generalize is a crucial characteristic that enables
their use in different planting scenarios, from large to small cultivation areas and different
plant species.

While similar works focus only on numerical information (SILVA et al., 2019;
SILVA et al., 2021), our work presents visual results that enable insights from the presen-
tation of compromised leaf regions. Our programs identify attacked leaf areas, segment
bite traces, restore injured leaves, and classify pests. Among the new features, we high-
light the visual representation of the lost leaf area, the delineation by bounding boxes of
leaf damage, tracking of herbivory lines, and restoration of leaves consumed by defolia-
tors to representations before predation. Furthermore, we highlight the classification of
pests based on bite traces. To the best of our knowledge, we started the discussion on
categorizing pests through records of mandibular damage on plants by applying machine
learning models in the prediction when we published the paper "Automatic Detection of
Insect Predation Through the Segmentation of Damaged Leaves" (VIEIRA et al., 2022).

Research involving the classification of pests seeks characteristics that uniquely
identify each of the pest categories (DENG et al., 2018; CHENG et al., 2017; SHEN et

al., 2018). Databases with insect images are used, and computational learning models
are used to recognize insects in crops. In practice, these models are challenging because
they require the preliminary capture of insects in which traps must be prepared and
strategically positioned. These traps use attractive pheromones that work for some but
not all insect species. Therefore, choosing the appropriate bait is also a relevant task. For
camera monitoring systems, classification using images of pests is also complex because
they can move fast, be camouflaged or grouped in clusters, be hidden in holes, or be so
small that they are unnoticeable. For this reason, we work from another perspective. We
use leaf damage caused by defoliators to classify pests whose bite signatures are used to
train learning models. This way, we do not need to capture herbivorous pests and deal
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with the complexity of planning traps and collecting specimens.
Another contribution of this thesis is the scientific paper published with partial

results of this investigative study. For each of the results achieved, we describe the
motivating context, model the proposals, specify the algorithms, prepare experimental
tests, perform data analysis, discuss the observed results, and suggest future work. This
way, we organized and presented papers, publicized our algorithms, prepared databases
with leaf damage, and implemented original software.

In summary, the main contributions of this thesis are:

• Estimate leaf damage caused by herbivory.
• Detecting predation on leaves.
• Segmentation of bite traces.
• Pest classification based on bite signatures.
• Modularized computer programs for leaf analysis.
• Leaf analysis methods based on image processing, computer vision, and machine

learning.
• Algorithms for leaf analysis with implementation of synthetic leaf damage and

assessment metrics.
• Computer models with high performance and assertiveness.
• Scientific production with research results.
• Publication of computer codes and image database with leaf damage.
• Original software publication.

1.8 Organization of the Thesis

This thesis is divided into eight chapters, where the first and last one deal with the
introduction and conclusion of the research work. Also, the thesis contains an appendix
that presents original papers, software, and datasets developed by the authors. To present
an overview of each of the internal chapters (2–7) and the appendix, we present some
topics of interest and their content below.

In Chapter 2, we present a method for leaf reconstruction based on artificial
filling. An initial task is to determine the compromised leaf regions, demarcate them, and
apply image restoration algorithms. The injured leaf region is estimated by comparing
the damaged leaf with image templates constructed with images of healthy leaves. The
best template is used to draw the missing leaf area. From delineating the compromised
leaf area, we investigated two filling techniques: image blending and image inpainting.
The results are compared and presented visually and numerically. The motivation for this
chapter is to enable experts to compare leaf loss with image representations that precede
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defoliation. Another motivation is the increase in databases with images of reconstructed
leaves as opposed to the discarding of injured leaves from leaf image databases.

In Chapter 3, we present a new version of the method explained previously, but
this time for detecting leaf predation and segmenting insect bite traces. In the previous
version, we used different variations of healthy leaves to build the image templates.
The main problem with that approach was memory consumption, which considerably
limited the size of image templates. In this updated version, we removed the variations
to healthy leaves to free up memory space and reduce execution time when checking
correspondence between image pairs (injured leaf versus template images). Even so, the
method consistently detected and segmented leaf predation regions. Also, we explore
the model with variations in image scale, image rotation, noise addition, and different
percentages of leaf damage. Despite this, the method achieves significant results in other
scenarios, such as the variations experienced.

In Chapter 4, we expand the method for estimating leaf loss. With the distinction
of leaf areas consumed by defoliators, we counted the existing leaf area and compared
it with the compromised leaf regions to calculate the percentage of defoliation. The
experiments indicate a strong linear correlation between the estimated and actual values
of leaf loss (ground truth). They also show the ability of the method to estimate foliar
damage at low or high defoliation percentages. Unlike previous versions of our programs
that used images in Red, Green, Blue (RGB) format to represent image templates, we
started using image templates as binary images. We then reduced the execution time in
the similarity-checking operations between images and the amount of memory to store
the templates. In this version, we also achieve results comparable to related works and
maintain high accuracy in calculating the percentage of leaf damage.

In Chapter 5, we keep improving the method for estimating leaf damage. We
noticed that image segmentation between background and region of interest (foreground)
led to misinterpretations when spurious elements appeared as target objects (leaf area).
With this observation, we stopped using Otsu segmentation and started using a segmen-
tation model based on deep learning. Furthermore, we made changes to the model by
adopting the area of the intersection divided by the union as a measure of similarity be-
tween image templates and injured leaves – Intersection over Union (IoU). Previously, we
used distance metrics such as Earth Mover’s Distance (EMD) or subtraction of intersec-
tion areas. Another new feature applied to the model is processing template images and
damaged leaves with the convex hull operator. In this step, points from a binary image are
used to find the smallest polygon whose perimeter encloses all leaf points in an image. We
added this step to standardize the images so that the shape of injured leaves would be even
closer to the leaf templates. We carried out experiments and noticed the improvement of
the method in terms of assertiveness in calculating the percentage of leaf damage.
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In Chapter 6, we present our leaf analysis software capable of estimating the
percentage of defoliation, detecting compromised leaf areas, and reconstructing leaf sur-
faces. Although these features are the three main requirements, we also describe our al-
gorithm for leaf damage simulation and provide different evaluation metrics that can be
used to measure the program’s accuracy and compare related studies. Throughout sci-
entific research, we developed several algorithms and organized, documented, and made
them public to the entire community. In this way, we present the software architecture,
demonstrate its functionalities, describe the solution’s impact, indicate the program code
repositories, and show details about the license, version, and implementation language.
This chapter combines the three functionalities described in previous chapters into a sin-
gle solution. All functionalities were integrated, maintaining cohesion and low coupling,
and new comparative studies were carried out considering the most current version of the
method.

In Chapter 7, we compare deep learning models for classifying pests based on
leaf damage. Initially, we identify insects and mollusks causing economic loss in the
cultivation area and collect samples of damaged leaves caused by these pests. Then, we
prepare leaf damage templates and apply them to images of healthy leaves to simulate
defoliation processes. These steps were used to build a database with injured leaves for
each selected pest. We use this database to train convolutional neural network classifiers
and verify the learning models’ ability to classify image samples of bite traces correctly.
The promising results reveal the feasibility of identifying pests in farming using only
the bite marks found on injured leaves. We explore this idea, show the models’ aptitude
to generalize to unseen data, and point out the potential of this strategy for agricultural
production environments. The experimental tests show high assertiveness and motivate
the continuation of this investigative study in other plant species and pest categories.
Additionally, we publish the database used in the experiments and indicate intentions
for future work.

Except for Chapter 7, whose manuscript is being prepared for submission to a
journal, the other chapters were published in conferences and journals, as presented below.

• Chapter 2
Vieira, Gabriel Da Silva, Naiane Maria de Sousa, Bruno Rocha, Afonso
U. Fonseca, and Fabrizzio Soares. "A method for the detection and
reconstruction of foliar damage caused by predatory insects." In 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 1502-1507. IEEE, 2021. (VIEIRA et al., 2021)

• Chapter 3
da Silva Vieira, Gabriel, Bruno Moraes Rocha, Afonso Ueslei Fonseca,
Naiane Maria de Sousa, Julio Cesar Ferreira, Christian Dias Cabacinha,
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and Fabrizzio Soares. "Automatic detection of insect predation through
the segmentation of damaged leaves." Smart Agricultural Technology 2
(2022): 100056. (VIEIRA et al., 2022)

• Chapter 4
Vieira, Gabriel S., Afonso U. Fonseca, Bruno M. Rocha, Naiane M.
Sousa, Julio C. Ferreira, Juliana P. Felix, Junio C. Lima, and Fabrizzio
Soares. "Insect predation estimate using binary leaf models and image-
matching shapes." Agronomy 12, no. 11 (2022): 2769. (VIEIRA et al.,
2022)

• Chapter 5
Vieira, Gabriel S., Afonso U. Fonseca, Naiane Maria de Sousa, Julio C.
Ferreira, Juliana Paula Felix, Christian Dias Cabacinha, and Fabrizzio
Soares. "An automatic method for estimating insect defoliation with vi-
sual highlights of consumed leaf tissue regions." Information Process-
ing in Agriculture (2024). (VIEIRA et al., 2024)

• Chapter 6
Vieira, Gabriel S., Afonso U. Fonseca, Julio C. Ferreira, and Fab-
rizzio Soares. "ProtectLeaf: An insect predation analyzer for agricul-
tural crop monitoring." SoftwareX 24 (2023): 101537. (VIEIRA et al.,
2023)(VIEIRA et al., 2022)

• Chapter 7
Vieira, Gabriel S., et al. Soybean Pests Classification and Foliar Preda-
tion Recognition Using Bite Traces. The manuscript is being prepared
for submission to a journal.

Appendix A presents a list of original papers, software, and image datasets
prepared by the authors, and Appendix B shows authorizations for reusing the published
papers presented in this thesis.

During the research period, we investigated other agricultural research lines
and relevant topics in retrieval information and disparity from stereo images. We were
also involved with a research team that investigated computer applications in classifying
human diseases, interaction using smartwatches, super-resolution images for crop line
imagery, sugarcane classification, detection of plantation lines, skew angle correction in-
text images, and saliency methods and volume estimation of trees. A list of the research
results can be found in Appendix A. Besides that, some original software is presented
with descriptions and links to the repositories. The computer programs were designed to
support crop monitoring activities, retrieve images from large-scale data sets, compute
disparity from image pairs, and detect and segment tree crowns. Furthermore, new image
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datasets for estimating defoliation, classifying pests, computing disparity in rural and
semi-rural environments, and segmenting trees are presented in that section.

In summary, Appendix A presents a list of 6 scientific papers directly related to
this thesis, 12 papers prepared by the Ph.D. candidate on other research topics, and 30
papers in contributions with research partners. In addition, 5 original software programs
prepared by the authors and 4 new datasets developed during this research are made
available to the scientific community.

1.9 Behind the Scenes

Every story starts somewhere, and this one begins with a visit. I was teaching
when a co-worker knocked on my classroom door and called me. I excused myself from
the students and stood at the door. The professor who called me started talking about his
work on estimating leaf loss and the importance of this topic for agriculture. I was pretty
excited because the subject was unknown to me, and the motivation immediately seemed
very relevant. After he spoke, I asked him to give me a few days to put into practice some
ideas that were emerging in me while he was speaking. I went back to my class, but my
thoughts stayed there.

After a few days of implementing some algorithms, I had something to show.
I called that colleague and showed him what we could do using image processing and
computer vision for the problem he was investigating. Then, that was his turn to get
excited. We kept going in a good conversation, and I told him we would need a database
with images to continue the work. He said it would not be a problem as he always took
pictures of leaves in agriculture and showed me some of them.

After a few days, we met again. Suddenly, everything that was going very well
then fell apart. He told me he talked to one of his agronomist colleagues. His colleague
said that what we were doing was very simple and that he could do it. Given his other
colleague’s interest in carrying out the research, the partnership we had started a few
weeks before was broken. That was frustrating, and worst of all, the promised image
database never came, so we had to look for alternatives.

At that time, I was working on other projects and had put aside the research
proposal for leaf analysis. We were researching the construction of disparity maps with
stereo images of trees and were getting our first results. My friend Bruno Rocha invited
me to work on his planting row detection project, and I immediately made myself
available. In a short time, we achieved good results by preparing automatic methods for
analyzing aerial images obtained by unmanned aerial vehicles. My friend Naiane Maria
was researching saliency in images and invited me to work with her on applying saliency
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methods to segment images of rural environments. We worked together, and we obtained
exciting results.

Some study possibilities also emerged through study exchange programs.
We applied to the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) with a project to develop autonomous drone flight algorithms and to the
Fulbright educational exchange program with a project to detect and classify lung dis-
eases. We also applied for the Google Awards with a proposal to detect tree trunks using
supervised methods. Unfortunately, we were unsuccessful in any of them, but they were
unique experiences in seeing all the processes being carried out and how rigorous they
are. As there is a reason for everything, I realized the best thing was to stay in Brazil since
shortly after, we were faced with a global pandemic, and the borders were closed. Home
is the best and safest place to stay in any circumstances.

Due to the proposal submitted to Fulbright, I began working more closely with
my friend Afonso Fonseca to develop computer-assisted methods for analyzing medical
images. This was a very productive partnership, and we achieved really cool results.
Likewise, I began to delve deeper into the work of my friend Juliana Félix, and we
wrote some papers on the automatic classification of amyotrophic lateral sclerosis. Also, I
started following the tree diameter estimation research developed by Wellington Galvão,
the work on improving aerial images of plantations by Emília Nogueira, and the work on
gesture recognition on smartwatches by Thamer Nascimento. Those were very productive
moments, only possible thanks to the leadership of Professor Fabrizzio Soares.

During that time, I prepared for the qualification test. At this stage of the studies,
I needed to present my research intentions, expected results, and an execution schedule
to an evaluation panel. After the presentation, it was not what I expected. Many points
should be improved to make the study proposal viable within my deadline. Professors
Gustavo Laureano and Ronaldo Costa, with my advisor, Fabrizzio Soares, gave me crucial
directions, but I still had a long way to go. Suddenly, two days later, I received an email
about a subject I still did not know about. I read an article about content-based image
retrieval systems, and it was what I needed to direct my research on the right path. Shortly
afterward, we achieved good results and published some articles on this subject.

We were pretty excited and decided to return to the problems related to leaf
analysis and wrote a paper with the results we already had. At that time, I was under the
positive influence of the Computer Science Seminar course taught by Professor Rogerio
Salvini. We talked a lot about delivering complete results for publication and avoiding
fragmentation of work. Then, we sent our manuscript to a journal, and in the first round,
we received the message that the article was too long, so it was rejected. What could have
been a problem for other people, my advisor and I saw a great opportunity. Thus, there
was no way we divided the work, published partial results, and compiled the outcomes
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that gave rise to this doctoral thesis.



CHAPTER 2
Reconstruction of Foliar Damage Caused by
Predatory Insects

Get up, take up your bed, and go to

your house.

Matthew 9:6

Management of agricultural production and rural activities have been supported
by recognizing machine learning patterns and algorithms, as in the automation of leaf
analysis. However, leaf border damage compromises leaf structures, making it difficult to
estimate the lost contours. Effects caused by predatory insects are difficult to monitor
by inspection processes, and the harmful results caused by them can deteriorate the
performance of machine learning models. In this sense, plant leaves that are not fresh
or intact are avoided. Consequently, the number of samples for use in training steps is
reduced, leading to problems with data balancing and limited generalization models. This
chapter presents an automatic method for reconstructing an injured leaf at a probable
stage before defoliation. Also, the proposed method provides visual results that allow
the agronomic analyst to verify the regions of leaf damage and the components of the
basic leaf structure affected by predatory insects. Based on the experimental results,
we conclude that the proposed method can accurately delimit the injured leaf silhouette
and restore the leaf regions affected by herbivory attacks. This chapter was published
at the International Conference on Computers, Software, and Applications (COMPSAC)
(VIEIRA et al., 2021a).

2.1 Introduction

Agriculture businesses move billions of dollars every year in many countries. In
Brazil, agricultural activities were responsible for 21.4% of the Gross Domestic Product
(GDP) in 2019 (BRASIL, 2020). In 2020, Brazil surpassed the largest soybean producer
in the world, the United States, with a production of 126 million tons with an average price
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of $409 per ton (USDA, 2020e; INDEX MUNDI, 2020). In the same year, led by China
and the United States, corn reached a record price of $362 per ton, something that has
not been seen since 2015 (USDA, 2020c). The production of fresh deciduous fruits, such
as apples, grapes, and pears, increased compared to previous years and the production
of stone fruits exceeded expectations in Turkey and the European Union (USDA, 2020a;
USDA, 2020b).

Despite the promising results, world consumption of agricultural products is
expected to increase significantly in 2021. In this sense, leaf analysis is one of the tasks
that has generated helpful information for agricultural production and, consequently,
to meet global demand. As the leaf area is responsible for the photosynthesis process,
the growth of the plants and the filling of the grains can be monitored through visual
inspections of the state of the leaves, which enables more precise crop management, such
as the application of insecticide.

However, the effects caused by predatory insects are difficult to be monitored
by inspection processes. Leaf damage in border regions compromises leaf structures,
making it difficult to estimate the lost contours. There are approaches for this task
based on computer-based solutions, but with some limitations. (MACHADO et al., 2016)
developed a mobile application for the quantification of leaf herbivory that depends on the
user’s ability to interact with it, and (SILVA et al., 2019) developed a deep neural network
model to estimate the level of defoliation but that requires several artificial simulations of
leaf damage and a large number of images for the training stage.

Furthermore, computer identification of plant species generally ignores samples
with marginal and severe damage to prioritize fresh and intact plant leaves (BARRÉ et al.,
2017; WÄLDCHEN; MÄDER, 2018). As the performance of machine learning classifiers
can change due to samples with variations in leaf shape, color, and texture caused
by damage, leaf images are selected considering their original shape and appearance
(CARRANZA-ROJAS; MATA-MONTERO, 2016). On the other hand, these classifiers
require samples in sufficient quantity for each class in the data set, and the exclusion
of samples can generate imbalanced data, also deteriorating the overall performance of
the machine learning models (HUSSEIN et al., 2020). Consequently, leaf reconstruction
could significantly contribute to expanding the number of samples. In classifying injured
leaves, they could be reconstructed before the identification process, increasing the
chances of an assertive classification (HUSSEIN et al., 2021).

To deal with the limitations of related works and contribute to this field of study,
we developed a computational method to reconstruct the contours of the leaf edge and
restore the foliar canopy. The proposed method does not depend on the user’s expertise
to obtain the desired results and uses a few leaf samples to construct an image model.
Besides, the proposed method provides visible results that allow the agronomic analyst
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(a) injured leaf (b) boundaries (c) reconstructed leaf

Figure 2.1: An overview of the proposed method. For an injured leaf (a), the bound-
aries of the damaged area are automatically traced (b), and the leaf
shape is recovered (c).

to verify the regions of occurrence of leaf damage and the components of the primary
leaf structure affected by predatory insects. Figure 2.1 illustrates the edge of a leaf being
traced and the result of the reconstruction process for an initially damaged leaf.

This study presents an automatic method for reconstructing an injured leaf at
a probable stage before defoliation. We focus on leaf edge restoration by structuring
a method capable of determining the damaged area and reconstructing the damaged
leaves in a format similar to the original one. The novelty of our method is that it uses
computational vision and digital image processing techniques combined with geometric
leaf properties and statistical measurements to present a simple, inexpensive, and robust
solution that can effectively contribute to decision-making in cultivars.

Our main contributions are as follows:

• automatic detection of damaged leaves caused by insect herbivory;
• visual reconstruction of the damaged regions through artificial filling;
• a versatile approach that works properly in a variety of cultivars;
• a useful application to support agricultural management decisions based on foliar

analysis.

The remaining organizational structure of this chapter is as follows: Section 2.2
summarizes the related work. Section 2.3 presents the method provided in detail. Sec-
tion 2.4 describes the experiment setup as the database used, input parameters, and eval-
uation metrics. Section 2.5 provides experimental results and analysis. Finally, in Sec-
tion 2.6, we draw our conclusions and suggest ideas for future work in this field.

2.2 Related Work

Computer-based techniques are often applied to fill missing or damaged regions
in digital images. Restoration processes are used to recover images affected by natural
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degradation or when artifacts need to be removed with visual preservation of the original
images. There are several useful image restoration applications (KHAN et al., 2018),
especially in precision agriculture, where they play a significant role in improving the
quality of pictures obtained from unmanned aircraft, poor quality videotape, and blurred
satellite images (CHICKERUR et al., 2010).

The detection of pest attacks on plants makes it possible to identify regions of
damaged leaf areas, which is beneficial in the quantification of damage caused by insects
and subsequent management and treatment of possible infestations (MACHADO et al.,
2016; SILVA et al., 2019). In leaf damage detection approaches, the compromised area is
estimated so that the total leaf area can be recognized and the missing parts can be noted
and analyzed.

In this sense, Zhao et al. (2012) developed an algorithm for the recognition of
damage in oilseed rape leaves. Bradshaw et al. (2007) used digital scanners and image
manipulation software to estimate the leaf surface area that was damaged by insect
herbivory. Liang et al. (2018) identified methodologies for estimating leaf border and
defoliation percentage in soybean plantations. Machado et al. (2016) developed a mobile
application to quantify leaf damage using digital image processing techniques. Besides
that, Silva et al. (2019) used convolutional neural networks to estimate missing areas on
injured leaves.

The proposal prepared by Hussein et al. (2021) stands out among the works
related to our study. The authors investigated leaf reconstruction so that damaged leaves
could be recovered to increase the sample number in constructing learning models.
Although the results are promising, in this approach, the regions of foliar damage need to
be indicated in the form of training masks. Therefore, leaves with damage on leaf edges
may require the manual preparation of these masks, which is very laborious and tedious.

Unlike related works, our proposal was designed to work regardless of the
cultivar type. We show through experimental results that our method works on various
crop species important for global trade, such as soybean, corn, and fresh deciduous fruits.
Furthermore, the proposed method is fully automatic and requires only a few leaf samples
to build an evaluation model. The method does not require specialized equipment and
uses only digital images acquired by conventional RGB cameras. Our approach also uses
digital image processing techniques as performed in the related works. In addition, we
deal with restoring the leaf boundary and shape through manipulation and artificial filling
of the compromised leaf area.
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2.3 Method

Our pipeline for the reconstruction of damaged leaves consists of six cohesive
steps that can be seen in Figure 2.2, whose descriptions are presented in the following
sections.

Leaf Segmentation

Leaf Feature Detection

Leaf Adjustment
& Model Construction

Leaf Sample Preparation

Similarity Evaluation

Leaf Canopy Reconstruction

Figure 2.2: Architecture components of the proposed method.

2.3.1 Leaf Segmentation

In this step, we segment the leaf region from the image’s background. Initially,
we use an image filter in the original image through the median and average convolution
processes, both with a kernel size equal to 5× 5. Then, the Green channel of the RGB
image is exceeded using an arithmetic operation in which the pixel values of the Green
channel are doubled and subtracted from the Red and Blue channels (G′ = 2G−R−B).
Then, the Otsu threshold method (OTSU, 1979) is applied, and the binary image obtained
is used to exclude the non-leaf regions from the original image (Figure 2.3(b)).
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2.3.2 Leaf Feature Detection

We identified leaf features from their geometric shape and morphological struc-
ture in this step. Here, two approaches are employed. In the first, the interior pixels of the
leaf are removed from the leaf area so that only the leaf outline, or border pixels, remain.
Then, the distance between these edge pixels is calculated using the Mahalanobis distance
(DODGE, 2008). In this way, we find the two pixels most distant from each other, which
allows us to draw a straight line that possibly indicates the central leaf vein (Figure 2.3(c)).
In the second approach, Sobel’s edge detector (KANOPOULOS et al., 1988) is applied
over the Green channel of the original image, and a binary image is obtained. Then, this
binary image is used to detect rectilinear shapes using the Hough transform (GONZA-
LEZ; WOODS, 2008), which allows us to identify the other leaf veins, such as the lateral
veins. Figure 2.3(d) presents some lines superimposed on a segmented leaf after applying
the Hough transform.

(a) input image (b) segmented leaf

(c) leaf margin (white) and reference line
(yellow)

(d) detected features after Hough trans-
form.

Figure 2.3: Leaf segmentation and feature extraction by Hough transform.
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2.3.3 Leaf Adjustment and Model Construction

The leaf images are rotated to a position where the leaf tip possibly points up or
down. We used the image features obtained in the previous step (straight lines) to check
the inclination of the leaves and rotate them. After the rotation, the leaf area is identified
and surrounded by a bounding box. Then, the image is cropped, and the area outside the
bounding box is deleted. Finally, the resulting image is resized to the original size of the
initial image. This procedure creates leaf models equal to the number of image features.
Figure 2.4 presents the visual results of the adjustment steps applied to an input image.

(a) (b)

(c) (d)

Figure 2.4: Leaf model construction process: (a) segmented image with its reference
line, (b) image after rotation transformation, (c) leaf surrounded by a
bounding box, and (d) image after being cropped and resized.
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2.3.4 Leaf Sample Preparation

After positioning the input image into new positions and creating the collection
of leaf models, some image templates are applied to each leaf model to simulate leaf area
loss. Six templates are used to crop the leaf models’ left, right, top, and bottom areas,
where the reference line (Section 2.3.2) is used to guide the positioning of the templates
into the images.

One of the templates removes 50% of the leaf area to the left of the reference
line. Three other templates remove 50% right, 50% above, and 50% below, respectively.
The remaining templates remove 25% on both the left and right sides of the leaf, while
the other removes 25% on both the upper and lower sides. After this process, the leaf area
is detected to select the region of interest and guide the cropping and resizing of the foliar
area. Thus, six damaged leaf samples are associated with each leaf model wr ∈W.

Figure 2.5 shows some results from the leaf sample preparation process in
which six defoliation samples are produced. These samples are then cropped and scaled
according to leaf area detection.

Figure 2.5: Results of the leaf sample preparation process. The first and second lines
show the results of this process before and after image cropping and
resizing, respectively.

2.3.5 Similarity Evaluation

The previous four steps are repeated for all images in a given healthy leaf image
database, and the first three steps are also applied to the damaged input leaf. Each image
generated from the damaged input leaf is compared to the leaf models and their damaged
samples. Then, the estimated costs are associated with the comparisons made.

This comparison is performed by measuring the similarity between the distribu-
tions of the damaged leaf area with the prepared models and samples. The Earth Mover’s
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Distance1 (EMD) (RUBNER et al., 2000) is used, and the similarities between them
quantify the proximity between the damaged leaf and the image models. To perform
this evaluation and in addition to the EMD2, we propose a cost function that evaluates
the correspondence between image pairs (of size n×m) using their similarities and the
non-overlapping areas between them.

The three terms of Eq. 2-1 describe the proposed cost function:

Cost = ω1 +ω2 +ω3, (2-1)

where

ω1 = EMD(Ia,Ib)

ω2 = ψ+ζ+φ

ω3 = ν+ τ

and

F(Ia,Ib) =
1

nm

n

∑
i=1

m

∑
j=1

(pi j∧qi j)

FA(Ia,Ib) =
1

nm

n

∑
i=1

m

∑
j=1

(pi j∨qi j)∧¬(pi j∧qi j)

ψ = FA(Ia,Ib)

ζ = F(Ia,¬Ib)

φ = F(¬Ia,Ib)

ν = F(¬Ib,wr)

τ = F(Ib,¬wr)

where ψ is a function that calculates the area that is outside of the intersection between a
damaged leaf model (Ia) and the damaged input leaf (Ib); ζ calculates the area that is in
the damaged leaf model but not in the input leaf; φ calculates the area that is in the input
leaf but not in the damaged leaf model; ν calculates the area that is in the healthy leaf
model (wr), corresponding to the damaged leaf model Ia, but not in the input leaf (Ib); τ

returns the area that is in the input leaf but not in the healthy leaf model.

1It is also referred to as the Wasserstein distance and the Monge-Kantorovich problem.
2We use the code provided by Liu et al. (2018) to calculate the Earth Mover’s Distance.



2.3 Method 53

Then, with the cost resulting from the comparison performed, the leaf model
with the most minor error is the chosen one, Eq. 2-2.

e = argmin(Cost), (2-2)

where e is the minimum error resulting from the cost function between the damaged leaf
and all leaf models.

Figure 2.6 presents an example of the similarity evaluation between a damaged
leaf and the template images. From the three leaf models, six defoliation samples are
prepared for each one of them. The damaged leaf is compared with all templates, and the
best match is used to identify the compromised area.

Figure 2.6: Comparing a damaged leaf to template images.

2.3.6 Leaf surface reconstruction

This step converts the retrieved image model and the damaged input leaf to a
binary image. In Eq. 2-3, logical conjunction is applied to the binary image A (damaged
input leaf) and B (retrieved image model), resulting in L, a logical image with the missing
areas.

L = ¬A∧B (2-3)

A multiresolution pyramid approach, referred to as image blending, is applied
to reconstruct the damaged leaf. This technique aims to improve spatial and color
consistencies between a source (retrieved model) and a target image (damaged leaf) by
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using the resolution band independently, resulting in a multiresolution mixing that focuses
on generating a realistic image given the composite ones (WANG et al., 2017). Also,
we look at image reconstruction through interpolation strategies in which an injured
leaf is restored based on the values in undamaged areas. Image inpainting techniques
are representative examples of this approach and belong to the area of digital image
processing. This study uses the technique proposed by Bornemann and März (2007).

2.4 Materials

2.4.1 Database

We consider some crop species available in the public database prepared by
Hughes and Salathé (2015) to evaluate the proposal. It is a diverse data set of leaf images
obtained in various lighting conditions, including healthy and disease-affected leaves.
From this database, we evaluate the proposed method considering 12 types of cultivars:
Apple, Blueberry, Cherry, Corn, Grape, Peach, Bell Pepper, Potato, Raspberry, Soybean,
Strawberry, and Tomato. The size of the images is 256×256.

2.4.2 Experiment setup

In the evaluation, we consider only images of healthy leaves that are transformed
by an automatic synthetic defoliation method elaborated by the authors. Our defoliation
approach involves extracting bite signatures in real herbivory cases and preparing foliar
damage templates to promote different leaf defoliation levels. It receives a healthy leaf as
input and returns a damaged leaf and its level of defoliation. It uses four random variables
to determine (1) the number of insect bites to use, (2) select one or more samples from the
bite models, (3) apply a rotation transformation to the selected bite samples, (4) and resize
the bite samples to a random size. Besides, the defoliation level is an input parameter, and
the desired defoliation level can be set from 1 to 99%.

Each crop species of the database is divided into two groups: (i) data modeling
and (ii) test data, selected randomly from the number of images in the database. The first
is used to construct the leaf models, and the second is used to validate the proposal. The
synthetic defoliation is applied only to the test data group to sample damaged leaves at
different levels from 1 to 30% defoliation. Also, 42 images are used in the data modeling
group, and 30 images in the test data group for each 12 crop species under investigation.
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2.4.3 Evaluation Metrics

The Structural Similarity Index (SSIM) (WANG et al., 2004) is used in the tests
to quantify the image quality and measure the similarity between the reconstructed leaves
and their corresponding ground truth images. SSIM is standardized because the results
are presented on a scale ranging from only −1 to 1, where a score closer to 1 means that
the two images are very similar.

The SSIM quality assessment index is a multiplicative combination of lumi-
nance, contrast, and structural terms. The overall index (Eq. 2-4) is a multiplicative com-
bination of measures of location, dispersion, and regularization constants.

SSIM(T,Y) =
(2µtµy +C1)(2σty +C2)

(µ2
t +µ2

y +C1)(σ
2
t +σ2

y +C2)
, (2-4)

where µt , µy, σt , σy, σty are the local means, standard deviations, and cross-covariance for
images T (ground truth) and Y (reconstructed leaf). C1 and C2 are regularization constants
that avoid instability for image regions where the local mean or standard deviation is near
zero. Furthermore, the average SSIM value for the test data set is:

SSIM =
1
n

n

∑
i=1

SSIM(Ti,Yi) (2-5)

where n is the number of samples in the test data set.
Entropy is used to assess the texture of the reconstructed leaves concerning

ground truth images. It is a statistical measure of randomness, which is defined as
(ROMÁN et al., 2019):

E(I) =−
L−1

∑
k=0

p(k) log2(p(k)), (2-6)

where I is the original image, p(k) is the probability of occurrence of the value k in the
image I, and L = 2q indicates the number of different intensity levels in a digital image,
in our case q = 8.

From Eq. 2-6, the Root Mean Square Error (RMSE) is used to evaluate the
difference between the entropy values of the ground truth images and the reconstructed
leaf using blending and inpainting techniques (Eq. 2-7).

RMSE(eT,eY) =

√
∑

n
i=1(eTi− eYi)2

n
, (2-7)

where {E(T1), · · · ,E(Tn)} ⊂ eT and {E(Y1), · · · ,E(Yn)} ⊂ eY , and n is the number of
images in the test data group (n = 30). Compared to SSIM, lower RMSE values indicate
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a better fit (SOARES et al., 2011).
We use the Jaccard or Intersection-Over-Union (IoU) index to measure the

accuracy of the leaf canopy reconstruction. Commonly applied in the evaluation of
segmentation processes, this index allows us to verify the area of overlap between
predicted segmentation and the ground truth. It is a straightforward metric that ranges
from 0 to 1 (0−100%) with 0 signifying no overlap and 1 signifying perfectly overlapping
segmentation. The IoU similarity coefficient of two sets A and B is expressed according
to Eq. 2-8:

IoU(A,B) =
|A∩B|
|A∪B|

(2-8)

where A corresponds to the leaf area of the reference image (ground truth) and B the leaf
area of the damaged leaf after reconstruction.

Likewise, we use the Dice index, or F1 score, to verify the similarity between
the reconstructed images in relation to the ground truth. In this metric, as in IoU, the
coefficient will be equal to 1 if the sets are equal and 0 if they are disjoint. Eq. 2-9
describes this evaluation metric.

Dice(A,B) =
2|A∩B|
|A|+ |B|

(2-9)

where |A| and |B| represent the cardinal of set A and B, respectively.

2.5 Results and Discussion

In our proposal, leaf reconstruction is a process that approximates an image with
leaf damage to a healthy leaf. Harmonizing these images, in terms of image blending or
image inpainting, allows us to create a visual representation in which an injured leaf is
recovered at a stage before defoliation.

In evaluating leaf reconstruction, we compared the reference images (ground
truth) with the two digital image processing techniques selected for this study: image
blending and image inpainting. The results indicated a slight improvement in the recon-
struction process through the interpolation of images; however, it was not far from the
other model under analysis. The image blending obtained SSIM values from 0.24 to 0.63
and the image inpainting from 0.24 to 0.64. It also shows that image inpainting improved
over image blending, which indicates that other image inpainting techniques can be in-
vestigated in future work.

Table 2.1 presents the average SSIM obtained by each of the 12 cultivars
observed in this study. The proposed method obtained the best results with corn leaves,
reaching an SSIM value of 0.64. Cherry and grape also showed promising results with
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Table 2.1: Leaf reconstruction evaluation: Average and Standard Deviation of the
SSIM scores.

Image Blending Image Inpainting

Apple 0.242 ± 0.070 0.242 ± 0.073

Blueberry 0.379 ± 0.064 0.376 ± 0.065

Cherry 0.520 ± 0.099 0.525 ± 0.100

Corn 0.637 ± 0.120 0.642 ± 0.125

Grape 0.513 ± 0.067 0.518 ± 0.068

Peach 0.368 ± 0.119 0.368 ± 0.119

Pepper 0.401 ± 0.050 0.402 ± 0.052

Potato 0.403 ± 0.086 0.406 ± 0.088

Raspberry 0.434 ± 0.074 0.440 ± 0.070

Soybean 0.327 ± 0.044 0.330 ± 0.046

Strawberry 0.464 ± 0.054 0.464 ± 0.056

Tomato 0.310 ± 0.086 0.312 ± 0.089

values of 0.52 and 0.51, respectively. Despite the diversity of samples and diversified
lighting, the other cultivars achieved results above 0.24. Also, the extent of leaf damage
can explain the high standard deviation of cherry, corn, and peach. As the damage
becomes more severe, the image reconstruction quality tends to be reduced.

Table 2.2 shows the rates of assertiveness in the reconstruction of missing leaf
areas. The IoU values were higher for corn and potato, which reveals that the proposed
method estimate reached 98% and 89% accuracy, respectively. Soybean and strawberry
also achieved important results in which leaf canopy could be restored in 87% and
89%. According to the Dice index, the similarity measured between the reconstructed
leaf and the ground truth was also high for pepper and grape, whose values were above
86%. Moreover, IoU and Dice indexes show that assertiveness was lower in apples and
tomatoes, with percentages close to 80%. On the other hand, peach presented the lowest
result, which can be explained by the shading effect in the database, which greatly limited
the segmentation process. The shadow treatment may be applied in future works to obtain
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Table 2.2: Leaf area reconstruction: IoU and Dice scores.

IoU (%) Dice (%)

Apple 81.7 89.7

Blueberry 86.5 92.7

Cherry 82.9 90.3

Corn 98.5 99.2

Grape 87.0 93.0

Peach 66.0 78.2

Pepper 86.0 92.3

Potato 89.5 94.3

Raspberry 85.9 92.2

Soybean 87.9 93.5

Strawberry 88.9 94.0

Tomato 80.1 88.7

better results.
Figure 2.7 shows the average Entropy scores for each crop species in which the

values listed correspond to the statistical properties of the reference images (T) and the
reconstructed images (Y). The results show that the entropy of the reference images is
very similar to those obtained with the leaf reconstruction process. Besides, it shows no
significant difference between the techniques employed since the entropy values for the
image blending and image inpainting are close and above 90%. Nonetheless, according
to Figure 2.8, the image inpainting achieved the lowest error, which indicates that other
image inpainting techniques can be investigated in future work.

Upon visual inspection, we observed that the proposed method accurately delim-
its the injured leaf silhouette. The damage in border regions is recovered, which makes it
possible to identify the areas where insect predation occurred. Comparing the image re-
construction techniques, we observed that the image blending better preserved the leaf
vein structures. In contrast, the image inpainting smoothed the reconstructed regions,
making the perception of the leaf veins unfeasible.
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Figure 2.7: Leaf reconstruction evaluation: Entropy scores.

Figure 2.8: Leaf reconstruction evaluation: RMSE scores.
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Figure 2.9 presents an example of a damaged leaf, the image model that best
matches it, and the reconstructed leaves after image blending and inpainting techniques.
Figure 2.10 shows a sample of each crop species with visual results achieved after apply-
ing our leaf reconstruction method using image blending and inpainting. It is important
to note that even for low SSIM values, the image reconstruction process correctly fills the
regions of leaf damage. The results are so promising that the reconstructed leaf images
visually resemble the undamaged leaves in an almost undetectable manner.

(a) Damaged leaf. (b) SSIM = 0.59

(c) SSIM = 0.65 (d) SSIM = 0.68

Figure 2.9: Leaf reconstruction examples: (a) Damaged leaf, (b) the best matching
model, (c) reconstruction with image blending (WANG et al., 2017), (d)
reconstruction with image inpainting (BORNEMANN; MÄRZ, 2007).

We can assert that our proposal can effectively estimate missing leaf regions
based on the results. Our strategy to build the leaf model proved adequate to represent
a set of leaves from a crop. Likewise, the preparation of leaf samples at six levels of
defoliation expanded the model to make it robust for the similarity assessment step. The
adopted procedures made the proposed method capable of dealing with digital image
problems such as scale, rotation, and noise. In this way, the database used in the evaluation
showed that our approach achieved significant results even in the diversity of leaf design,
crop species, and positioning and lighting of the image samples. However, we observed
that we could obtain better results if leaf samples were more homogeneous, avoiding
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Figure 2.10: Edge restoration and leaf reconstruction using image blending and
inpainting. (a) injured leaf by predatory herbivores, (b) retrieved image
model, (c) leaf border reconstruction, (d) blending, (e) inpainting.
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overestimating and underestimating damaged areas. On the other hand, actual situations
of foliar analysis consider some pattern, such as selecting samples in a determined plant
position or samples extracted from the same genetic group. This procedure can bring
greater homogeneity to the leaf analysis, increasing the assertiveness of the proposed
method. Finally, we point out that the segmentation strategy may not be appropriate
for leaf samples with a complex background. Therefore, this is a step that needs to be
improved in future work.

2.6 Conclusion

This chapter presented an automatic method for reconstructing an injured leaf at
a probable stage before defoliation. We focused on the problem of leaf edge restoration
by structuring a method capable of reconstructing damaged leaves to a format similar
to their original shape. The results indicate a satisfactory reconstruction in which the
damaged leaf edge can be effectively recovered. In addition, the injured leaf area can
be filled, allowing visual analysis of the regions affected by herbivory. In evaluating leaf
reconstruction, the method achieved results above 40% for most cultivar understudy types
and an SSIM value equal to 64% for corn leaves. In this sense, the proposed method
can contribute to monitoring crops to avoid losses due to excessive damage caused by
predatory insects, as well as maximize the usefulness of images by increasing the number
of individual leaf samples.



CHAPTER 3
Automatic Detection of Insect Predation
Through the Segmentation of Damaged Leaves

I am the vine, you are the branches.

John 15:5

Leveraged by the production of grains, oilseeds, and fresh deciduous fruits, food
production has reached new heights, exceeding the amount produced in previous years
and with an estimate of new records for the coming years. In this sense, technological
advances are essential to reduce costs and increase quality and productivity. This chapter
presents a novel method to detect insect predation on plant leaves that uses geometric leaf
properties and digital image processing techniques to construct image models. Unlike
other approaches, our method detects and highlights the regions of leaves attacked by
insects and segments the contours of insect bites. We evaluated our proposal considering
12 crucial crops for the world market, and it demonstrated to be effective, even in the
presence of noise, image scale, and rotation. Besides, it identifies insect predation areas
regardless of the plant species with precision above 90% in blueberry, corn, potato, and
soybean leaves. Thus, this chapter introduces a new approach to automatic leaf analysis
and contributes to reducing human effort in identifying the occurrence of pests. This
chapter was published in the Journal of Smart Agricultural Technology (VIEIRA et al.,
2022).

3.1 Introduction

The activities performed in agricultural fields respond to high value-added busi-
nesses, which are economically important in producing grains, oilseeds, ornamental and
medicinal plants, and green vegetables. World soybean production reached 336.59 million
metric tons (Mmt) in 2019/2020, moving 31.2 billion U.S. dollars, with only the United
States production of 96.67 Mmt (USDA, 2020e). Although lower than the production
of 2018/2019, Corn production reached 1,116.2 Mmt, with an average price of around
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$362 per ton, the highest since August 2015 (USDA, 2020c). Centrifugal sugar produc-
tion reached 166.17 Mmt, in which Brazil has been leading the world production in the
last five years with production above 29.92 Mmt (USDA, 2020d).

In the same way, fresh deciduous fruits and stone fruits play an important role
in global food production. In 2020, China was the largest producer of apples, grapes, and
pears, launching more than 62 million tons of these fruits in the domestic consumer market
(USDA, 2020a). Furthermore, that same year, the European Union and Chile exported the
most significant number of peaches and cherries, totaling 395 metric tons (USDA, 2020b).

The improvement of technologies for automation contributes significantly to
agricultural production, making it more effective and sustainable through intelligent
support for decision-making, operation, and farming management (PIVOTO et al., 2018).
Methods for detecting leaf damage and monitoring insects in farming are examples of
computer vision and machine learning techniques to address real problems that can
cause significant losses in the production process. Therefore, if an attack of insects is
detected in advance, the management of solutions can be more accurate, saving resources,
safeguarding cultivation, potentially increasing yield, and protecting crops.

Detecting insects allows the analyst to verify occurrences of losses above ex-
pectations and carry out mitigation and control actions. This verification is necessary to
distinguish between situations of normality in which the ecosystem is in balance and when
the population growth of certain species becomes a risk factor for agricultural develop-
ment. Because of this, some proposals focus on insect detection and classification through
computer learning systems where several samples of insects are collected to build classi-
fication models using machine learning algorithms (KASINATHAN et al., 2020; LU et

al., 2019; THENMOZHI; Srinivasulu Reddy, 2019).
Although detection systems make it possible to identify the presence of insects in

plantations, it is difficult to infer from them the line that crosses population normality and
the outbreak of a given species. Among the factors that limit these solutions, the mobility
of insects between plants stands out because as they move, there may be different records
for the exact specimen in various plants, and vision systems may not be able to record their
presence when they move fast or are camouflaged, hidden and in clusters. On the other
hand, damage caused by insects is limited to the location of the injured plants, which can
be used to direct foliar analyses and verify the crops’ local and global health, even in the
absence of the insect that induced the losses. From there, inferences about the ecological
balance can be made.

In this sense, we propose a novel approach to identifying insect predation marks
and point out the places where leaf damage occurs. Therefore, we do not detect insects; we
only detect the damage they cause. It is a way of treating the same problem innovatively to
identify the occurrence of insects in the plantation, even with their absence. Thus, it makes
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our method more versatile as it can detect damage of different proportions, including
damage to leaf border regions and pest incidence to varying stages of development.

Quantifying the number of damaged leaves is a potential use of the proposed
method that can answer questions related to insect population growth, the ability of plants
to develop in the face of predators, and whether there is a potential risk to crop yields.
In these cases, the previous analysis would justify interventions to reduce losses and re-
balance the ecosystem in the crops. Furthermore, the bite trace segments presented as an
output of the proposed method enable the analyst/specialist through visual inspection to
determine the category of insects, for example, differentiating leaf-chewing insects (e.g.,
caterpillars) from leaf-cutting insects (ants, leafcutter bees, grasshopper, and others).

Our method uses geometric leaf properties and digital image processing tech-
niques to construct image models. Initially, healthy leaves are used as input in the model
construction process. Then, with the constructed models, an injured leaf is processed, and
the image model that best fits it is selected and used to detect the damaged leaf areas and
segment the insect bites. The strategies used in this proposal demonstrated effectiveness
in the presence of noise and geometric distortions caused by image acquisition processes,
in detecting insect predation in different foliar structures and morphologies, and in seg-
menting insect bites in low or severe defoliation.

We evaluated our proposal considering 12 critical crops for the world market,
including soybean, sugarcane, corn, apple, grape, peach, and cherry. We explore different
levels of defoliation in a vast and diverse set of leaf images and investigate the behavior
of our method in computer vision challenges, such as image rotation, scale variation,
and noise. Due to the assertiveness of the proposed method, the results are promising to
assist experts, agronomists, ecophysiologists, and farmers in making better decisions in
cultivars, including insecticide evaluations and proper crop management.

The main contributions of the proposed method are:

• A novel method for recognition of insect attack on plant leaves.
• A systematic approach to highlighting insect-damaged leaf regions.
• A synthetic defoliation strategy using real insect attack cases.
• A methodology for evaluating line segmentation approaches (insect bite traces).

The remainder of the chapter is organized as follows. Section 3.2 summarizes
existing studies of insect predation in farming. Section 3.3 introduces our proposed
method in detail. Section 3.4 describes vital information about the experimental design,
such as the database used and evaluation metrics. Section 3.5 provides the experimental
results and analysis. Section 3.5.6 presents the results. Finally, the work done is concluded
in Section 3.6.
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3.2 Related Work

Several works use digital image processing and machine learning algorithms
to identify pests in different crops. Wang et al. (2012), for example, classified insects
using digital images in which a manual processing approach was performed to remove
the background and highlight only the insect region. Thus, feature extraction was applied
to the insect images previously segmented to obtain information about the insects’ body
radius, body shape parameter, color complexity, head size, and thorax. Then, the acquired
data was indexed to classify the insects using Support Vector Machine (SVM).

Similarly, Wen and Guyer (2012) presented an automatic method for identifying
insects in digital images using local and global features. The Scale-Invariant Feature
Transform (SIFT) was used to identify and record local features into a histogram. Also,
a color-based clustering segmentation method was applied to obtain global information,
such as the shape and contour of the insect. The K-means cluster separated the insect
area from the background and the insect shape, texture, and colors corresponding to 54
global features and 100 local features for each image. These local and global features
were used to categorize the images using five different classifiers (Minimum Least Square
Linear, Normal Densities Base Linear, K-Nearest Neighbor Classifier, Nearest Mean, and
Decision Tree).

Xie et al. (2015) also used the descriptors of color characteristics (color his-
togram), texture, shape (United Moment-Invariant), SIFT, and Histogram of Oriented
Gradients (HOG) to obtain image features. The SVM classifier labeled the images us-
ing Multiple Kernel Learning (MKL). In the same way, Yang et al. (2015) developed a
system to detect owlfly insects based on the contours of their wings. In this proposal, the
image background was manually removed using graphic editing software, and the im-
age was transformed into grayscale and binarized to separate the contours of the insect’s
wings. Furthermore, the C-Support Vector Classification algorithm was used to classify
the images.

Thenmozhi and Reddy (2017) presented a method to detect the presence of
insects in sugarcane crops. Initially, RGB images were converted to grayscale, and
the images were divided into smaller regions to determine the edges or boundaries
using Canny, Sobel, Gaussian HPF, and Prewitt Edge detection filters. Then, the feature
extraction strategy was performed using boundary form, surface, and textures of insects,
and the classification was performed to evaluate the similarity of the body of insects
concerning some geometric shapes such as triangles, circles, and rectangles.

In Deng et al. (2018), the detection of insect pests was based on the human visual
system in which the FastICA Efficient Projection Map was used to detect the region of
interest (ROI). Then, the processed images were normalized, and the Otsu method was
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applied to find the threshold that could better define the ROI. Next, Gabor Filters were
applied to detect edges, and the SIFT and Local Binary Pattern (LBP) were used to extract
gradient and texture orientation features, respectively. Finally, the images were classified
by SVM with a radial basis function.

Another technique widely used to classify objects is deep learning. In Cheng et

al. (2017), multiple layers of abstraction, called ResNet-10, were used to classify insects
in digital images. Shen et al. (2018) used the Faster R-Convolutional Neural Networks
(R-CNN) to segment insects in grain and categorize them. Likewise, Kasinathan et al.

(2020), based on Convolutional Neural Network (CNN), proposed a method to classify
and detect pests in the initial growth stage of corn, soybean, and wheat. Comparably,
Nanni et al. (2020) prepared an ensemble of CNNs consisting of AlexNet, GoogleNet,
ShuffleNet, MobileNetv2, and DenseNet201. These studies show that an advantage of
deep learning networks is that they do not require explicit background removal to train and
classify images. However, they do demand a significant number of samples to converge
accurately.

Based on the related work, we can note that computer-aided approaches that deal
with crop pest detection consider the identification and classification of insects for this
task. Nevertheless, we propose a different investigation strategy in this study. According
to Carvalho et al. (2014), the external-feeding fraction of insect damage has excellent
potential for improving the understanding of ancient and extant herbivore communities.
Thus, detecting sets of leaf damage types offers opportunities for assessing insect diversity
or detecting changes in insect composition over climatic. Unfortunately, none of the
abovementioned methods were developed to identify and isolate leaf damage, i.e., the
bite signature caused by mandibular insects or insect-induced damage.

In this sense, in our proposal, leaf damage occurrences are identified and visu-
ally highlighted according to the regions in which they occur. Besides, the leaf damage
lines formed from the herbivory are segmented to recognize bite patterns from their pecu-
liarities. Therefore, we identified the presence of pests, considering their harmful effects,
such as the exacerbated leaf damage that can inhibit the development of plants. From
our perspective, plantation monitoring applications, especially real-time inspections, may
benefit better from our present approach because it is easier to find samples of leaf damage
in farming than the insects that produced them. This study demonstrates that our method
is invariant to scale, rotation, and image noise changes. Also, a few leaf samples are re-
quired to construct an image model for detecting and segmenting insect bite marks, with
particular attention to damage in leaf border regions. We evaluated the proposed method
using a challenging image database that includes different cultivars and variations of leaf
samples (apple, blueberry, cherry, corn, grape, peach, pepper, potato, raspberry, soybean,
strawberry, and tomato).
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3.3 Method

The proposed method is divided into five parts. The images are segmented
in the first, and the image background is removed, preserving the leaf region. In the
second, feature detectors are designed and used in the third step to build an image base
with leaf models. In the fourth step, a similarity evaluator is formulated to select the
appropriate image template for a damaged leaf image. Finally, the foliar damage regions
are automatically detected and segmented in the last step. Fig. 3.1 provides an overview
of the proposed method, described in the following subsections.

Leaf Segmentation

Leaf Features

Leaf Models

Template Matching

Leaf Predation

Figure 3.1: Architecture components of the proposed method.

3.3.1 Leaf Segmentation

The segmentation process separates the leaf region (area of interest) from the
other regions of the image. In our study, each image IRGB in the database comprises two
classes that describe the leaf or background regions. We use a median filter to assist this
process with a kernel κ of size 5×5. After applying this filter, we obtain new versions of
the image channels, that are, R∗, G∗, and B∗.

Then, we exceed the green color, G′ = 2G∗−R∗−B∗, and the Otsu threshold
method (OTSU, 1979) is applied to obtain an optimum threshold value that separates
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the leaf pixels from the non-leaf pixels in G′ and based on this step the background
regions from IRGB are removed. In this fashion, the original image is preserved without
interference from the median filter applied to it and the approach of exceeding the green
channel.

3.3.2 Leaf Features

The feature extraction step is performed in two ways. In the first one, the leaf
geometry is used to find a line representing the length of a leaf. While the second, the
edge detector, is applied to find straight line-like structural descriptors.

In the initial step, the margin of the leaf is highlighted according to a binarization
process that removes interior pixels to leave only the outline of the shapes. Then, the
Mahalanobis distance is used to calculate the distances d2 ∈ D2 between the vectors vs

and vt ∈ V. The Mahalanobis distance is defined in Eq. 3-1,

d2 = (vs− vt)C−1(vs− vt)
′, (3-1)

where C is the covariance matrix. The vectors vs and vt represent the pairwise Cartesian
coordinates (x,y) of the margin of the leaf, for all vs and vt different from each other.

Then, the index of the longest distance d∗ among all vectors in the leaf border is
found using Eq. 3-2:

d∗ = argmax(D2) (3-2)

After that, the line connecting the two margin points (A = vd∗
s = (ax,ay) and

B = vd∗
t = (bx,by)) represents the longest path, i.e., the length of the leaf which we refer

to as the reference line.
In the second feature detection strategy, the Sobel edge detector is applied to

the image G, and the feature extraction process is performed to find straight line-like
structural descriptors using the Hough transform (DUDA; HART, 1972). Due to its ability
to isolate features of a particular shape, the Hough transform technique is commonly
used to detect regular curves such as lines, circles, and ellipses, image analysis, computer
vision, and digital image processing (GONZALEZ; WOODS, 2008).

3.3.3 Leaf Models

Those two points that define the length of the leaf points A and B, are used to
adjust the leaf so that it’s apex (leaf tip) or base points upwards. First, the ∆ between these
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two points is found using Eq. 3-3:

∆ =
ay−by

ax−bx
, (3-3)

Then, the inverse tangent function of ∆ is calculated, and the angle of rotation θ

of the leaf relative to the image plane is found (Eq. 3-4).

θ = arc tan
−90◦<θ<+90◦

(∆) (3-4)

Hence, the rotation angle θ is used to define a rotation matrix (Eq. 3-5) and to
apply a planar rotation to each point x̃ ∈ IRGB, which results in a rotated image I′RGB.

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3-5)

After the rotation transformation, the leaf area is detected and surrounded by a
rectangular bounding box. This delimited area is used to crop the image to contain only
the leaf parts, discarding the leafless regions. Finally, the cropped image is resized to the
same size as the original image, i.e., for size, m by n, producing the I′′RGB image. The
rotation angles of the lines detected by the Hough transform relative to the image plane
are also used to produce other transformed images.

3.3.4 Template Matching

Template matching measures the dissimilarity between damaged leaf area distri-
butions and the prepared image models. The earth mover’s distance1 (EMD) (RUBNER
et al., 2000) is used, and the dissimilarities between them quantify the proximity between
the damaged leaf and the image models. To perform this evaluation and in addition to the
EMD2, we propose a cost function that evaluates the correspondence between image pairs
using their dissimilarities and considering the non-overlapping areas between them.

The three terms of Eq. 3-6 represent the proposed cost function co.

co = ω1 +ω2 +ω3, (3-6)

where

ω1 = EMD(Ia,Ib), ω2 = ψ+ζ+φ, ω3 = ν+ τ

1It is also referred to as the Wasserstein distance and the Monge-Kantorovich problem.
2We use the code provided by Liu et al. (2018) to calculate the earth mover’s distance.
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and

F(Ia,Ib) =
1

nm

n

∑
i=1

m

∑
j=1

(pi j∧qi j)

FA(Ia,Ib) =
1

nm

n

∑
i=1

m

∑
j=1

(pi j∨qi j)∧¬(pi j∧qi j)

ψ = FA(Ia,Ib)

ζ = F(Ia,¬Ib)

φ = F(¬Ia,Ib)

ν = F(¬Ia,wr)

τ = F(Ia,¬wr)

let be F(.,.) a function that averages the intersection of pixels that have true values in a
binary image, for pixels p ∈ Ia and q ∈ Ib. FA(.,.) is a function that calculates the area that
is outside of the intersection between a damaged sample image and the input leaf; Ia and
Ib are the image recovered by the method in the model and the input image of the leaf
that the insect damages, respectively; ζ is the area that is in the input leaf but not in the
damaged sample image; φ is the area that is in the damaged leaf sample but not in the
input leaf; ν is the area that is in the leaf model but not in the input leaf; τ returns the area
that is in the input leaf but not in the leaf model.

Then, with the cost resulting from the comparison performed, the leaf model
with the minor error is the chosen one, Eq. 3-7.

e = argmin(co), (3-7)

where e is the minimum error resulting from the cost function between the damaged leaf
and all leaf models.

3.3.5 Leaf Predation

The margin of the damaged leaf B is detected to segment the insect predation
areas, resulting in the logical image B′. The damaged regions S are detected first based on
the logical conjunction operation between B′ and the retrieved image model A (Eq. 3-8).
Hence, opening and dilating morphological operations update S. The opening operation
is applied to remove spurious connected components with smaller pixels than β, and
the dilation operation is applied to connect nearby components according to a circular
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structural element of radius r. In the tests, β and r are set with 25 and 2, respectively.

S = A∧B′ (3-8)

After applying the morphological operations, the eccentricity value of each of the
remaining connected components is calculated to remove elements that have structures
similar to a straight line. It is performed to prevent the damaged leaf margins from being
interpreted as predation areas when the damaged leaf is smaller than the retrieved image
model. The eccentricity value is calculated according to Eq. 3-9

E =

√
1−
(

b
a

)2

, (3-9)

where b is the length of the minor axis, and a is the length of the major axis of an ellipse
that contours a connected component in S.

The eccentricity value E is between 0 and 1. When it is closer to 1, it is closer to
being a line segment. After calculating the eccentricity, an evaluation is applied in which
connected components that are more minor than a threshold t are discarded. In the tests,
we define t as 0.98, a strict value so only segments similar to lines are removed. Fig. 3.2
illustrates detecting predation regions on a damaged leaf.

3.4 Materials

3.4.1 Image Database

In the experiments, we used a public database3 prepared by Hughes and Salathé
(2015). In obtaining the samples, technicians sought various lighting conditions, posi-
tioning, and foliar shapes to prepare a diverse data set of leaf images obtained in multiple
lighting conditions, including healthy and disease-affected leaves. From this database, we
selected healthy leaf samples from 12 plants: apple, blueberry, cherry, corn, grape, peach,
bell pepper, potato, raspberry, soybean, strawberry, and tomato. The size of the images is
256×256 pixels.

3.4.2 General Setup

Each crop species in the database is divided into (1) data modeling and (2) test
data. The first is used to construct the leaf models, and the second is used to validate the

3https://github.com/digitalepidemiologylab/plantvillage_deeplearning_paper_dataset
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(a) (b)

(c) (d)

Figure 3.2: Detection of insect predation marks: (a) damaged leaf B, (b) predation
areas S after Eq. 3-8, (c) S after opening and dilating operations, (d) S
after eccentricity evaluation and erosion operation.

proposal. Tests are done individually for each leaf species, i.e., we do not mix samples
from different classes. From each leaf species in the database, we select 20 leaf images to
feed the data modeling group and 100 different images for the test data group. Thus, we
worked with 140 images for the data modeling groups and 1.200 for the test data groups.
The validation is performed using the K-fold cross-validation strategy, which splits the
available data into K partitions, one for the data modeling group and the remaining (K−1)
for the test data group. In the experiments, K is set to 5, so each test is run five times.

The experiments are divided into two parts. In the first one, we evaluate the
behavior of our proposal in dealing with typical computer vision challenges such as scale-
variation transformations, image rotation, and noise. Furthermore, we also investigated
the impact of variations in defoliation levels when using the proposed method. In this part,
which includes Sections 3.5.1, 3.5.2, 3.5.3, and 3.5.4, we consider only soybean leaves to
prepare the tests. In the second part of the experiment, another examination is performed
to assess the capability of the proposed method in the detection and segmentation of
insect predation on leaves of different crop species (apple, blueberry, cherry, corn, grape,
peach, pepper, potato, raspberry, soybean, strawberry, tomato). Except for the test applied
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in Section 3.5.4, the defoliation level for the composition of the test group images is
randomly selected from 5% to 35%.

The accuracy of the proposed method is assessed with reference images made
from healthy leaves that were automatically segmented using the image segmentation
process (Section 2.3.1) and deformed to simulate leaf damage according to the synthetic
defoliation strategy (Section 3.4.3). Thus, quantitative and visual inspections are obtained
from different statistical measurements to compare our proposal outputs with the ground
truth images.

The experiments were done in a notebook with Core i7-9750H (2.6 Gigahertz
(GHz); 12 Megabytes (MB) Cache) and 16 Gigabytes (GB) Random Access Memory
(RAM). As for the execution time, the entire construction process of the leaf models
required 5.33 seconds for the 20 images in the data modeling group, which produced
an average 48 leaf models, and 5.14 seconds to complete the process of evaluating and
selecting a suitable model for each one of the features that were detected in the leaf test
image. Thus, on average, each leaf in the test group has three features. The code was
written using MATLAB (see Section A.1.4).

3.4.3 Synthetic Defoliation

We have prepared a synthetic defoliation strategy in which healthy leaves are
subjected to a process capable of simulating insect predation. It consists of extracting bite
signatures in real herbivory cases and preparing templates of foliar damage to promote
different levels of leaf defoliation. The bite signature of two types of insects, Spodoptera

frugiperda (J.E. SMITH) (LEPIDOPTERA: NOCTUIDAE) and Chrysodeixis includens

(Walker) (Lepidoptera, Noctuidae, Plusiinae) was extracted from injured leaves, resulting
in some bite samples for each of the two insects. Although the defoliation examples
are based on leaf chewers insects, multiple types of damage could be equally addressed
according to the type of herbivore insects, such as bud feeders, hole feeders, skeletonizers,
surface abrasion feeders, and sap-sucking. Thus, it can be addressed in future studies.

We developed a computer program that receives a healthy leaf as input and
returns a damaged leaf and its level of defoliation. It uses four random variables to
determine (1) the number of insect bites to use, (2) select one or more samples from
the bite models, (3) apply a rotation transformation to the selected bite samples, (4) and
resize the bite samples to a random size. Besides that, the defoliation level is an input
parameter in which the desired defoliation level can be set from 1 to 99%.
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Figure 3.3: Components of the bite segment assessment methodology.

3.4.4 Line Segment Assessment Methodology

The evaluation of line segments (insect bite traces) considers a sequence of steps,
including image transformation operations and object matching. Initially, a morphological
operation is applied on both detected bite segments and ground truth image segments to
remove spurious pixels, followed by a dilation operation to connect small fragments of
lines. Then, the pixels at the object’s boundaries are removed, and the remaining pixels
constitute the image’s skeleton.

The objects are surrounded by bounding boxes whose function is to mark the
area occupied by these objects. Each bounding box has an identifier used to track peer-
to-peer matching operations. When an intersection between a bite segment and a segment
in ground truth is perceived, the intersection quality is assessed using the IoA metric
(presented in Section 3.4.5). If the result is positive, it is said that a True Positive (TP)
was achieved. On the other hand, if there is no match for some bite segment, it is labeled
as a False Positive (FP), and if there is no match for some object in the ground truth, then
it is considered a False Negative (FN). Fig. 3.3 illustrates all the steps used to evaluate
bite segments.

Fig. 3.4 illustrates how this evaluation is performed. In this example, two
predation regions of an injured leaf were detected. Following the ground truth, only one
was correctly identified. Thus, it can be observed that for one of the segmentation results,
there is a correspondence (True Positive), while for another, there is no matching (False
Positive).
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(a) (b) (c) (d)

Figure 3.4: Segmentation of insect predation marks and evaluation: (a) damaged
leaf, (b) ground truth, (c) predation marks after bite detection, (d) ground
truth area (yellow), predation areas (green) and the intersection between
them (red).

3.4.5 Evaluation metrics

To assess the output accuracy of our proposal, a quality factor known as Qseg

(SADEGHI-TEHRAN et al., 2017) is used according to Eq. 3-10:

Qseg =
∑

m
i=1 ∑

n
j=1 si, j∧ ri, j

∑
m
i=1 ∑

n
j=1 si, j∨ ri, j

, (3-10)

where si, j ∈ S is the retrieved leaf (si, j = 1) or background pixels (si, j = 0) and ri, j ∈ R is
the reference image, also in a binary format. The accuracy is based on logical operations,
logical and (∧) and logical or (∨), that compare the overlap between the reference image
R and the retrieved image S. Qseg varies in a range of values between 0.00 and 1.00 in
which a value 1.00 represents a perfect consistency outcome between R and S images. R
and S are binary images with size m by n.

Furthermore, we compare the results between data distributions using the
Kruskal-Wallis test (KRUSKAL; WALLIS, 1952), which is a non-parametric test that as-
sesses whether the distribution functions are similar (null hypothesis H0) or if there is any
statistical difference between the functions under evaluation (alternative hypothesis H1).
A p value is returned, indicating which hypothesis will be rejected according to a limit
of the significance level α, in our case α = 0.05. Also, a confidence interval is calculated
according to Eq. 3-11.

P
(

x̄−Zs.
σ√
n
≤ µ≤ x̄+Zs.

σ√
n

)
= γ, (3-11)

where P refers to a probability function, x̄, σ, and n are the mean value, the standard
deviation, and the population sample size, respectively. Zs is obtained from a t-student

table regarding the confidence level γ, and µ is the unknown parameter of the average
population expected to be in the confidence interval.

We also prepared a modified version of the Intersection over Union (IoU)
similarity index called Intersection over Area (IoA). As conventional, in our version, the
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predicted and the ground truth segments are surrounded by bounding boxes, and these
areas are used to measure their overlap. However, we do not use the union of these areas.
In this sense, the IoA scores either complete segments or only some parts of them so that
the difference between the measured values of these two cases does not have significant
differences. This property is essential for our study because the contours that represent the
insect predation segments can be discontinuous and interpreted as individual segments
when, in fact, they are parts of the same bite segment. Therefore, predation segments
labeled by the segmentation process are evaluated individually based on the area they
occupy.

The IoA similarity index is given by the intersection between the predicted
predation segment and ground truth over the maximum area of predicted segments or
the ground truth, Eq. 3-12.

IoA =
area(Yi∧T j)

max(area(Yi),area(T j))
(3-12)

where

area(x) =
m

∑
i=1

n

∑
j=1

xi, j

Yi contains one of the i predicted predation segment area compared with all T areas of
predation from j to the number of bites in the ground truth. Therefore, if the IoA of a bite
segment is higher than 0.5, we define it as True Positive (TP). Otherwise, it is defined
as False Positive (FP). Furthermore, those segments that do not match any predicted
predation marks are defined as False Negative (FN).

From IoA, we used two statistical measures to evaluate the detection and seg-
mentation of insect bite signatures. In Eq. 3-13 and Eq. 3-14, we describe the Precision
and Recall measurements.

Precision =
TP

TP+FP
(3-13)

Recall =
TP

TP+FN
(3-14)

where TP stands for the number of segments correctly labeled as bite segments, FP
represents the number of segments incorrectly labeled as a bite, and FN represents the
number of bite segments not labeled as a bite. TP, FP, and FN are specified according to
IoA scores.
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3.5 Results and Discussion

3.5.1 Image scale variation

In this test, we simulate the variation in the positioning of cameras
concerning their proximity and distance with the target objects. A factor λ ∈
{0.5,0.6,0.7,0.8,0.9,1.0} is used to resize the test data image group where a smaller
value for λ decreases the size of the images, and a value of 1.0 means that the images are
in their original size. Figures 3.5(a) to 3.5(d) presents visual examples of this process.

(a) λ = 1.0 (b) λ = 0.8 (c) λ = 0.7 (d) λ = 0.5

(e) θ = 0 (f) θ = 90 (g) θ = 180 (h) θ = 270

(i) η = 0.08 (j) η = 0.16 (k) η = 0.24 (l) η = 0.40

Figure 3.5: Scale, rotation, and noise variation. These samples are presented after
the segmentation process and with 06.04% defoliation.

Although the scale factor applied to the images significantly affects their reso-
lution, the proposed method reaches similar results, even with this factor variation. For
example, Fig. 3.6 shows that the median of the tests has similar results, which is con-
firmed by a Kruskal-Wallis p = 0.95. Therefore, even with scale variation, the proposal
obtains satisfactory responses.

3.5.2 Image rotation transformation

Continuing with the camera positioning simulation, we investigate the effect of
rotational transformations either by the camera or by positioning the target objects. A
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Figure 3.6: Scale variation assessment.

factor θ∈{0,90,180,270} is applied to rotate the images of the test data group at different
angles where θ = 0 represents the images in their original positions. Figures 3.5(e)
to 3.5(h) presents visual examples of this process.

In Fig. 3.7, the median values of the test cases are consistent. In this sense, a
Kruskal-Wallis p = 0.33 value indicates that the rotation transformation did not affect the
distributions to the point of refuting the null hypothesis, which means that even with the
application of this type of transformation, the results are stable.
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Figure 3.7: Rotation transformation assessment.
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3.5.3 Image noise variation

We also investigated the behavior of the proposed method in dealing with noisy
images. We gradually add random salt & pepper noise with an density factor η, as in Eq.
3-15,

η ∈ {0,0.08,0.16,0.24,0.32,0.40}, (3-15)

to the images of the test data group in which for η = 0 no noise is applied, while for
η = 0.40 noisy points are inserted in 40% of the input images.

When the addition of noise is applied, there is no significant change in the results
concerning the images without noise, Fig. 3.8, confirmed by Kruskal-Wallis p = 0.97.
However, we point out that adding noise has a minor influence on the segmentation
process, causing leaf area loss or labeling non-leaf parts as the target object, as shown
in Figures 3.5(i) to 3.5(l).

0 0.08 0.16 0.24 0.32 0.4

0.8

0.85

0.9

0.95

1

Q
s
e

g

Figure 3.8: Noise variation assessment.

3.5.4 Defoliation level range

In this test, we analyze the proposed method when applying controlled changes
in the percentage of leaf damage. Starting at 5%, we increase the defoliation level by
5% until the maximum is 99% damage. Fig. 3.9 shows the mean, median, and standard
deviation of the test cases. The results are best presented when the leaf damage varies from
1% to 35%. After that, the error increases, and the Qseg values decrease progressively.
However, these results show that our method provides suitable outputs even with a very
high defoliation level, and the average Qseg is always higher than 0.79.
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Figure 3.9: Defoliation level assessment.

3.5.5 Detection and segmentation of insect predation

This experiment evaluates the proposed method for detecting and segmentation
insect predation marks based on precision and recall measures. Fig. 3.10 shows the aver-
age statistical results for each crop species concerning the predation areas segmentation
and, as it can be noted, among the five executions (K-fold cross-validation), there are only
minor variations between the results with standard deviation values below 0.03.

Table 3.1 shows the general results obtained from the totality of the experimen-
tation rounds with the average (x̄), standard deviation (s), and minimum and maximum
values from the five executions. Apple, blueberry, and cherry achieved over 86% preci-
sion and more than 80% recall. The database samples’ characteristics justify corn leaves’
high assertiveness (99% precision). As these leaves occupy the entire image area, the tem-
plate matching step can more accurately find suitable models for damaged leaves. It was
expected behavior for the set of images of this class. Likewise, it was expected that the re-
sults for the peach leaf were not assertive due to the different shapes of the leaves and the
shading effect on them. The results were inaccurate on the recall measure but surprising,
with an average precision of 77%.

Unlike the other leaf classes, grape, strawberry, and tomato obtained greater
assertiveness in the recall measure than in precision, increasing at least five percentage
points. As a result, grapes and strawberries reached the second and third-best recall values,
only behind corn leaves. Besides, like most leaf classes, bell pepper, potato, and raspberry
achieved recall values above 80% and precision values close to or equal to 90%. However,
the main highlight is the soybean leaf, which reached 98% precision in some experimental
tests.

In addition, Fig. 3.11 shows histograms of the number of images by the total
number of False Positive (FP) and False Negative (FN) segments across all runs. It is
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Figure 3.10: Insect bite segmentation: average precision and recall. The x-axis rep-
resents the K-fold iteration number, while the y-axis represents the pre-
cision or recall outcomes.

observed that most of the test images reported zero FP and FN entries; that is, 452 of the
500 test images (considering the five validation rounds) did not present FP segments, and
for 318 images, there were no FN entries. Thus, there are more segments labeled as FN
than FP. However, the maximum number of false-positive entries in a leaf sample was 2,
while 5 false-negative entries were observed in just one image. Although these histograms
were prepared with the results of the soybean leaf, this behavior pattern is quite similar
for the other types of leaf.

The interpretation of False Positive (FP) and False Negative (FN) consists of the
attention given to the number of segments wrongly identified or ignored. False positives
occur when bite segments are detected but do not match the actual bite segments. On the
other hand, when actual bite segments are not detected, the method fails to identify the
segments correctly, and the number of false negatives increases. Therefore, it is essential
to balance these measures to correctly recognize bite segments, preventing them from
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Table 3.1: Precision and recall with the final scores between K-folds.

Precision Recall

x̄ / s Min Max x̄ / s Min Max

Apple 0.86 / 0.030 0.82 0.89 0.81 / 0.02 0.78 0.84

Blueberry 0.90 / 0.010 0.89 0.92 0.81 / 0.01 0.79 0.83

Cherry 0.89 / 0.010 0.87 0.91 0.80 / 0.01 0.78 0.81

Corn 0.99 / 0.002 0.99 0.99 0.93 / 0.01 0.91 0.94

Grape 0.77 / 0.010 0.74 0.78 0.87 / 0.02 0.84 0.91

Peach 0.79 / 0.020 0.76 0.81 0.53 / 0.01 0.51 0.55

Bell Pepper 0.89 / 0.010 0.87 0.90 0.81 / 0.02 0.78 0.83

Potato 0.90 / 0.009 0.89 0.91 0.82 / 0.01 0.81 0.84

Raspberry 0.87 / 0.010 0.85 0.89 0.82 / 0.01 0.81 0.84

Soybean 0.96 / 0.010 0.95 0.98 0.85 / 0.01 0.84 0.88

Strawberry 0.79 / 0.030 0.76 0.84 0.86 / 0.02 0.83 0.89

Tomato 0.72 / 0.020 0.70 0.74 0.77 / 0.01 0.74 0.78

being lost or misidentified. As can be seen, the proposed method has good assertiveness
indices to address this issue, presenting accurate results in detecting and segmenting insect
bites.

3.5.6 General Analysis

Computer vision-based systems have proven essential in several areas, including
agricultural in which management processes are improved, inspection activities are opti-
mized, and decisions are made considering statistical data collected by sensors. Foliar loss
caused by insect predation is an example of computer vision solutions being applied to
support proactive and reactive strategies in agricultural management. On the other hand,
some challenges related to the computer vision area reduce the assertiveness of automated
systems. In this sense, we proposed a new method for detecting leaf damage caused by
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(a) (b)

Figure 3.11: Histogram of False Positive (FP) and False Negative (FN) obtained
by the proposed method on soybean leaves. The x-axis represents the
number of errors, while the y-axis represents the number of images in
each range.

insects. Also, we provided several tests using a complex database whose content includes
entries of different plant species, leaf samples under different lighting conditions, leaves
positioned at diverse angles, and leaf format with wide variation.

To design the experiments, we developed a defoliation method that applies
synthetic damage to the edges of the leaves. We controlled the defoliation percentage
and configured it so that the damage was applied randomly in the range of 5% to 35%
in each leaf of the test group. The proposed method was demonstrated to be effective
in the presence of noise and image transformations such as scale and rotation. Thus, the
positioning of the camera, or the leaf, during the image acquisition process does not need
to follow a strict control scheme (Sections 3.5.1, 3.5.2 and 3.5.3). Besides, our method
showed more accurate results for leaves with up to 35% damage, which is consistent with
actual assessments, as damage above that percentage would, in many cases, imply an
irreparable loss (Section 3.5.4).

Furthermore, we have shown that the proposed method accurately identifies
insect predation areas regardless of the plant species affected (Section 3.5.5). Statistical
measures were consulted, and precision above 90% was achieved in the blueberry, corn,
potato, and soybean leaves, and, except for tomato and peach, all other leaf classes, such as
apple, cherry, grape, bell pepper, raspberry, and strawberry, achieved a recall higher than
80%. In this assessment, we modified the traditional metric IoU to allow a fair evaluation.
We did that because the bite segments could contain discontinuities, and when compared
to the ground truth, the covered area (i.e., the area that consists of the union between them)
could be significantly larger than the intersection area and vice versa. Furthermore, there
is no guarantee that the bite segments will align with the ground truth images, making it
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difficult to perform a direct overlay comparison. These facts greatly influenced the results,
increasing the false-positive or false-negative rate, even when we visually observed a
significant intersection between the parts evaluated. Fig. 3.12(a) shows an example of the
overlay of insect bite segments on their corresponding image model. It is noticed that the
representation of the segments under the image is almost perfect, but when compared to
the ground truth, there is a disarrangement between the bite segments (Fig. 3.12(b)). The
assessment methodology presented in Section 3.4.4 addresses issues of this type.

(a) (b)

Figure 3.12: Bite segments and ground truth: (a) Bite segments superimposed on the
image model, (b) Misalignment between bite segments (magenta) and
ground truth (green).

Table 3.2 compares the proposed method with some related works. The first five
studies addressed classification algorithms for different insect species. In three of these
studies, the regions occupied by them were highlighted, making it possible to verify the
insects’ location in the scenarios investigated by the authors. However, none of them
pointed to regions of insect damage. On the other hand, in the works of Machado et al.

(2016), Silva et al. (2019), and Silva et al. (2021), methods were proposed to estimate leaf
loss, and even without the detection and classification of insects, it is possible to infer their
presence when considering the percentage of loss. Our proposal offers a balance between
these works where the places where insects occur can be verified as well as the regions
of damage they cause. In addition, the other works use machine learning to design their
methods, except for our work and another one published by us ((VIEIRA et al., 2021)).
Also, most research uses public databases.

Regarding method limitations, we point out that the data modeling group can
negatively influence the assertiveness of the proposed method if the models are signifi-
cantly different from the defoliated images. For example, insect predation marks may be
lost if the leaves used to build the models are smaller than those under test. On the other
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Table 3.2: Characteristis of our proposal and related work.

Research Work Insect
Classifi-
cation

Location
of Insect
Occurrence

Insect
Damage
Detection

Method Dataset

(WANG et al., 2012) Yes No No ML PD

(DENG et al., 2018) Yes Yes No ML LD,
PD

(SHEN et al., 2018) Yes Yes No ML LD

(KASINATHAN et al., 2020) Yes Yes No ML PD

(NANNI et al., 2020) Yes No No ML PD

(MACHADO et al., 2016) No No Yes ML LD

(SILVA et al., 2019) No No Yes ML LD,
PD

(SILVA et al., 2021) No No Yes ML PD

(VIEIRA et al., 2021) No No Yes PR PD

Ours No Yes Yes PR PD

LD: Local Dataset, PD: Public Dataset, ML: Machine Learning, PR Pattern Recognition.

hand, if the model’s size is larger than the leaves under analysis, there is still a chance
that insect predation segments can be preserved. Such limitations can be overcome if the
image database has more homogeneous characteristics in the leaf samples. Furthermore,
stems, branches, and more than one leaf per photo could interfere with the interpretation
and decrease assertiveness, as can occur in images recorded directly from live plants. De-
spite the limitations presented, the results are promising, as shown in Fig. 3.13, where a
sample of six crop species is presented with visible results of bite segmentation achieved
after applying the proposed method.

3.6 Conclusions

This chapter presented an automatic method for detecting injured leaf areas
caused by insect predation. We validate the proposal’s performance using a complex
database whose content encompasses several types of cultivation and leaf samples with
different morphological structures. We show that the method effectively highlights the
damaged regions and segments the bite contours of predatory insects. A precision of over
90% was achieved for blueberry, corn, potato, and soybean crops. Also, a recall of more
than 86% for corn, grape, and strawberry. We conclude that this work opens up new
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Figure 3.13: Detection of insect predation regions and segmentation of bite marks on
injured leaves. The first rows show the original images, the second rows
present the images after segmentation and defoliation, the third rows
show the leaves after image adjustment, and the fourth rows present the
final result of the detection and segmentation of the bite segments.

possibilities for leaf analysis, reduces human effort in visualizing the occurrence of pests,
and encourages the classification of insects based on bite patterns.



CHAPTER 4
Insect Predation Estimate Using Binary Leaf
Models and Image-Matching Shapes

Take heart, it is I, have no fear.

Mark 6:50

Estimating foliar damage is essential in agricultural processes to provide proper
crop management, such as monitoring the defoliation level to take preventive actions.
Furthermore, it is helpful to avoid the reduction of plant energy production, nutrition
decrement, and consequently, the reduction of the final crop production and economic
losses. In this sense, numerous proposals support the defoliation estimate task, ranging
from traditional methodologies to computational solutions. However, subjectivity char-
acteristics, reproducibility limitations, and imprecise results persist. These circumstances
justify the search for new solutions, especially in defoliation assessments. The main goal
of this chapter is to present an automatic method to estimate the percentage of damaged
leaf areas consumed by insects. As a novelty, our method provides high precision in calcu-
lating defoliation severity caused by insect predation on the leaves of various plant species
that works effectively to estimate leaf loss in leaves with border damage. We describe our
method and evaluate its performance concerning 12 different plant species. Our exper-
imental results demonstrate high accuracy in the determination of leaf area loss with a
correlation coefficient superior to 0.84 for apple, blueberry, cherry, corn, grape, bell pep-
per, potato, raspberry, soybean, and strawberry leaves, and Mean Absolute Error (MAE)
less than 4% in defoliation levels up to 54% in soybean, strawberry, potato, and corn
leaves. In addition, the method maintains a mean error of less than 50%, even for severe
defoliation levels up to 99%. This chapter was published in the Journal of Agronomy
(VIEIRA et al., 2022).
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4.1 Introduction

Leaf damage affects the correct quantification of the foliar area, and due to vari-
ous causes, this is a non-trivial problem. For example, wind can whip the foliage, causing
tears in the leaves, and hailstorms can damage them by creating holes or even causing
total defoliation. Besides, leaf skeletonization and insect predation also promote the ap-
pearance of even more harmful external damage. The reasons for leaf skeletonization may
result from insects or diseases and occasionally chemical damage, leading to a visual pat-
tern of plant deformities. In contrast, the types of damage induced by maxillary insects are
more diverse due to the different developmental stages of insects, such as larval, nymph,
and adult stages (CARVALHO et al., 2014).

Estimating leaf loss is a crucial tool for planning sustainable agricultural prac-
tices. As the leaves are inputs for monitoring, evaluation, and decision-making, when the
leaves are damaged, the deformities can be used to guide the proper management of a
crop. In this sense, pest control based on leaf analysis is mandatory in crop management
to increase productivity. Predatory insects have caused significant economic impacts in
recent decades, and an average annual loss of US$ 11.40 billion in agricultural produc-
tion is estimated. From 1960 to 2020, the economic loss has progressively increased,
reaching the mark of US$ 165.01 billion in 2020 (RENAULT et al., 2022). The main con-
sequence is related to the functional reduction of the total leaf surface, namely defoliation
(SILVA et al., 2019), which reduces the energy capacity of the plant, light interception,
plant growth rate, and dry mass accumulation (FERNANDES et al., 2022). Consequently,
leaf injury caused by insect herbivory negatively affects crop grain yield (MACHADO et

al., 2016). Therefore, estimating leaf loss is a primary practice for conducting inspection
methodologies and performing control services in farming.

A wide range of proposals, from traditional methodologies to computer-based
solutions, address this issue, aiming to reduce subjectivity, ensure reproducibility, and
increase accuracy. Some defoliation estimate methods rely on human expertise for visual
evaluation and manual quantification (KVET; MARSHALL, 1971; KOGAN et al., 1977),
predictive models of linear leaf dimensions (SANTOS et al., 2016; CARVALHO et

al., 2017), integrative leaf area methods (LI-COR, 2019; ADC, 2019), digital image
processing for mathematical model generation (CARRASCO-BENAVIDES et al., 2016;
LIANG et al., 2018), and deep learning algorithms (SILVA et al., 2019; SILVA et al.,
2021). Nevertheless, many techniques and methods are applied to a specific type of plant
and do not generalize across different species and issues (SILVA et al., 2021).

In this context, manual, semi-automated, and fully automated methodologies ad-
dress leaf area monitoring. Although their contributions are relevant to agricultural pro-
cesses, they must overcome some limitations. Visual assessment may increase the error
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due to its subjective characteristics. Manual quantification requires extensive work, ex-
pertise, and extended time for analysis and evaluation. Automatic meter devices are ex-
pensive, need technical support, and demand maintenance. The results of computer-based
solutions that require user interaction depend heavily on prior training and proper appli-
cation handling. Additionally, automated computer-aided approaches require many leaf
samples to generalize the construction of statistical models or the intensive application of
feature engineering in formulating mathematical models.

In addition, solutions for use in agriculture must consider devices with limited
computing power, such as embedded systems, Internet of Thing (IoT) ecosystems, and
intelligent agricultural machinery. As application processing requires efficient solutions,
it is crucial to consider lightweight processes and energy efficiency so as not to overload
systems. In this sense, we investigated image processing techniques that guarantee high
performance while being simple to understand and implement and using few computa-
tional resources.

To contribute to this area, we present an automatic method to measure the
percentage of insect predation on leaves. As a novelty, our method provides high precision
for various targeted species such as tomato, strawberry, soybean, raspberry, potato, bell
pepper, peach, grape, corn, cherry, blueberry, and apple. Furthermore, it effectively
estimates leaf loss in leaves with border damage, converges quickly, and does not require
human interaction. This chapter presents the processing steps of the defoliation estimate
method, which is based on leaf properties, image processing techniques, and statistical
measurements. We emphasize that our method uses comprehensive steps that are easy to
implement and suitable for environments with limited computing power.

The remainder of the chapter is organized as follows. The work related to leaf
defoliation methods is presented in Section 4.2. In Section 4.3, we present details of our
method. Section 4.4 provides information about the test settings, image data set, and
experimental design. Section 4.5 presents experimental tests and discusses the results.
Then, in Section 4.6, we conclude the chapter and present some future work.

4.2 Related Work

Maloof et al. (2013) implemented a software component called LeafJ to be added
to ImageJ, a popular computer program used to classify leaf shapes and compute leaf
silhouettes. The LeafJ plugin is a semi-automatic tool for studies on leaf morphology that
was designed to increase the features of ImageJ by providing petiole length measurement
and leaf blade parameters. Although it supports leaf area measurements, it was not
prepared to estimate biomass loss in damaged leaves. Therefore, its use is recommended
only for healthy leaves.
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Easlon and Bloom (2014) estimated leaf surface through different color thresh-
olds and morphological operations to connect image components. Their proposal used a
red calibration landmark with a known area as a visual reference point to calibrate leaf
area estimation, removing the need to estimate camera distance and focal length. The au-
thors used a leaf area meter to be compared with their method. Additionally, they used
the ImageJ software in the comparative analysis. An adequate precision was shown in
both leaf segmentation and leaf area estimation. However, their application is sensitive to
illumination changes and perspective distortion. Additionally, it requires user interaction
and intervention for the best results, and it does not measure insect predation on leaves.

Kaur et al. (2014) proposed an elementary computer program for calculating the
plant leaf area in which a digital scanner and a threshold segmentation method are settled
to separate the leaves from the image background. Likewise, Jadon et al. (2016) proposed
a simple procedure that applies digital image processing to estimate foliar area in which
a digital camera and a white background paper suppress the use of a scanner device in
the image acquisition step. However, as these methods do not deal with damaged leaves,
none can adequately address the problem of leaf herbivory along the borders.

To address the problem of measuring leaf area with deformation caused by in-
sects, Machado et al. (2016) developed a computer application that uses image processing
techniques to estimate herbivory. They compared their computer application with manual
quantification of injured leaves and a leaf area electronic integrator (considered a stan-
dard method of leaf area analysis). The results showed that the defoliation estimate made
by the computer program developed by the authors was close to the values measured by
the other methods. However, specialized intervention is still required to draw manually
the edges of the leaves that have been compromised; therefore, depending on the user’s
expertise, assertiveness may be better or worse achieved.

Liang et al. (2018) proposed some instructions to calculate soybean leaf area,
border, and defoliation estimate. Their proposal requires the selection of image samples
to build a representative canopy statistical model, which is used to distinguish leaves from
non-leaves and backgrounds. Although they have shown adequate results, the proposed
methodology may be affected by the image acquisition stage, in which unrepresentative
samples may reduce the potential of their method.

In Silva et al. (2019), the authors compared deep learning models to estimate
defoliation levels and elaborated an automatic method to compute damage in injured
leaves. In addition, the authors have proposed strategies to generate images with artificial
defoliation to deal with the number of data examples to feed the neural networks.
Although their proposal creates new possibilities for calculating the leaf area in which
deep neural networks can be used for defoliation analysis, it does require a significant
amount of data samples to improve the overall learning procedure (in their experiments,
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three data sets were prepared, each one with 10.000 labeled data). Likewise, Silva et al.

(2021) investigated leaf damage estimation using deep neural networks and prepared an
artificial random damage generation method to create a synthetic database. However, as
in Silva et al. (2019), their method requires an image data set with many image samples
(the authors used more than 22.000 samples during the training step.) In this sense,
the processing of large databases can be restrictive for devices with limited computing
power, as in smart farming ecosystems, or demand equipment with specific hardware
configurations to reduce energy consumption and provide timely responses.

In the same way, Zhang et al. (2022b) used images taken from unmanned aerial
vehicles to determine soybean defoliation in crops. This work presented a computer
learning model to estimate crop defoliation. Additionally, the authors prepared computer
models to characterize defoliated crops so that wrong characterizations of healthy crops
could be avoided. Although promising, the author’s method does not include defoliation
estimation for isolated leaf samples. Manso et al. (2019) presented a method to detect
damage in coffee leaves that uses image segmentation and an artificial neural network
to identify and classify leaf damage. However, their method only works for leaves
with visible leaf damage, i.e., for damage that can be determined by the difference in
color between the healthy and diseased areas. Thus, this method does not include the
estimate of defoliation in which the leaf area was consumed, for example, by chewing or
cutting insects. Liang et al. (2018) presented a method to determine the soybean canopy
defoliation using RGB images to provide informative data in pest management. Although
these researchers show promising results for soybean leaves, they do not look at their
solutions in a broader context to determine whether their solutions generalize to different
plant forms and species (SILVA et al., 2021).

With the advancement of machine learning algorithms, deep learning models
have been widely used to support agricultural management (ALVES et al., 2020; LI et

al., 2020; LIU; WANG, 2020). However, training stages on supervised models demand
large data sets with data annotation, which can be challenging to prepare (GOMES;
BORGES, 2022; TIAN et al., 2014; NIU et al., 2020). Moreover, they are not efficient
in predicting unexpected scenarios in data sets that have not been used for training,
and the learning steps of these networks are time-consuming (CHU; LIU, 2020; WEI;
LIU, 2020). In this regard, computer vision has addressed pattern recognition in digital
images so that the models can be less dependent on the image data sets (VIEIRA et

al., 2022; VIEIRA et al., 2021a). Furthermore, lightweight models have been designed
to consider the characteristics of agricultural environments, such as reduced computing
resources, limited processing power, and embedded device systems (INTARAVANNE;
SUMRIDDETCHKAJORN, 2015; PIVOTO et al., 2018; LIANG et al., 2018; ROCHA et

al., 2022; LIN et al., 2022).
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Our method differs from the related work in some aspects as it requires fewer
image samples relative to the deep learning methods (only 60 samples) and does not
demand herbivory samples to prepare the image models. Also, the method is stable against
image transformation, such as rotation and scale, and is a fully automated method that
uses data input to construct image models for template matching. Moreover, the method
measures the percentage of the foliar damage area by counting the pixels, uses a global
thresholding method to detach the leaves from the image background, and uses digital
image processing techniques in its design.

In this sense, our method can automatically estimate the leaf area consumed by
insects using digital images without requiring large volumes of data to build the templates.
Additionally, our method indicates the severity level of defoliation regardless of whether
the leaf damage occurs in inner regions or at the edge of the leaves, something that only
semi-automatic methods or deep learning models could address.

4.3 Method

Our method is organized into three steps to handle background removal to high-
light leaf regions, adjust images based on their geometric shape, and estimate defoliation
severity. The adjusted images are used to prepare a database to retrieve leaf models sim-
ilar to query images. Then, the retrieved images are used to estimate the percentage of
damage in the query images. Figure 4.1 presents the flowchart of the method.

Figure 4.1: Flowchart of the presented method.
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4.3.1 Preprocessing

The input RGB images are processed with a 5× 5 median filter. From the
resulting images, the channel G (Green color) is updated by multiplying its current
channel values by 2 with the subtraction of the R (Red color) and B (Blue color) channel
values. Then, the Otsu segmentation method (OTSU, 1979) is applied to detach the
leaves from the background, and binary images are obtained where the inner pixels are
removed, leaving only the boundary pixels. The distances between the remaining pixels
are measured, and the two most distant points draw a line called the reference line. The
reference line is used to rotate the images to the vertical position. Then, the images are
surrounded by bounding boxes, their outer areas are cropped, and the images are resized
to their original sizes. Thus, the resulting images are binarized, and the leaf model data
set is prepared.

4.3.2 Image Retrieval

Considering a binary query image Q(i, j) also obtained after the previous step, a
comparison is made between the query image and the binary target models M(i, j) from the
model data set. The binary leaf model with the slightest difference from the query image
is selected and used to determine the damaged leaf area to estimate the leaf damage area.
In Equation (4-1), the damage region is obtained by the intersection of two sets.

D(M,Q) =
m

∑
i=1

n

∑
j=1

(M(i, j)∧¬Q(i, j)) (4-1)

where m and n represent the numbers of rows and columns of the images, respectively.
Equation (4-1), which handles the correspondence between a query image and

binary leaf models, is equivalent to calculating the difference between them as described
in Equation (4-2).

D(M,Q) =
m

∑
i=1

n

∑
j=1
|M(i, j)−Q(i, j)| (4-2)

Then, after Equation (4-1) or Equation (4-2), the image model, which yields the
slightest difference, is assigned to the query image according to Equation (4-3) where k

is the number of binary image models.

d = argmin
k

Dk (4-3)
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4.3.3 Defoliation Level Estimate

In Equation (4-4), the retrieved image model (T) is compared with the damaged
input leaf (Q) through logical conjunction. After this operation, a logical image L is
obtained, which presents the missing leaf areas.

L = T∧¬Q (4-4)

After that, the percentage of pixels in L is calculated according to Equation (4-5),

p(%) =
100
mn

m

∑
i=1

n

∑
j=1

li, j (4-5)

where li, j ∈ L and m and n denote the number, in terms of image dimensionality (rows
and columns), of the image L.

4.4 Materials

4.4.1 Database Description

We use the database prepared by Hughes and Salathé (2015), which is available
online due to (MOHANTY et al., 2016). In obtaining the samples, technicians collected
leaves by removing them from plants and placing them against a sheet of paper that
provided a gray or black background to begin acquiring digital images. They obtained
the image samples considering various lighting conditions, leaf shape, and foliar position.
Based on this, we randomly selected healthy leaves from the dataset, which included
samples of tomato, strawberry, soybean, raspberry, potato, bell pepper, peach, grape, corn,
cherry, blueberry, and apple. The images are in RGB format and have a size equal to
256×256 pixels.

4.4.2 Experiment Design

We randomly selected 120 images for each of the 12 types of plants, totaling
1440 images for use in the experiments. We divided the data into two groups where 60
images of each plant species are used to construct the leaf model data set, and the other
60 images of each plant species are used to validate the method. The leaf images in these
groups differ; therefore, a leaf sample belongs exclusively to just one.

In the data used to validate the proposal, we apply a synthetic defoliation strategy
to simulate insect predation. We manually segmented insect bite traces from images with
leaves consumed by the insects Spodoptera frugiperda (J.E. SMITH) (LEPIDOPTERA:
NOCTUIDAE) and Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae).
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Then, we used the bite segments to simulate real cases of herbivory in healthy leaves. Our
artificial defoliation program has four random parameters. The first determines the insects
used to simulate defoliation. The second specifies the number of bite segments. The third
applies rotation transformations to the bite segments. Finally, the fourth parameter resizes
the bite segments. In addition, the user can specify the required defoliation level from 1
to 99%. The defoliation level is computed after applying the synthetic defoliation, and the
reference data (ground truth) is prepared.

This approach is necessary because the data set does not include defoliation
caused by insect herbivores such as chewing or cutting insects. Additionally, data sets con-
taining samples in this category are private and not publicly available, as in (MACHADO
et al., 2016; BRADSHAW et al., 2007). Therefore, related works such as (SILVA et al.,
2019; SILVA et al., 2021) used artificial defoliation strategies. Unlike other works, we
used actual defoliation simulation, which is the novelty of our study.

4.4.3 Evaluation

The accuracy of our proposal is measured according to the linear correlation
(SOARES et al., 2011), root mean square error (RMSE), and mean absolute error (MAE)
between the results and the reference data (ground-truth) following Equations (4-6), (4-7),
and (4-8):

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

, (4-6)

RMSE =

√
∑

n
i=1(xi− yi)2

n
(4-7)

MAE =
∑

n
i=1 |xi− yi|

n
(4-8)

where x (the percentage of damage per leaf) contains the reference data values obtained
from the synthetic defoliation strategy, and x̄ is the average value of these defoliation
levels. y contains the estimated leaf damage values, and ȳ is the average value of the
estimated defoliation levels. n represents the number of images that validate the method.

4.5 Results and Discussion

The method’s accuracy is evaluated using the query images transformed with the
defoliation strategy. As we compare the ground-truth images with the method’s outputs,
we verify the quantitative and visual results. Therefore, the performance of our method is
measured according to the severity of the estimated and actual defoliation.
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Figure 4.2 presents visual results of our method with a leaf sample for each of
the twelve plant species under study. After the segmentation and defoliation processes,
the query images are obtained from the input images, and the final result highlights the
damaged leaf regions. As noted, the preprocessing steps adjust the images to a position
that reduces the effects of scaling and image rotation in evaluating the correspondence
between a query image and leaf models. Thus, our method can present consistent results
even if the images were not acquired following a strict standard form of leaves and camera
positioning. Figure 4.2 also illustrates the diversity of samples contained in the data set
we used, showing that our method has the potential for generalization as it deals with
different types of plant species, leaf shapes, and different levels of leaf damage.

Figure 4.2: Visual results of our method. The first row of each figure panel shows the
images in the data set, the second row presents the query images after
segmentation and defoliation, and the third row presents the final result
with defoliation estimate (DE) and ground truth (GT).

Additionally, we evaluate the proposal considering different defoliation levels.
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We consider a gradual increase in defoliation from which we apply progressive jumps
of 3% until reaching 99% leaf damage. Figure 4.3 presents the outcomes where the
best results occurred when the defoliation level was between 0% and 60%. Although
the error increases after 60% defoliation, the error is still less than 50% even when
the leaves are destroyed, such as after 90% defoliation. It is worth mentioning that this
pattern is repeated in all plant species investigated in this study. In this way, it shows the
generalization potential of the method.

Figure 4.3: Results of our method concerning different levels of defoliation.
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Table 4.1 shows the linear correlation and the mean error between the damaged
leaves for each 12 plant species considering a maximum defoliation level of 30%. A solid
linear correlation can be noted, especially for corn, strawberry, grape, potato, blueberry,
and soybean, whose correlation was equal to 0.99, 0.94, 0.92, 0.92, 0.91, and 0.89,
respectively. Tomato and Peach showed the lowest positive result, mainly due to the
diversity of leaf shapes caused by the collection of different cultivars, different leaf growth
stages, and the irregular pattern that plant species can produce. Tomatoes have samples
of various tomato species with early and adult leaves, and peach leaves have minor
to moderate curvature and a wide to narrow leaf canopy. Additionally, the intensity of
shading on peach leaves reduced the capability of the segmentation process, justifying the
weak correlation that was obtained. The effective treatment of shadows is open to being
addressed in future work. Although our method presents consistent results, we point out
that excessive leaf deformation can compromise the correct identification of the reference
line (Section 4.3), generating an inadequate leaf positioning. Furthermore, assertiveness
may decrease if the model construction images differ significantly from the query images.

Table 4.1: Results of our method on different plant species.

Plant Species r MAE RMSE(%) Defoliation

Min Max

Tomato 0.786 7.11 8.18 3.65 27.06

Strawberry 0.947 3.19 3.51 3.28 24.22

Soybean 0.895 3.31 3.73 3.34 20.37

Raspberry 0.909 3.64 4.09 3.36 27.66

Potato 0.923 3.41 3.94 3.28 20.60

Bell pepper 0.848 4.69 5.37 3.12 17.49

Peach 0.666 7.07 9.55 3.34 28.90

Grape 0.927 4.37 4.88 3.06 28.12

Corn 0.999 0.12 0.17 3.04 15.56

Cherry 0.848 4.20 4.71 3.20 25.61

Blueberry 0.911 3.78 4.42 3.41 29.34

Apple 0.891 3.92 4.50 3.19 24.30
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Figure 4.4 presents the scatter plot between the actual and estimated defoliation
levels considering the correlation results of different plant leaves for the maximum
defoliation level of 30%. The correlation coefficient above 0.84 for apple, blueberry,
cherry, corn, grape, bell pepper, potato, raspberry, soybean, and strawberry shows a
positive linear correlation between the variables. It indicates that the estimated damage
closely follows the actual damage. In addition, a large part of the data is close to the
regression line, which emphasizes the strong correlation between them. The estimated
data are partially overestimated since the fit line is above the reference line (Y = T).

Figure 4.4: Regression line between ground-truth defoliation levels and estimated
damage by our method concerning different plant species. Target T refers
to the reference data, while Y refers to the estimated value.

Complementarily, Figure 4.5 demonstrates the method’s behavior concerning
the estimated defoliation level. As can be observed, the calculated values are more
significant than the actual damage, i.e., the method overestimates the defoliation level,
indicating percentages of leaf damage above the actual values. However, these values are
not discrepant since the curves have similar shapes. In the actual scenario, this behavior
is preferable to underestimated results that could induce the reduction or interruption of
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management operations. Furthermore, as this behavior is repeated in other plant species,
the overestimation can be measured and used in leaf analysis. For example, in soybean
leaves, the mean overestimated value (mean absolute error, Table 4.1) is 3.31. Based on
this knowledge, the curves that characterize the actual and estimated defoliation level
(Figure 4.5) can be adjusted to present a more assertive result.

Figure 4.5: Comparison between ground-truth defoliation levels and estimated dam-
age by our method in different plant species.

Table 4.2 compares our method and related work. These methods used the
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automatic estimation of leaves or human intervention to delineate the leaves in the images
(semi-automatic approach). Some of them were not prepared to deal with leaf losses.
In opposition, other methods consider leaf damage, including the destruction in border
regions with defoliation levels between 0 and 65%. Except for our method, automatic
approaches were developed using deep learning models, which require many image
samples. Additionally, only our method and Silva et al. (2014) method were evaluated
exclusively with public databases. The other authors built their bases for evaluation or
used local and public data sets.

Table 4.2: Some relevant information about our method and related work.

Paper Method Defoliation Border Plant Data set Year

Level Damage Species Reference

(BRADSHAW et al., 2007) SA – Yes 1 LD 2007

(MALOOF et al., 2013) SA – No 1 LD 2013

(EASLON; BLOOM, 2014) SA – No 5 LD 2014

(MACHADO et al., 2016) SA [0,50] Yes 5 LD 2016

(SILVA et al., 2019) AU [0,64] Yes 3 LD, (NOVOTNỲ; SUK, 2013) 2019

(SILVA et al., 2021) AU [0,65] Yes 153 (WU et al., 2007) 2021

Ours AU [0,60] Yes 12 (HUGHES; SALATHÉ, 2015) 2022

LD: Local data set, SA: Semi-automatic, AU: Automatic

Table 4.3 presents a quantitative comparison considering our method and some
related works. Although each work has applied its experimental evaluations, they have
some characteristics in common, such as performance measurement (r and RMSE) and
type of plant under analysis (soybean leaf). This comparison shows that our proposal
presents results close to semi-automatic methods that demand human intervention and
automatic methods that use deep learning. For example, Bradshaw et al. (2007) and
Machado et al. (2016) used local databases and compared their results with leaf area
measurement devices (LI-COR). On the other hand, Silva et al. (2019) used local and
public databases and synthetic defoliation methods to train computational models. In
contrast, our method is evaluated with a public database that contains different plant
species and variability in leaf shape. Furthermore, our method involves a few processing
steps, which makes it suitable for systems with reduced computing power that generally
qualify applications for smart farms.

The experimental tests were prepared using a notebook with a Core i7-9750H
(2.6GHz; 12 MB Cache) and 16 GB RAM. The leaf model with 60 images executed in
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Table 4.3: Quantitative results provided by related work and our method considering
soybean leaves.

r RMSE

Digital scanner (BRADSHAW et al., 2007) 0.938 –

BioLeaf (MACHADO et al., 2016) 0.992 –

AlexNet (SILVA et al., 2019) 0.987 4.57

ResNet (SILVA et al., 2019) – 14.6

Ours 0.895 3.73

09.19 s. In addition, the average time to compute the defoliation estimate was 00.21s. Our
source code, written in MATLAB, is freely available for download.

4.6 Conclusions

This chapter presented a new method to calculate the percentage of damage
caused by insect herbivores on plant leaves. The technique uses a few processing steps,
making it suitable for intelligent farm environments with limited computing power. Based
on the experimental evaluation, our method is assertive in measuring the loss of leaf area,
considering different shapes, sizes, and morphology of leaves. The results were best for
defoliation percentages of a maximum of 60% as the predictions deteriorated beyond
60%. For defoliation below 60%, the mean absolute error was lower or close to 10%
for all plant species under study, showing the generalization potential of our method.
Additionally, when verifying the correlation between leaf damage and estimated damage,
we observed a positive relationship between the variables with correlation values between
0.84 and 0.89 for apple, cherry, pepper, and soybean, and above 0.90 for blueberry, corn,
grape, potato, raspberry, and strawberry.

As a novelty, our method provides high precision for diverse plant species, works
effectively to estimate leaf loss in leaves with border damage, converges quickly, and does
not require human interaction. Furthermore, it does not require samples of herbivory to
prepare the image models and does not require a massive amount of data to converge
appropriately. Thus, we present a comprehensive crop monitoring and decision-making
solution through quantitative and visual analysis. In this sense, our proposal is a valuable
option for supporting agricultural management based on analytical information, where
insect predation can be addressed before it compromises the entire plantation.



CHAPTER 5
An Automatic Method for Estimating Insect
Defoliation with Visual Highlights of Consumed
Leaf Tissue Regions

Make requests, and they will be an-

swered.

Luke 11:9

As an essential component of the architecture of a plant, leaves are crucial to
sustaining decision-making in cultivars and effectively support agricultural processes.
When the leaf area is constantly monitored, a plant’s health and productive capacity
can be assessed to foment proactive and reactive strategies. Because of that, one of the
most critical tasks in agricultural processes is estimating foliar damage. In this sense, we
present an automatic method to assess leaf stress caused by insect herbivory, including
damage in border regions. As a novelty, we present a method with well-defined processing
steps suitable for numerical analysis and visual inspection of defoliation severity. We
describe the proposed method and evaluate its performance concerning 12 different plant
species. Experimental results show high assertiveness in estimating leaf area loss with
a concordance correlation coefficient of 0.98 for grape, soybean, potato, and strawberry
leaves. The method’s core is a classic pattern recognition approach, template matching,
whose performance is compared to cutting-edge techniques. Results demonstrate that the
method achieves foliar damage quantification with precision comparable to deep learning
models. This chapter was published in the Journal Information Processing in Agriculture
(VIEIRA et al., 2024).

5.1 Introduction

Inspecting and controlling agricultural activities is essential to ensure quality
and production rates according to the planting estimates (ROCHA et al., 2023). However,
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several variables must be observed, and the indicators must be reliable to support agri-
cultural management and decision-making (VIEIRA et al., 2019a). Monitoring insects in
plantations is equally important to observe the potential damage caused by chewing and
cutting insects. In a balanced ecosystem, the coexistence between plants and insects can
be beneficial, as in the increase in the concentration of nutrients and water in the soil (e.g.,
anthills), or acceptable when production is little affected (VIEIRA et al., 2022). However,
it is estimated that insects consume about 14% of the total global agricultural production,
and without proper control, they can bring several losses (NABITY et al., 2009). There-
fore, the threshold level of 30% defoliation in the leaf growth phase (vegetative stage)
or 15% in the grain formation phase (reproductive stage) is still considered valid for the
control of defoliating caterpillars in soybean (FERNANDES et al., 2022).

Different methods have assisted in defoliation estimation. Traditional approaches
use manual measurement instruments and can be assertive. However, they depend on op-
erator experience, have cost and operational effort relative to the number of samples for
analysis, and are susceptible to human subjectivity. Approaches that use leaf area mea-
suring equipment support more significant amounts of image samples but are expensive
and require maintenance and calibration. Computer-based approaches can handle more
extensive image databases, reduce subjectivity, provide quick responses, and be cheaper
than other approaches. Nevertheless, some solutions do not support defoliation estimation
with leaf edge damage, require user interaction, or rely on many leaf images for training
computer learning models.

Faced with these challenges, computing-based solutions that employ digital im-
age processing and parametric models have been frequently used in leaf analysis. In re-
cent years, improvements promoted by computing systems have pushed agricultural ac-
tivities to a new level where automation and data analysis have become indispensable.
Today, leaf loss estimation is in smartphone apps (MACHADO et al., 2016; ESGARIO
et al., 2022), intelligent machines are analyzing weeds (SODJINOU et al., 2022; LUO et

al., 2023a), and sensor integration is creating functional IoT ecosystems for smart farms
(ANDRIANTO et al., 2021). In this context, classification models (NGUGI et al., 2023;
SHAH et al., 2022), semantic segmentation (LUO et al., 2023b; KOLHAR; JAGTAP,
2023), transformer encoder (FU et al., 2023), and pattern recognition (VIEIRA et al.,
2021a; VIEIRA et al., 2022; VIEIRA et al., 2022) are among the leading research trends
in quantifying biotic stress and estimating defoliation caused by insect herbivory. How-
ever, image databases for leaf loss analysis and computational models using lightweight
processes still need to be continuously prepared and investigated.

In our previous work, we proposed methods for insect predation detection
(VIEIRA et al., 2022), leaf reconstruction (VIEIRA et al., 2021a), and defoliation
estimation (VIEIRA et al., 2022). The main limitation of previous models was related
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to the use of computational memory that limited the number of template images. We
also noticed that changing the similarity evaluation metric could optimize the image
correspondence evaluation step. In the new version of the method, we started using binary
images and overlapping areas in the matching stage (Intersection over Union - IoU). In
this sense, we reduce memory usage, increase the number of image templates, reduce
processing time, and increase assertiveness to levels comparable to deep neural networks.

Furthermore, the identification of plant features can be used to categorize diver-
sity, identify vegetation types, and classify crop families through relevant patterns con-
tained in their leaves. In this sense, anatomical and morphological studies are applied
using leaf characteristics to distinguish plant species with high similarity (CHIMEZIE et

al., 2016), unusual biologic features (SILVA et al., 2014), and their morphometric geo-
metric properties (HEREDIA et al., 2018). In addition, foliar analysis at the laboratory
level (SILESHI et al., 2016) or by machine learning algorithms (KS; SAHAYADHAS,
2018; GUTIERREZ et al., 2019; SHAH et al., 2022) can reveal diseases and guide clini-
cal diagnoses and treatment protocols.

In this regard, agricultural systems use the information that can be obtained
from leaves to assist in cultivating plants in both small and large crop production and
for local or family subsistence. From monitoring to action, the information about leaves
can support effective decisions based on a solid foundation for analysis and conclusions.
Thus, this knowledge is an essential instrument to assess plant nutrient status (NGUY-
ROBERTSON et al., 2015; INTARAVANNE; SUMRIDDETCHKAJORN, 2015), guide
the use of fertilizers and support pest control practices (FRIEDMAN et al., 2016; LUO
et al., 2023a), estimate the leaf area index (BAUER et al., 2019), measure foliar loss
(MACHADO et al., 2016; SILVA et al., 2019; ESGARIO et al., 2022), monitor plant
diseases (EASLON; BLOOM, 2014; ZHANG et al., 2019; NGUGI et al., 2023), and
identify insufficient nutritional resources in crop management (CROFT; CHEN, 2017).

Among the applications developed from leaf analysis, estimating foliar loss is
crucial for planning sustainable agricultural practices. As leaves are inputs for monitoring,
evaluation, and decision-making, the analysis process will be impacted if they are com-
promised, leading to inaccurate results. Therefore, estimating the leaf tissue consumed
by insects is a primary practice for conducting inspection methodologies and performing
control services in farming. Among the defoliation estimation approaches, there are tra-
ditional methods that use manual instruments and operator expertise and contemporary
approaches that use computer-aided methods and automated models of foliar analysis.
Some approaches use visual evaluation and manual quantification (KVET; MARSHALL,
1971; KOGAN et al., 1977) and predictive models of leaf dimensions (SANTOS et al.,
2016; CARVALHO et al., 2017). In contrast, others include integrative equipment for
leaf analysis (LI-COR, 2023; ADC, 2023), generation of mathematical models using dig-
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ital image processing techniques (CARRASCO-BENAVIDES et al., 2016; LIANG et al.,
2018), and deep learning algorithms (SILVA et al., 2019; SILVA et al., 2021; ESGARIO
et al., 2022).

In this study, we employed the template matching technique, which has been
traditionally used to solve several problems based on pattern recognition. Template
matching has attracted the attention of the computer vision community in recent years
(CORONA et al., 2023) and has been successfully applied in biometric and facial
recognition (RUSIA; SINGH, 2023) as well as in detecting objects in robotics and moving
targets (FENG et al., 2023). Agriculture also employs template matching to count trees
(OYA et al., 2023), weed detection (JUWONO et al., 2023), navigation systems (BAI
et al., 2023), and others. To the best of our knowledge, we are the first to use template
matching to construct a method for leaf loss estimation.

In designing our proposal, we considered the limitations of related works to pro-
pose a computer-based solution for defoliation estimation. In the proposal, we eliminate
aspects of subjective interpretation, deal with many leaf samples in different plant species,
and provide visual indications of the leaf regions where the damage occurred, including
border regions. In addition, we can use conventional cameras, build the templates without
involving image annotation and training, and acquire the images at different rotation an-
gles, scale variations, and image intensities. The database used in the experimental tests
supports these statements since it has different variations, as shown in Figure 5.2. Further-
more, the proposed method has lightweight processes that can be executed on time with
a final response in a few seconds. In this sense, (1) we present an automated defoliation
estimation method whose effectiveness and generalization capacity is evaluated consid-
ering different plant species: apple, blueberry, cherry, corn, grape, peach, pepper, potato,
raspberry, soybean, strawberry, and tomato; and (2) we organized and made our program
code and experimental data publicly available, including an image database that can be
used for defoliation estimation purposes.

Our method was developed to assist experts and farmers in monitoring insect
predation by analyzing leaf stress caused by defoliation. Severity levels are calculated, and
the method’s precision in estimating leaf loss can help understand crop health and support
agricultural management decisions. In this program version, images can be captured by
conventional cameras and processed on a workstation. In future versions, we intend to
launch a smartphone application so that processing can be done directly on the device.

The main contributions of this work are:

• a new method that estimates leaf tissue lost both in internal damage and leaf edge
regions.
• a comprehensive approach that enables numerical analysis and visual inspections

of foliar damage.
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• an architecture with well-defined processing steps.
• experimental results with supplementary material to support future comparative

analysis (benchmarking).

The remainder of the chapter is structured as follows. Section 5.2 presents
details of the proposed method, its mathematical formulae, and visual descriptions of
the workflow. Section 5.3 provides key information about the database used and general
setup settings and also describes the experimental design and evaluation metrics. Section
5.4 presents the test results and a discussion about them. Finally, the work is concluded in
Section 5.5.

5.2 Method

The proposed method is divided into three main steps. In the first one, template
images are prepared considering the structural shapes of healthy leaf samples. In the
second one, images of damaged leaves are compared with the template images, and the
results with the highest similarity are used to locate damaged areas and estimate the
percentage of leaf loss (defoliation). Finally, in the third one, defoliation is estimated. We
designed the proposed method to support image scale and rotation transformations and to
estimate defoliation at different severity levels. The present proposal was also designed to
support leaf analysis in different plant species and to delineate damage internally and in
leaf edge regions. Figure 5.1 shows an overview of the proposed method.

Figure 5.1: Overview of the proposed method.
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5.2.1 Preprocessing

Initially, RGB images are binarized to differentiate leaf regions (foreground)
from non-leaf regions (background). The binarization process is done automatically based
on a color threshold that differentiates pixel intensities in the leaf region from other
levels of color intensities. Our image database was segmented using the (MOHANTY
et al., 2016) method. Then, the resulting images have black pixels (background) and
green color intensities (leaf). Because of that, we apply a simple strategy of labeling each
image coordinate with pixels equal to 0 in the three RGB image channels as the image
background. In this way, the remaining pixels are set as the target image (foreground).

After binarizing the image, the points in the image foreground are used to
compute the smallest convex polygon that contains all the points of the leaf area in a
computing process known as “convex hull”. Following that, a morphological operation
is applied to the resulting image to trace the leaf silhouette. Each point belonging to the
contour of the leaf image is a coordinate in the image plane, which is used to measure
the distance of a given point from the other points. By calculating the distance between
all points on the leaf silhouette, we can obtain the two points with the longest distance to
represent a pattern that marks a vital leaf structure feature, i.e., plants of the same species
have similar leaf shapes. Because of this, their width or length can be measured from
specific points that are usually in the same positions, even on different leaf samples.

We consider the Euclidean distance between its coordinate pairs to calculate
the distance between the leaf silhouette points. From there, a line (reference line) is
drawn to connect the two coordinate pairs farthest from each other. The slope angle
of this line is computed and used to rotate the image. The rotation operation positions
the reference line vertically concerning the abscissa axis by ninety degrees. The leaf
area is bounded, cropped, and resized to the original image size in the resulting image.
The processes performed at this stage reduce the challenges related to image scale and
rotation transformations inherent to image acquisition. As the images are pre-adjusted
following the geometric shapes of leaves, it is not necessary to formulate strict protocols
for obtaining images nor to prepare images at different angles of inclination for image
matching. All these preprocessing steps are applied to constructing template images and
adjusting and positioning damaged leaf images.

5.2.2 Image matching

This step establishes a statistical measure to compare a damaged leaf sample
with the template images. The objective is to find an image model that best fits the foliar
area of the damaged leaf and more effectively highlights the areas of defoliation. In the
comparison, we take an exemplar of the template images and compute the points in
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common between the image template and the damaged leaf. We also compute the total
area occupied by the two images being compared. Then, the image similarity is measured
by the ratio between their common points (intersection) and their combined areas (union).
This process is repeated for all images in the image models, and the comparative result
of the highest similarity is used to point out the ideal image model to estimate leaf loss.
The image matching process is measured according to Eq. 5-1, known as IoU (HU et

al., 2021), Jaccard index (AMIRKHANI; BASTANFARD, 2021), or Qseg (SADEGHI-
TEHRAN et al., 2017).

S =
∑

m
i=1 ∑

n
j=1 di, j∧ ti, j

∑
m
i=1 ∑

n
j=1 di, j∨ ti, j

, (5-1)

where di, j ∈D is the damaged leaf (di, j = 1) or background pixels (di, j = 0) and ti, j ∈T is
the template image, also in a binary format. The accuracy is based on logical operations,
logical and (∧) and logical or (∨), that compare the overlap between the template image
T and the damaged leaf D. S varies in a range of values between 0.00 and 1.00 in which
a value of 1.00 represents a perfect consistency outcome between D and T images. D and
T are binary images with size m by n.

5.2.3 Defoliation estimate

The defoliation estimate is calculated from the logical conjunction between the
selected template image and the damaged leaf. As these images are in binary format, the
leaf area of the template image that is outside the scope of the damaged leaf delineates
its loss regions. It is important to note that the leaves of the same plant species have
very similar characteristics, so matching between image pairs and image area overlap
calculation can enable consistent results in defoliation estimation. Thus, the task consists
of counting the points outside the intersection between the image pairs. In Equation 5-2,
we have two binary images (T and D) corresponding to the damaged leaf and retrieved
template image, respectively. The logical conjunction (∧) between them results in image
L, which is the estimated missing area from image D. The image L is constructed by
fetching the regions of T that are not in D. Thus, the symbol (¬) refers to the complement
of D.

L = T∧¬D (5-2)

After that, the percentage of pixels in L is calculated according to Eq. 5-3,

p(%) =
100
mn

m

∑
i=1

n

∑
j=1

li, j (5-3)
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where li, j ∈ L and m and n denote the number of rows and columns in the image L,
respectively. p is the percentage of the defoliation level.

5.3 Materials

The experiments are performed in a public dataset with several specimens of
plant leaves: apple, blueberry, cherry, corn, grape, peach, pepper, potato, raspberry,
soybean, strawberry, and tomato. We also considered different levels of defoliation
severity, with damage to border regions and inner leaf areas. This section presents general
information about the conduction of the experiments, the database used, and the selected
evaluation metrics.

5.3.1 Image Database Description

The database used in the experiments was prepared by Hughes and Salathé
(2015) and it is available online1 as a result of Mohanty et al. (2016). It consists of
a collection of 54,302 images divided into 14 crops species: Apple (Malus pumila),
Blueberry (Vaccinium spp.), Cherry (Prunus avium L.), Corn (Zea mays L.), Grape
(Vitis vinifera L.), Orange (Citrus sinensis L.), Peach (Prunus persica L.), Bell Pepper
(Capsicum annuum L.), Potato (Solanum tuberosum L.), Raspberry (Rubus idaeus L.),
Soybean (Glycine max L.), Squash (Cucurbita spp.), Strawberry (Fragaria ananassa L.),
and Tomato (Solanum lycopersicum L.).

Each group has healthy and infected leaves of cultivated plants, labeled by plant
pathology specialists (Table 5.1). In obtaining the samples, technicians collected leaves
by removing them from plants and placing them against a sheet of paper that provided
a gray or black background to begin acquiring digital images. They sought a variety of
lighting conditions, positioning, and foliar shapes. For crops such as Corn and Squash,
whose leaves are too large to capture in a single frame, they took images of different
sections of the same leaf. The size of the images is 256×256 pixels.

The leaves in this database were infected with bacteria, mold, viruses, or mites.
Although these pests present foliar deformation, they do not necessarily result in leaf
area loss as occurs in situations of herbivory by insects. Because of that, our attention
is focused only on images of healthy leaves. We use them to build image models of
cultivated species and to prepare artificial defoliation to simulate and assess the losses
caused by insect predation. Since Orange and Squash species do not have healthy images

1https://github.com/digitalepidemiologylab/plantvillage_deeplearning_paper_dataset
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Table 5.1: Number of images in the database (HUGHES; SALATHÉ, 2015)

Crop specie Healthy leaves Infected leaves Total

Apple 1,645 1,526 3,171

Blueberry 1,502 - 1,502

Cherry 854 1,052 1,906

Corn 1,162 2,690 3,852

Grape 423 3,640 4,063

Orange - 5,507 5,507

Peach 360 2,291 2,651

Pepper 1,478 997 2,475

Potato 152 2,000 2,152

Raspberry 371 - 371

Soybean 5,090 - 5,090

Squash - 1,835 1,835

Strawberry 456 1,109 1,565

Tomato 1,592 16,570 18,162

in this database, they are not used to evaluate the proposed method. Besides, images of
infected leaves from the remaining crop species are not used.

Figure 5.2 presents some samples from the database used in this work. Images
can be observed under a range of conditions, such as leaves positioned to the right or
left (5.2(a) and 5.2(b)), in perspective projection (5.2(c)), with shadows (5.2(d)) and in a
substantially different format from the others (5.2(e)). Also, changes in illumination can
be easily seen in all of these samples, some of them with the petiole2 (5.2(a), 5.2(b) and
5.2(d)), and others with an incomplete margin – curled leaves (5.2(e)).

2Petiole is a foliar structural component that attaches leaves to the plant stem.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Samples of soybean leaves in (HUGHES; SALATHÉ, 2015) database.
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5.3.2 General setup

In the proposed method, a damaged leaf is compared to template images, and
the result obtained is used to estimate defoliation. First, the dataset is divided into two
parts: one equivalent to 80% is used to construct template images, and another with the
remaining 20% is used for evaluation purposes. Then, template images are constructed
from healthy plant leaves, where a model is prepared for each plant species. The dataset
is randomly split. For convenience, we use images that have been previously segmented
with the (MOHANTY et al., 2016) method, which is also available online with the
entire dataset (Section 5.3.1). We started the process with image binarization, rotation
transformation, and scale adjustment to construct template images and adjust damaged
input leaves as presented in Section 5.2.1. Besides, the images selected for evaluation are
preliminarily deformed to simulate defoliation as presented in Section 5.3.3. Applying
synthetic damage to leaves simulates real cases of herbivory and enables the analysis of
different degrees of defoliation severity. Leaf damage is applied in different amounts,
which include minor damage ranging from 1 to 15%, medium damage from 16 to 30%,
and severe damage from 31 to 45%. Furthermore, the damage is randomly constructed
and presented both in the inner leaf area and the leaf edge regions. The image matching
process (Section 5.2.2) consists of comparing an injured leaf with all the template images
to obtain the most suitable model for leaf analysis. The experiments were done in a
notebook with Core i7-9750H (2.6GHz; 12MB Cache) and 16 GB RAM. The code was
written using MATLAB (see Section A.1.4).

5.3.3 Synthetic Defoliation Strategy

Considering that a visual diagnosis is possible by a human, computational
tools can, in principle, also assist in this task. The challenge is to find sufficiently
expressive samples to allow inferences from computer vision models, which is even
more complicated when data labeling requires specialized manual labor, which can
be time-consuming and expensive. To overcome this problem, we have prepared a
synthetic defoliation strategy in which healthy leaves are subjected to a process capable
of simulating leaf area loss.

Our insect predation strategy on leaves involves extracting bite signatures in
real herbivory cases and preparing foliar damage templates to promote different leaf
defoliation levels. The bite signature of two types of insects, Spodoptera frugiperda

(J.E. SMITH) (LEPIDOPTERA: NOCTUIDAE) and Chrysodeixis includens (Walker)
(Lepidoptera, Noctuidae, Plusiinae), was extracted from injured leaves, resulting in some
bite samples for each of the two insects.
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Considering previously collected bite samples, we built a program that uses the
bite samples to generate leaf damage automatically. This program simulates insect pre-
dation considering the number of bite samples and the minimum (Min_D) and maximum
(Max_D) expected defoliation level (which can range from 1 to 99%). Figure 5.3 illus-
trates the pipeline used in our synthetic defoliation strategy, where an input image is
processed with the bite samples. The program applies image transformations (scale and
rotation) to the bite samples and uses them to remove pixels from the input image. The
scale factors (Min_SF and Max_SF) are dynamically adjusted, and the rotation angle is
randomly set in the range 0 to 360. The program iteratively manipulates these two vari-
ables until the desired defoliation level is reached. In the program, DL is initially set to
0, which is updated with changes made to the input leaf image. When the expected de-
foliation level (DL) is achieved, the input image with the requested defoliation level is
returned. Additionally, Figure 5.4 shows the process of applying leaf damage to an input
leaf, while Figure 5.5 presents some defoliation results generated by the program. This
strategy is used to obtain the reference values (ground-truth data) in the experimental tests
in Section 5.4.

Figure 5.3: Pipeline for applying damage to leaf images.
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Figure 5.4: Synthetic defoliation strategy.

(a) Original. (b) 11.67% defoliation. (c) 27.69% defoliation. (d) 53.97% defoliation.

Figure 5.5: Samples from the synthetic defoliation strategy after segmentation.

5.3.4 Evaluation metrics

To quantify the results, we used statistical measures to analyze the reliability of
the statistical relationships. The problem was modeled as a binary classification test in
which the samples were labeled as damaged leaf area or non-damage leaf area. The rating
assigned as correct or incorrect is measured according to the number of pixels counted
and is defined as:

• True Positive (TP): damaged leaf area correctly identified as damaged regions;
• True Negative (TN): non-damaged leaf area correctly identified as such;
• False Positive (FP): regions categorized as damaged areas when they are not.
• False Negative (FN): damaged regions that have not been properly recognized.

In the analysis of the results, we used the statistical measures True Positive
Rate (TPR) (Eq. 5-4) and True Negative Rate (TNR) (Eq. 5-5) to indicate the fraction
of areas of leaf damage that were successfully recovered. Likewise, we consider the False
Positive Rate (FPR) (Eq. 5-6) and False Negative Rate (FNR) (Eq. 5-7) to measure the
percentage of incorrectly classified defoliation areas. TPR, TNR, FPR, and FNR are used
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in the construction of confusion matrices to show the performance of our method in the
different types of plant species investigated in this study.

TPR =
T P

T P+FN
(5-4)

TNR =
T N

T N +FP
(5-5)

FPR =
FP

FP+T N
(5-6)

FNR =
FN

FN +T P
(5-7)

Jaccard (Eq. 5-8), Dice (Eq. 5-9), and Accuracy (ACC) (Eq. 5-10) indices are
also used to provide single measures related to the percentage of the identified defoliation
regions. All metrics presented range from 0.00 to 1.00, in which higher results of TPR,
TNR, Jaccard, Dice, and ACC point to better assertiveness. On the other hand, values of
FPR and FNR close to zero indicate fewer errors in the interpretation and determination
of damaged leaf areas.

Jaccard =
T P

T P+FP+FN
(5-8)

Dice =
2 ·T P

2 ·T P+FP+FN
(5-9)

ACC =
T P+T N

T P+T N +FP+FN
(5-10)

Besides, the linear correlation between the expected and estimated defoliation
level is measured with Pearson’s correlation coefficient (r), which indicates the degree of
relationship between two quantitative variables and expresses the degree of correlation
through values between -1 and 1 (SOARES et al., 2011). The correlation is calculated
according to Eq. 5-11 as follows.

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

, (5-11)

where x (percentage of damage per leaf) contains the reference leaf damage values
obtained from the synthetic defoliation strategy, and x̄ is the average value of these
defoliation levels. y contains the estimated leaf damage values, and ȳ is the average value
of the estimated defoliation levels. n represents the number of images in the dataset for a
plant species being evaluated.
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Moreover, according to Eq. 5-12, Root Mean Square Error (RMSE) computes
the error between the reference leaf damage (x) and the estimated leaf damage (y).

RMSE =

√
∑

n
i=1(xi− yi)2

n
(5-12)

5.4 Results and Discussion

In this section, the results obtained with the experimental tests are presented.
The effectiveness of the proposed method is verified in different plant species, and the
results are discussed considering three main points: correctness in the identification of
missing segments of leaf area, assertiveness in the defoliation estimation, and precision
in the visual representation of the damaged leaf with its defoliation regions. We also
present a qualitative comparison between our method and some related works, discuss the
limitations of the proposed method and present information about the execution time. To
obtain the reference data (ground truth), we used the strategy presented in Section 5.3.3.

5.4.1 Damaged area identification

Damaged areas, or areas of defoliation, are leaf regions that have been consumed
and are no longer present in the image. Identifying these areas consists of predicting the
regions that suffered losses and locating them. Thus, it is possible to visually show the leaf
canopy, including the areas that suffered defoliation. The evaluation consists of verifying
the overlap of the estimated areas with the actual losses to point out the precision in
identifying the damaged areas. In this regard, the Jaccard and Dice indices were used to
measure the level of overlap and confusion matrices to measure the percentage of correctly
categorized pixels.

Table 5.2 presents the results for defoliation levels between 1 and 15%, 16 and
30%, and 31 and 45%. As can be seen, the indicators show very little difference between
the results, and the size of the leaf damage has little influence on the final results. In
most cases, the accuracy (ACC) was more significant than 90%. However, it is noted that
higher levels of defoliation slightly degrade the accuracy. As damage severity increases,
leaf edge regions can be compromised, altering leaf structure and leading to erroneous
estimates. Therefore, the results are more accurate when slight changes in the leaf edges
occur. On the other hand, the values of Jaccard and Dice increased according to the
number of damage to the leaves. When the damage is minor, the injured leaf adjusts less
to the template images, leaving artifacts near the leaf edges that do not overlap with the
actual damage.
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Table 5.2: Statistical measures of identifying damaged leaf area in different defolia-
tion levels.

Defoliation: 1-15% Defoliation: 16-30% Defoliation: 31-45%

Jaccard Dice ACC Jaccard Dice ACC Jaccard Dice ACC

Apple 34.9 49.8 94.8 57.3 72.2 93.1 63.7 77.3 90.0

Blueberry 34.6 49.7 94.6 59.1 73.9 92.2 66.1 79.3 90.9

Cherry 36.6 51.3 95.8 61.1 75.3 94.2 65.5 78.6 91.8

Corn 85.0 91.6 99.6 82.8 89.9 98.2 82.2 89.1 96.7

Grape 33.6 49.0 94.6 59.7 74.6 93.1 66.0 79.3 90.0

Peach 20.1 31.6 91.0 45.0 61.0 89.5 51.5 67.0 87.2

Pepper 33.8 48.6 95.0 58.7 73.5 93.5 65.1 78.4 91.5

Potato 37.0 52.7 95.2 60.7 75.2 93.4 67.3 80.2 91.7

Raspberry 38.5 53.8 95.7 62.1 76.2 94.3 69.9 81.5 92.6

Soybean 47.3 62.5 97.1 68.5 81.0 95.5 71.6 83.0 93.2

Strawberry 36.3 51.7 95.5 63.4 77.4 93.8 69.4 81.7 91.8

Tomato 31.5 45.7 94.0 54.3 69.8 92.5 61.7 75.8 90.5

Figure 5.6 presents confusion matrices with percentages of correct answers (TPR
and TNR) and errors (FPR and FNR) for the plants under study. The data for calculat-
ing these matrices was obtained with defoliation levels from 1 to 45%. While Table 5.2
presents three defoliation intervals, the confusion matrices result from grouping these
three intervals. As can be seen, Apple, Corn, Pepper, Potato, Raspberry, Soybean, Straw-
berry, and Tomato have hit rates above 80% (TPR) and 93% (TNR). Also, the results show
low error rates (FPR < 9.3% and FNR < 24.5%). Although plant species have different
characteristics, assertiveness and error rates between them are very close. The FPR was
generally lower because the background pixels were plain black, consequently increasing
the TNR and decreasing the FPR. However, FNR is related to considering leaf pixels as
background. That becomes more common in the boundary of the leaves, especially for
higher defoliation levels, since those pixels have many background neighbors, which can
cause some mistakes.



5.4 Results and Discussion 120

Figure 5.6: Confusion matrices for different plant species.

5.4.2 Defoliation estimate

The level of defoliation is measured by the linear correlation between the actual
and the estimated loss. When there is a strong correlation, the error effect is considered
minimal, although it is randomly distributed around the regression line. Figure 5.7 shows
scatter plots for the different types of crops investigated in this study. Blueberry, Corn,
Grape, Potato, Raspberry, Soybean, and Strawberry obtained a correlation coefficient
greater than 0.96 where Blueberry and Raspberry reached r = 0.97, and Grape, Potato,
Soybean, and Strawberry reached r = 0.98, and Corn reached r = 0.99. Apple, Peach, and
Tomato obtained lower results than the others, with values equal to r = 0.93, r = 0.77,
and r = 0.92, respectively. Corn obtained the most accurate result due to the leaf region
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occupying the full image size. On the other hand, Peach and Tomato obtained less accurate
results mainly due to the irregular pattern caused by the intensity of shading on peach
leaves and the registration of different tomato species with early and adult leaves. Despite
this, the results show that the method can be generalized for other plant species and is
consistent at varying levels of leaf damage.

Figure 5.7: Regression line of the proposed method in 12 different crop species.

However, it is important to note that the estimation error differs somewhat ac-
cording to the plant species. Leaf structures have their own characteristics that identify
them and differ from other types of crops. For plants with more homogeneous character-
istics, such as soybeans, leaf models can better represent the set. When the specimens have
variations in shape caused by the stage of leaf maturity, type of cultivar, or shading in leaf
regions, as in tomato, apple, and peach, the leaf models may be less assertive. In this way,
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the results are linked to the conditions of the image database. Also, for this reason, the
estimated error can differ from the actual error. Our method often overestimates the error
estimate, indicating that the leaf models have a larger leaf area than the test set images.
For leaf analysis situations, these results could better alert for preventive decision-making
actions than underestimated results that could erroneously postpone safeguarding actions.

5.4.3 Visual inspection

In addition to estimating the percentage of defoliation, in our proposal, the
damaged leaf regions are visually presented. It is a handy feature because it allows the
analyst to check which points in the leaf region are being attacked. For example, some
chewing insects initiate defoliation from the inner vein to the edges of the leaves. In
contrast, cutting insects prefers to start from border regions. Therefore, visual information
like the one we present can support other analyses besides the leaf loss estimate. Figure
5.8 shows some cases of defoliation and presents percentages of leaf tissue consumed and
estimated for different levels of leaf loss.

Figure 5.8: Estimated defoliation areas (in blue) and percentage of actual leaf dam-
age and leaf damage estimated by the proposed method. (GT = ground
truth, DE = defoliation estimate).
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Some detection errors are justified by the number of spurious pixels resulting
from the image binarization process, which leads to differences between the leaf template
and the test leaf. The binarization step may associate points in the leaf edge region
with the area of interest when, in fact, they should be categorized as the background
region. This effect can be visually observed in Figure 5.8, especially in the images of
grape and strawberry leaves ((e) and (k)). Besides that, the image template may not
correctly fit the shape of the test image, leading to differences between the two images.
As the preprocessing stage applies image adjustments through rotation transformation, the
template and test images can be in different profiles, making it difficult to match them. In
addition, the level of defoliation severity can influence the image’s positioning, as seen
in the corn leaf (Figure 5.8 (d)). In this case, the three images originated from the same
test leaf, but due to the level of defoliation, they were rotated and placed in different
positions. Also, it is worth mentioning that the actual damaged percentage is obtained
with the synthetic defoliation strategy (Section 5.3.3), in which the defoliation level is
computed based on the damages applied to input images.

5.4.4 Comparative analysis

A direct comparison between related works is quite challenging as no bench-
marking exists. Because of this, researchers use their database, which is not accessible
to the general public. Then, the data are restricted to those presented in the published
works, and it is hard to verify the samples’ variability, such as lighting conditions, leaf
format and position, and background complexity. Also, leaf images with damage caused
by real insects or artificial leaf canopy damage used in experimental tests are difficult
to reproduce to compare the results. Despite this, we present a comparative analysis be-
tween our method and related works considering only soybean leaves. Figure 5.9 shows
that the linear correlation (r) obtained by our method is better than using a digital scanner
(BRADSHAW et al., 2007) and as assertive as Bioleaf (MACHADO et al., 2016), which
is a semi-automatic method, and AlexNet, a convolutional neural network. Also, Figure
5.10 shows that the RMSE score of our method is smaller than those presented by the
deep neural networks AlexNet, VGGNet, and ResNet (SILVA et al., 2019).

Additionally, we qualitatively compare our work with related work. Unlike
(MALOOF et al., 2013) and (EASLON; BLOOM, 2014), the estimates performed in
our proposal are fully automated so that computer-assisted processes obtain the results.
Likewise, our work differs from (MACHADO et al., 2016) because our method does not
require user interaction and operator expertise to define leaf edge contours. It differs from
(SILVA et al., 2019) and (SILVA et al., 2021) since our proposal does not use training
steps, which are time-consuming and require many images to converge the models. It also
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Figure 5.9: Comparative considering linear correlation (r).

Figure 5.10: Comparative considering RMSE.

differs from (ESGARIO et al., 2022) because our model can estimate the severity of leaf
stress caused by chewing and cutting insects. Furthermore, our proposal does not require
specific equipment such as those used in manual quantification or leaf area measurement
equipment (KERAMATLOU et al., 2015; KAUR et al., 2014). Also, we demonstrate the
generalization of our proposed method by considering different types of plant species.
Finally, our experimentation differs substantially from the other works as we use a public
database that is available online and many validation metrics, including visual inspections.

In this sense, to address the problem related to the complexity of quantitative
comparisons, we organized and made our experimental data available (see Section A.1.5).
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We indicate the images used in the construction of template images and those used in
the tests. For the test images, we indicate their defoliation percentage in three groups:
from 1 to 15%, 16 to 30%, and 31 to 45%. Figure 5.11 presents some examples used in
the performance evaluation, which are available in the supplementary material. We also
organized all images into subfolders for future work and comparative analysis.

Figure 5.11: Some samples of the soybean test images.

5.4.5 Time performance analysis

The time to execute the leaf analysis processes depends on the number of images
used to construct the template images. Therefore, processing will require more time for a
more significant quantity of template images. Table 5.3 shows the average execution time
and standard deviation of the three processing steps considering the number of images
used in the template image construction and the number of images used as test images.
The most time-consuming task is related to image preprocessing. In this task, we must
binarize the image, compute its convex hull, find a reference line, and perform image
rotation. The last two operations are the most time-consuming. However, each presented
time in Table 5.3 represents the total time for each plant sample group. We highlight that
the preprocessing time for a single image sample is about three milliseconds, which can be
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considered small. In any event, we believe that is not significant since modern approaches
with parallel computing can significantly reduce the preprocessing time.

Table 5.3: Execution time (in seconds) of the proposed method steps and the number
of template and test images.

Preprocessing Image Matching Defoliation Estimate Template Images Test Images

Apple 4.22 ± 2.42 0.18 ± 0.01 5.63e-04 ± 3.08e-04 1,316 329 x 3

Blueberry 4.46 ± 2.55 0.18 ± 0.01 4.94e-04 ± 2.52e-04 1,202 300 x 3

Cherry 2.76 ± 1.65 0.14 ± 0.01 5.31e-04 ± 3.23e-04 684 170 x 3

Corn 5.33 ± 3.04 0.15 ± 0.01 5.84e-04 ± 3.48e-04 930 232 x 3

Grape 1.31 ± 0.72 0.12 ± 0.03 6.09e-04 ± 3.63e-04 339 84 x 3

Peach 0.96 ± 0.50 0.11 ± 0.01 6.40e-04 ± 5.63e-04 288 72 x 3

Pepper 4.14 ± 2.40 0.17 ± 0.02 5.27e-04 ± 3.99e-04 1,183 295 x 3

Potato 0.60 ± 0.30 0.11 ± 0.01 5.03e-04 ± 3.26e-04 122 30 x 3

Raspberry 1.15 ± 0.62 0.11 ± 0.01 4.91e-04 ± 2.53e-04 297 74 x 3

Soybean 13.71 ± 7.92 0.37 ± 0.01 4.84e-04 ± 3.01e-04 4,072 1.018 x 3

Strawberry 1.36 ± 0.76 0.11 ± 0.01 5.05e-04 ± 2.83e-04 365 91 x 3

Tomato 4.09 ± 2.38 0.17 ± 0.01 5.42e-04 ± 2.85e-04 1,273 318 x 3

It is worth mentioning that the preparation of the template image is performed
only once, so the final result can be quickly obtained. Also, the number of images used to
construct the template and test images varies according to the plant species in the dataset.
As we evaluate our proposal at three defoliation intervals, the number of test images is
multiplied by three.

5.4.6 Limitations

Although the proposed method presents consistent results, mentioning some lim-
itations is essential. First, results are more assertive when the leaf samples have a regular
pattern in their shape. In this way, image templates can better represent groups of plant
species and find better matches for damaged leaves. Furthermore, the segmentation pro-
cess that separates the leaf canopy (foreground) from the rest of the image (background)
can influence the results since the image templates may contain areas outside the leaf
region. Therefore, complex backgrounds and multiple plant leaf samples per image can
deteriorate the method’s performance.
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Problems related to background permeate all leaf analysis proposals. Related
work deals with this problem by suggesting using a blank sheet of paper to differentiate
the target object from the background or simply using databases with the target object
already segmented. Background subtraction and semantic segmentation are typical com-
puter vision problems and expand the scope of our investigation. These are topics of inter-
est for future work, where we intend to investigate segmentation methods and apply them
to scenarios with a complex background. Therefore, we plan to add new pre-processing
steps in future versions of the proposed method to deal with two or more leaves in the
same image and multiple overlapping leaves.

We have included a comprehensive figure to present some simulations concern-
ing complex conditions. Figure 5.12 presents a test leaf whose background was not re-
moved, another sample with a bigger and a smaller leaf in the same image, a shaded
image, and a leaf image with the stalk (petiole) that attaches the leaf blade to the stem in
a severe defoliation condition.

Figure 5.12: Limitation of the method. From (a) to (d): inaccurate background
removal, more than one leaf per image, shaded leaf, peculiar leaf
shape with severe damage. From the first row to the fourth: input
leaf, damaged leaf with synthetic defoliation, binarized damaged leaf,
defoliation estimated. (GT = ground truth, DE = defoliation estimate).
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Note that for all the cases in Figure 5.12, the estimated error differs from the
actual error because none of the image templates fit the test leaves correctly. Thus, due to
the complexity of the scene as a background region associated with the region of interest,
more than one leaf per image, image shadows that limit binarization, test leaf shapes
that differ from leaf templates, and excessive leaf damage, the method’s accuracy may
deteriorate.

However, these issues can be overcome with more homogeneous databases and
image acquisition with attention to background simplification. In practice, leaf analysis is
performed on homogeneous crop types, and leaf samples are separated according to their
position on the plants (e.g., at the top or upper third of the plant). Besides that, image
acquisition can be made using a blank sheet of paper as proposed by (MACHADO et

al., 2016), making it possible to collect data with leaf isolation and without removing the
sample for analysis (i.e., a non-destructive approach).

Despite this, through an automatic approach to leaf analysis, the proposal deals
with some challenges in estimating defoliation. In this regard, the severity of leaf damage
at different levels, the impairment of the leaf surface in edge regions, the difficulty
in building generalist models for different plant species, and processing steps that are
performed in reasonable processing time are addressed in this work to consolidate a tool
for precision agriculture. On the other hand, issues related to the collection of leaf samples
are not directly discussed in this study. Our work considers a more straightforward color-
based segmentation to differentiate regions of interest from background images. Thus, in
cases where unfavorable conditions are involved, such as a complex background and more
than one leaf per image, other segmentation strategies should be investigated.

In a scenario where our method is potentially used, an operator captures images
with an RGB camera with only one leaf per record. This step could be done with
some contrasting background that simplifies the target object segmentation process. An
image data set is prepared to contain only healthy leaves, i.e., images with no incidence
of insect predation. Likewise, injured leaves are captured and stored in another data
set. Then, the method builds template images with the data set of healthy leaves and
compares the damaged leaves with the templates. Finally, the method returns the estimated
percentage of defoliation. In this fashion, the operator does not need to worry about the
position of the leaf surface, the distance between the camera and the target image, or the
outline of the leaf silhouette. The method was designed to minimize image acquisition
effects such as rotation and scale transformations and work without requiring manual
delineation of leaf boundary regions. In this study, we use the segmentation method
proposed by (MOHANTY et al., 2016), whose operation is outside the method pipeline.
Other segmentation strategies can be investigated to separate the leaf from the image
background.
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5.5 Conclusion

In this chapter, we present a method for estimating leaf damage. As removing
leaf tissue from insects reduces photosynthetic capacity, measuring the percentage of leaf
area consumed is vital to verify the degree of interaction between insects and crops. In this
sense, leaf analysis enhances decision-making, contributing to more efficient agricultural
management actions and strategies.

The proposed method is suitable for monitoring activities with much greater
sampling capacity than manual or semi-automatic leaf analysis processes. Furthermore,
our method can be applied to plant species with various leaf shapes. Likewise, it can
accurately estimate defoliation at multiple severity levels and visually present the area of
leaf tissue consumed for further analysis and inspection. Thus, as it has a well-defined
pipeline with lightweight processing steps, the proposed method is suitable for devices
with limited computational power. Although we can see powerful neural networks,
the computational resources to run models and memory to accommodate the size of
the weights of these networks are still somewhat limiting. Current trends are easing
limitations on computing power, and we will soon see new scenarios. In any case, our
method will remain competitive as it can be parallelized to process even more significant
amounts of data per second.



CHAPTER 6
ProtectLeaf: An Insect Predation Analyzer for
Agricultural Crop Monitoring

I am coming to your house today.

Luke 19:5

Agricultural production positively impacts the global economy and is crucial in
delivering supplies and maintaining life. However, predatory insects are estimated to have
a significant productivity impact on agricultural fields. As the excessive incidence of in-
sects can reduce the functionality of the leaf surface, limitations can be noticed in the
capability of the plants to maintain energy, which reduces the growth of grains and fruits.
Therefore, leaf analysis is an essential tool in monitoring plantations, helping producers
make decisions to control agricultural pests. Thus, this chapter presents ProtectLeaf, a
software designed to support crop monitoring activities and decision-making in agricul-
tural environments through defoliation estimate, detection of insect predation on plant
leaves, and leaf reconstruction. This chapter was published in the Journal SoftwareX
(VIEIRA et al., 2023).

Nr. Code metadata description
C1 Current code version v1.0
C2 Permanent link to code/repository

used for this code version
<https://github.com/ElsevierSoftwareX/
SOFTX-D-23-00186>

C3 Permanent link to Reproducible Cap-
sule

<https://codeocean.com/capsule/7740985/tree/v1>

C4 Legal Code License GNU GPL-2.0 License
C5 Code versioning system used git
C6 Software code languages, tools, and

services used
MATLAB

C7 Compilation requirements, operating
environments & dependencies

Linux, Microsoft Windows, MATLAB R2014a

C8 If available Link to developer docu-
mentation/manual

<https://github.com/gabrieldgf4/insect_defoliation>

C9 Support email for questions gabriel.vieira@ifgoiano.edu.br

https://github.com/ElsevierSoftwareX/SOFTX-D-23-00186
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00186
https://codeocean.com/capsule/7740985/tree/v1
https://github.com/gabrieldgf4/insect_defoliation
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6.1 Introduction

Agricultural production has grown progressively and systematically in recent
years to respond to the global demand for farm supplies. As an economic activity, the
cultivation of plants has moved the economy positively with the increase in production
each year. In 2020, domestic corn prices rose, and the price average surpassed the best
sales mark in 2015 (USDA, 2020c). In this period, Brazilian soybean production has
reached new records, surpassing the United States production, which was the largest
soybean producer until then (USDA, 2020e). In addition, cultivating fresh deciduous
fruits such as pears, grapes, and apples exceeded expectations, with production above
that practiced in the years before 2022 (USDA, 2022).

Although agricultural production has achieved successive records, it is estimated
that predatory insects have a significant economic impact on crop yields (RENAULT
et al., 2022). Insect damage leads to a considerable loss of production and increases
the cost of pest management and control. The challenge is to find the balance between
agriculture and the inevitable incidence of insects. When the ecosystem is balanced, i.e.,
the existence of insects does not harm the crop, the expected results of crop production can
be achieved through previously defined interventions as planned. However, when there is
an imbalance, the number of insects exceeds expectations, and agricultural production
is affected, demanding contingency actions and invasive controls, such as mechanical
methods with containment barriers or chemical pest control with insecticides.

In this sense, crop monitoring is crucial for making good decisions for agricul-
tural management operations (VIEIRA et al., 2019a). The plantations need to be con-
stantly observed so that the occurrence of damages can be quantified to justify interven-
tions or indicate that the losses are within the normal range (MOUSSAFIR et al., 2022).
Among the pertinent damages to crops, the attack of herbivorous insects stands out. The
main consequence is the functional reduction of the leaf surface affected by the loss of
leaf area, which is known as defoliation (SILVA et al., 2019). Defoliation is a direct con-
sequence of insect predation, which reduces the energy capacity of plants, the photosyn-
thetic process, and the growth of grains and fruits (FERNANDES et al., 2022).

Estimating leaf loss and detecting leaf areas affected by predation are essential
tools in agricultural monitoring. Thus, the percentage of leaf damage can measure the
risk of future harm to crop production by indicating whether the occurrence of insects
is above acceptable tolerance limits. The estimated percentage of leaf area makes it
possible to verify the balance between plantations and predatory insects. For example,
measuring defoliation at 30% in the vegetative phase or 15% in the reproductive phase
of soybeans are the maximum threshold levels for triggering pest control (FERNANDES
et al., 2022). In addition, detecting damaged leaf regions provides information so the
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analyst can suggest the type of insect causing the environmental imbalance and adequate
pest control. In this sense, while the estimate of leaf loss supports decision-making, the
detection of injured leaves indicates the areas of cultivation in which the control of insect
proliferation needs to be applied.

The estimation of leaf loss has been assisted by different proposals, including
manual (KVET; MARSHALL, 1971), semi-automatic (MACHADO et al., 2016), and
fully automatic methods (SILVA et al., 2019; SILVA et al., 2021). However, they all have
some limitations. Manual methods demand highly qualified professionals to evaluate only
small amounts of leaf samples. Semi-automatic methods can handle more analysis re-
quests, but they depend on the user’s expertise in operating computer systems or calibrat-
ing leaf area measuring devices. Automated processes are independent of the knowledge
of qualified professionals but may require large volumes of data to build viable compu-
tational models. Given the limitations of related works, we present a computer program,
ProtectLeaf, that estimates leaf loss, detects leaf regions consumed by insects, and artifi-
cially reconstructs the leaf surface. Our method does not require specialized knowledge
to present the results and is suitable for environments with limited computational power.
It has well-defined processing steps and does not require large amounts of leaf samples to
build image models.

ProtectLeaf software was developed to support leaf analysis through quantitative
assessments and visual inspection regarding the detection of insect predation incidence on
plant leaves. The program identifies regions with leaf damage and highlights areas where
herbivory has been detected. In a complementary way, the program segments the traces of
insect bites whose results can be used in classifying predatory insects. Furthermore, the
software presents defoliation estimates by measuring leaf canopy consumed by insects.
Many proposals do not support leaf silhouette loss or require user intervention for this task
(MALOOF et al., 2013; EASLON; BLOOM, 2014; MACHADO et al., 2016). Unlike
related works, ProtectLeaf can automatically compute insect predation in both inner leaf
areas and edge regions. Another functionality of the software is the reconstruction of the
affected leaf area. A visual representation is presented to artificially fill the consumed
leaf areas resembling the original leaf before defoliation. The software also has an insect
predation simulator that uses actual leaf damage to produce insect damage on healthy
leaves. Other works simulate defoliation but only use artificial structures quite different
from true damage (SILVA et al., 2019; SILVA et al., 2021). Figure 6.1 presents results
obtained with the software.
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(a) (b)

(c) (d)

Figure 6.1: Overview of the ProtectLeaf features. From left to right, (a) damaged leaf
with artificial defoliation, (b) detection of insect predation (in magenta),
(c) the estimate of injured leaf surface (in red), (d) and leaf reconstruc-
tion. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this thesis.)

6.2 Software description

The software has three main functionalities. In the first one, the detection of
damaged leaf regions is performed. As a result, the leaf surface that suffered insect
predation is highlighted, and the bite traces are segmented. In the second, leaf loss is
estimated, and damaged leaf areas are visually identified. In this regard, a defoliation
estimate is performed in situations involving internal damage as well as leaf edge regions.
The leaf silhouette is delineated in the third, and the injured leaf surface is reconstructed.
The reconstruction process consists of the artificial filling of the delineated area, which
is done by image blending (WANG et al., 2017), or image inpainting (BORNEMANN;
MÄRZ, 2007) techniques.
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The software was designed with processing steps to eliminate aspects of subjec-
tive interpretation and reduce the demand for a professional specialized in leaf analysis.
Likewise, the software does not require expensive equipment and strict image acquisition
procedures. Also, the software was implemented with lightweight processes that con-
sidered energy efficiency and system overload aspects. In such a manner, the software is
suitable for smart agriculture ecosystems that generally demand solutions for devices with
limited computing power, such as embedded systems, Internet of Things (IoT) networks,
and intelligent agriculture machinery (SAADANE et al., 2022). Furthermore, the soft-
ware uses digital image processing techniques, statistical measurements, and leaf proper-
ties, which are integrated into a comprehensive, easy-to-use computer solution. Thus, the
software does not involve the intensive application of feature engineering and does not
involve building statistical models based on learning algorithms.

As presented in Figure 6.2, the software architecture was designed with three
main components. First, the plant leaf samples are processed and automatically adjusted
based on scale, rotation, binarization, and morphological operations. After initial pro-
cessing, the binarized images are grouped into an image template database to assess the
correspondence between an injured leaf and template leaves. Next, the image matching
step finds the image template that best fits the damaged leaf. Following that, the image
template becomes a reference to compute the damage caused by insect predation, detect
the leaf surface regions affected by herbivory, and reconstruct the leaf canopy. The image
template database was built in previous works with 20 images (VIEIRA et al., 2022), 42
images (VIEIRA et al., 2021a), and 60 images (VIEIRA et al., 2022). In this sense, the
template images can be prepared with only a few healthy leaf samples.

Figure 6.2: Software architecture design.
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In Preprocessing, each sample of the image data set is transformed into an im-
age template. First, an image sample is binarized where its background is labeled with 0,
and its foreground (leaf surface) is labeled with 1. Then, the resulting image is processed
with a convex hull operation that encloses all leaf surface points in a convex polygon.
Following that, the image’s border is highlighted using morphological operations, and the
distances between the points that contour the leaf surface are computed. Based on the
longest distance between a pair of points, a reference line is traced, which is used to ro-
tate the image to a vertical position. In addition, the image is scaled according to the leaf
surface. After concluding these steps, a set of image templates is obtained with one rep-
resentation for each image in the database. Similarly, the preprocessing steps are applied
to injured leaves. Figure 6.3 shows the visual results of the preprocessing steps applied to
a sample of an image data set and a damaged leaf.

(a) Original
images

(b) Binarization (c) Convex hull (d) Reference line (e) Rotation and
scale

Figure 6.3: Building an image template (first row) and adjusting a damaged leaf
(second row) with preprocessing steps.

In Image Matching, injured leaves are compared to the image templates, and
the similarities are measured to point out correspondent images. The main goal is to find
models that best fit the damaged leaf surfaces or models whose shapes are better related
to the injured leaf designs. The comparison consists of computing the image profiles
and checking which image pairs obtained the most significant matching. The similarity
is measured by the ratio between the common points (intersection) and the combined
areas (union) of damaged leaves and image templates. Therefore, the image-matching
process computes the intersection over the union (IoU, (HU et al., 2021)) where the
results range from 0 to 1. When the results are close to 1, perfect consistency can be
noted. In contrast, IoU values close to 0 points to a weak match. After comparing the
damaged leaves with the entire image templates, the results with higher values indicate
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better image correspondences. Figure 6.4 presents visual representations of the image-
matching process.

(a) IoU = 0.72 (b) IoU = 0.86 (c) IoU = 0.81 (d) IoU = 0.88 (e) IoU = 0.94

Figure 6.4: Image matching process between template images and a pre-adjusted
damaged leaf.

In Preparing Results, three steps are followed: the defoliation is estimated,
the leaf predation is detected, and the foliar canopy is reconstructed. The defoliation es-
timate is computed by the logical conjunction between damaged leaves and their cor-
responding image templates. The task consists of counting the points outside the inter-
section between the image pair and computing the percentage of pixels in the template
image that are not in the damaged leaf. Likewise, the damaged regions are obtained from
the logical conjunction operation between damaged leaves and the retrieved image tem-
plates in detecting leaf predation. Then, image elements outside the intersection of image
pair boundaries indicate segments corresponding to insect bites. In the leaf reconstruction
step, image template areas whose regions do not belong to the damaged leaves point to
the compromised regions of the target image. Thus, the estimated missing areas are ar-
tificially filled with digital image processing techniques. The software implements two
image reconstruction techniques: image blending (WANG et al., 2017), and image in-
painting (BORNEMANN; MÄRZ, 2007). Figure 6.5 presents visual results of defoliation
estimate, leaf predation detection, and foliar canopy reconstruction using image inpaint-
ing.

(a) Defoliation estimate (b) Leaf predation detection (c) Foliar reconstruction

Figure 6.5: Visual results of leaf analysis presented by the software.
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6.3 Software components

This section introduces the ProtectLeaf software components and shows their
intra-module connections and dependencies. Structured through thirteen components, the
software contains modules for image loading, dataset organization, similarity evaluation
and image matching, image reconstruction, and support modules for result analysis and
artificial damage preparation. Figure 6.6 illustrates the software architecture with its
provided and required interfaces and dependencies between the software components.

Figure 6.6: Software architecture components.

The Load Image Dataset is a utility that the software has for reading images
from disk. In this module, a function that receives a folder name (or image path) reads and
loads images into memory for later manipulation. The Prepare Image Data transforms
previously loaded images to obtain two categories, area of interest and image background,
in a process known as binarization.

The Prepare Template Images and Prepare Test Data components are re-
sponsible for building the template images and adjusting the test images through morpho-
logical operations (convex hull), and image rotation and scale operations. Both modules
require the Find Reference Line component responsible for calculating leaf edge pixel
distances and finding the reference line used to encapsulate the leaf shape pattern.

The Image Matching computes the overlap area between a damaged leaf (test
image) and model leaves (template images) and returns the template that best fits the
injured leaf shape. From the result obtained, the components Compute Defoliation,
Detect Insect Bites, and Rebuild Leaf Canopy, work in the defoliation estimate,
detection of insect predation, and reconstruction of the leaf surface, respectively. In this
software version, leaf reconstruction can be achieved using the Image Blending or
Image Inpainting components.
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The software also has two other modules used mainly to analyze the results. The
Synthetic Defoliation component applies synthetic deformations to healthy leaves
by mapping the original state with the updated state. This mapping allows checking
the quality of the results when labeled data is challenging to obtain. In the case of leaf
analysis, building image databases has a significant operating cost as laboratory facilities
are required to maintain crops and insects. In this sense, the feasibility of the ProtectLeaf
software can be quickly verified for any crop using only healthy leaves. Another equally
important module for this task is the Evaluation component, which provides evaluation
metrics such as those indicated in Section 6.4.2.

6.4 Experimental design and results

In this section, the results obtained with the experimental tests are presented.
The effectiveness of the ProtectLeaf software is verified in different plant species, and
the results are discussed considering three main points: correctness in identifying missing
segments of leaf area, assertiveness in the defoliation estimation, and precision in the
visual reconstruction of the damaged leaf.

6.4.1 Image dataset

The experiments are performed in a public dataset1 with several specimens
of plant leaves: apple, blueberry, cherry, corn, grape, peach, pepper, potato, raspberry,
soybean, strawberry, and tomato. The dataset was randomly split into 80% and 20%. The
first set is used to construct template images, and the other is used for evaluation purposes.
The template images are constructed from healthy plant leaves, where a model is prepared
for each plant species, and the test images are preliminarily deformed using the synthetic
defoliation component to produce injured leaves (Section 6.3). Leaf damage is applied in
different amounts, which include minor damage ranging from 1 to 15%, medium damage
from 16 to 30%, and severe damage from 31 to 45%. Also, the segmentation strategy
proposed by (MOHANTY et al., 2016) is used to detach the leaves from the image
background.

6.4.2 Evaluation metrics

Linear correlation indicates the degree of relationship between the expected
and estimated defoliation level and expresses the degree of correlation through values

1https://github.com/digitalepidemiologylab/plantvillage_deeplearning_paper_dataset
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between -1 and 1 (SOARES et al., 2011) as presented in Eq. 6-1.

r =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2

, (6-1)

where x contains the reference leaf damage values and x̄ is the average value of the
expected defoliation levels. y contains the estimated leaf damage values, and ȳ is the
average value of the estimated defoliation levels. n represents the number of images used
in the experimental test.

Intersection over Area (IoA) measures the overlap between two image seg-
ments and presents a score related to the intersection between the predicted predation
segment and ground truth (VIEIRA et al., 2022). Then, if the IoA of a bite segment is
higher than 0.5, it is defined as True Positive (TP). Otherwise, it is defined as False Pos-
itive (FP). Those segments that do not match predicted predation marks are defined as
False Negative (FN).

From IoA, Precision and Recall statistical measures are used to evaluate the
detection and segmentation of insect bite signatures as presented in Eqs. 6-2 and 6-3.

Precision =
T P

T P+FP
(6-2) Recall =

T P
T P+FN

(6-3)

where TP stands for the number of segments correctly labeled as bite segments, FP
represents the number of segments incorrectly labeled as a bite, and FN the segments
not labeled as a bite. TP, FP, and FN are specified according to IoA scores.

Structural similarity index measure (SSIM) quantifies the image quality con-
sidering the reconstructed leaves and their corresponding ground truth images (WANG et

al., 2004). SSIM is standardized, ranging from −1 to 1, where a score closer to 1 means
that two images are very similar, as presented in Eq. 6-4).

SSIM(T,Y) =
(2µtµy +C1)(2σty +C2)

(µ2
t +µ2

y +C1)(σ
2
t +σ2

y +C2)
, (6-4)

where µt , µy, σt , σy, σty are the local means, standard deviations, and cross-covariance for
images T (ground truth) and Y (reconstructed leaf). C1 and C2 are regularization constants
that avoid instability for image regions where the local mean or standard deviation is near
zero.

Root mean square error (RMSE) computes the error between the expected
defoliation level (x) and the estimated one (y) and indicates the mean error between n
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images as presented in Eq. 6-5.

RMSE =

√
∑

n
i=1(xi− yi)2

n
(6-5)

6.4.3 Results

Figure 6.7 presents the linear correlation between the actual and the estimated
leaf damage. Soybean, corn, potato, blueberry, grape, strawberry, and raspberry presented
a correlation coefficient greater than 0.96. Corn reached r = 0.99, which is explained by
the area occupied by the leaf. As corn leaves occupy the entire image, it is easy for the
software to find a correct matching image. On the other hand, apple, tomato, and peach
presented lower results, r = 0.93, r = 0.92, and r = 0.76, respectively, which is justified by
the presence of shadows and leaf samples with different levels of maturity in the dataset.

Figure 6.7: Regression line between actual and the estimated leaf damage consider-
ing the defoliation level intervals from 1 to 45%. Y refers to the estimated
value, while target T refers to the reference data.
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Figure 6.8 shows the average statistical results for detecting and segmenting
insect predation marks. Blueberry, grape, and strawberry achieved similar precision and
recall scores, close to 1.00, which means most of the bite segments were rightly detected.
The other plant species presented a regular pattern in which the precision and recall scores
increased according to the percentual damage applied to the target images.

Figure 6.8: Insect bite segmentation: average precision and recall. The x-axis repre-
sents the defoliation level intervals, while the y-axis represents the preci-
sion or recall outcomes.

Table 6.1 shows the average (x̄), standard deviation (s), and minimum and
maximum values of precision and recall in the detection of leaf predation. Blueberry,
grape, and strawberry achieved over 97% precision and more than 98% recall. Also, corn
achieved over 97%, but a less assertive recall score close to 91%. Cherry, bell pepper,
and potato reached over 70% precision and scores close to or higher than 90% recall.
Likewise, apple and raspberry achieved precision results close to 70% and recall scores
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higher than 90%. Soybean also reached good results close to 80% precision and above
91% recall. In contrast, peach and tomato obtained precision scores below 70% but recall
scores similar to the other plant species, 86.03 and 91.73%, respectively. Besides that,
peach, potato, raspberry, and tomato presented the highest precision standard deviation
above 20%.

Table 6.1: Precision and recall in detecting leaf predation considering defoliation
level intervals from 1 to 45%.

Precision Recall

x̄ s Min Max x̄ s Min Max

Apple 67.08 19.28 46.30 84.38 90.39 04.39 86.39 95.09

Blueberry 98.73 00.56 98.08 99.11 98.90 00.44 98.42 99.30

Cherry 73.55 15.96 55.88 86.93 89.10 05.84 82.93 94.57

Corn 97.91 01.75 96.17 99.68 91.15 02.41 88.71 93.54

Grape 99.27 01.02 98.10 100.0 98.28 01.77 96.45 100.0

Peach 62.46 22.80 38.72 84.21 86.03 07.37 78.82 93.56

Bell Pepper 70.52 19.91 48.37 86.93 89.57 05.94 84.11 95.90

Potato 72.84 23.83 46.47 92.85 92.78 08.38 83.15 98.48

Raspberry 69.64 20.72 47.85 89.10 91.91 05.14 86.10 95.86

Soybean 79.03 14.97 62.29 91.13 91.40 03.89 87.53 95.31

Strawberry 97.69 00.72 96.92 98.36 98.23 01.52 96.49 99.32

Tomato 66.55 20.98 43.44 84.41 91.73 03.99 87.82 95.81

Figure 6.9 shows histograms of the number of images by the total number of
False Positive (FP) bite segments considering the defoliation levels from 1% to 45%.
It is observed that most of the test images reported zero FP entries. For example, from
the 273 strawberry test images, less than 25 images presented one or two wrong bite
segments. Blueberry, corn, and grapes also obtained similar results to strawberry leaves.
Likewise, the test images in the other target species presented zero FP entries. In contrast,
apple, cherry, peach, bell pepper, potato, raspberry, soybean, and tomato presented one
to eight improper detected bite segments. In addition, Figure 6.10 shows the histograms
of the False Negative (FN) bite segments. The interpretation of False Positive (FP) and
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False Negative (FN) consists of the attention given to the number of segments wrongly
identified or ignored. False positives occur when bite segments are detected but do not
match the actual bite segments. On the other hand, when actual bite segments are not
detected, the method fails to identify the segments correctly, and the number of false
negatives increases.

Figure 6.9: Histogram of False Positive (FP) obtained in different types of crop
leaves. The x-axis represents the number of errors, while the y-axis
represents the number of images in each range.

Figure 6.11 presents the SSIM scores obtained with ProtectLeaf in the recon-
struction of leaf damages. The results indicate a slight improvement in the reconstruction
process by interpolating images using inpainting. The image model, i.e., the image tem-
plate that matched the damaged leaf, obtained SSIM scores from 0.48 to 0.70, while the
image blending obtained SSIM scores from 0.67 to 0.87 and the image inpainting from
0.68 to 0.94.

Table 6.2 presents the average SSIM scores of each 12 target species considering
the defoliation range from 1 to 45%. ProtectLeaf obtained the best results with corn,
cherry, and soybean leaves, reaching an SSIM value equal to 94.58%, 85.15%, and
82.72%, respectively. Bell pepper, potato, and raspberry also showed promising results
with scores equal to 79.17%, 77.45%, and 78.42%. On the other hand, peach presented
the least assertive results with an SSIM score equal to 68.07%. Despite the diversity of
samples and diversified lighting, the other cultivars achieved results above 73.58% using
the image inpainting technique.

Table 6.3 presents a quantitative comparison between ProtectLeaf and some re-
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Figure 6.10: Histogram of False Negative (FN) obtained in different types of crop
leaves. The x-axis represents the number of errors, while the y-axis
represents the number of images in each range.

Figure 6.11: SSIM scores of the leaf reconstruction process. The x-axis represents
the defoliation level intervals, while the y-axis represents the SSIM
outcomes (Legend: Model; Blending; Inpaint).

ported results presented by other related works. Although the performance measurements
were obtained using different experimental setups, the results obtained give an intuition
about the performance of ProtectLeat concerning other proposals in the defoliation esti-
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Table 6.2: Average SSIM scores and standard deviation of the image model, image
blending, and image inpainting.

Model (%) Blending (%) Inpainting (%)

x̄ s x̄ s x̄ s

Apple 50.75 06.50 73.45 09.36 75.12 08.05

Blueberry 55.52 05.35 72.96 07.72 73.58 07.39

Cherry 70.23 03.61 83.18 04.82 85.11 04.09

Corn 66.09 04.33 87.71 06.22 94.58 04.26

Grape 64.03 04.21 76.67 05.46 76.82 04.73

Peach 48.63 04.40 67.91 08.80 68.07 08.49

Bell Pepper 62.37 05.36 78.61 06.27 79.17 05.57

Potato 58.96 04.38 76.45 07.59 77.45 06.24

Raspberry 58.37 05.03 77.57 07.45 78.42 06.53

Soybean 60.05 05.03 80.61 07.55 82.72 06.25

Strawberry 61.20 03.70 76.78 06.19 76.90 05.59

Tomato 54.72 07.83 73.72 08.60 74.79 08.10

mation task.

6.5 Discussion and Impact Overview

Unlike related work, ProtectLeaf integrates different leaf analysis functionalities
into a single solution. Therefore, the software is a valuable tool for defoliation estimate,
detection of insect predation on plant leaves, and leaf reconstruction. In this sense, it
can support crop monitoring activities and decision-making for agricultural management.
As the software presents information for leaf analysis, it enables the diagnosis of crop
plantations concerning the environmental balance between plants and the incidence of
insects. Also, it promotes the rational use of agricultural resources in programmatic
actions and emergencies to combat and control pests. For example, from the collection
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Table 6.3: Quantitative results provided by related work and ProtectLeaf considering
soybean leaves.

Method r RMSE

Digital Scanner (BRADSHAW et al., 2007) 0.938 –

BioLeaf (MACHADO et al., 2016) 0.992 –

AlexNet (SILVA et al., 2019) 0.987 4.57

ResNet (SILVA et al., 2019) – 14.6

ProtectLeaf 0.983 3.49

of data and information presented by the software, questions related to the population
growth of insects, the ability of plants to develop against predators, and the risk of
loss of production can be answered. Besides, analytical information can be obtained
before predatory insects compromise the entire plantation, justifying the application of
insecticides and appropriate agricultural management.

Although insect classification systems using machine learning models can detect
insects in crops, it is challenging to infer the fine line that differentiates insect popula-
tion normality from the disruption that generates uncontrolled insect population growth
(VIEIRA et al., 2022). In contrast, ProtectLeaf highlights areas of agricultural damage
regardless of insect classification. Our approach is more versatile as it does not rely on
catching insects that can be camouflaged, move fast, hidden, or in clusters. In this sense,
ProtectLeaf can help analyze environmental balance and verify the local and global health
of the plantations. Figure 6.12 presents an example of detecting insect predation on leaves.

(a) (b) (c)

Figure 6.12: Example of detecting insect predation on a soybean leaf. From left to
right, (a) damaged leaf, (b) detection of foliar damage areas, and (c)
segmentation of insect bite traces.

Another feature that contributes to leaf analysis is the defoliation estimate. In
ProtectLeaf, leaf damage is computed, and the loss percentage is presented along with the
visual delineation of the injured leaf region. While in other works, only quantitative data
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are presented (SILVA et al., 2019; SILVA et al., 2021), ProtectLeaf produces visualization
for inspecting leaf tissue losses. Furthermore, ProtectLeaf can estimate defoliation both in
the leaf surface’s internal predation and edge regions. In other related works, the estimate
of leaf damage is computed only for internal damage (MALOOF et al., 2013; EASLON;
BLOOM, 2014) or with human intervention in damages to leaf edges (MACHADO et

al., 2016). Figure 6.13 presents some examples of defoliation at different levels of leaf
damage severity.

(a) AD: 04.23
DE: 04.89

(b) AD: 16.26
DE: 15.55

(c) AD: 30.50
DE: 30.47

Figure 6.13: Examples of defoliation estimate on potato leaves. Damaged leaves
are presented in the first line, while the estimate of the injured leaf
surface is shown in the second line. Actual damage percentage (AD)
and defoliation estimate percentage (DE) are also presented.

Moreover, the leaf reconstruction offered by ProtectLeaf was ideally designed
to contribute to the training of machine learning models in leaf analysis. As the perfor-
mance of classifiers varies depending on the variability in leaf shape, color, and texture,
leaf samples with any noticeable damage are discarded (CARRANZA-ROJAS; MATA-
MONTERO, 2016). The consequence of this approach is a reduction in the number of
samples since only fresh and intact plant leaves are used to train computational models
(BARRÉ et al., 2017). On the other hand, excluding samples can generate imbalanced
data and affect the performance of models (HUSSEIN et al., 2020). In this sense, leaf
reconstruction is crucial where injured leaves can be recovered and used in leaf analy-
sis with machine learning (HUSSEIN et al., 2021). PretectLeaf delineates damaged leaf
areas, fills them with artificial filling techniques, and presents the reconstructed leaves.
Figure 6.14 presents an example of leaf reconstruction using ProtectLeaf.

Furthermore, Figure 6.15 presents visual results provided by ProtectLeaf con-
sidering different types of crop species. As can be noted, ProtectLeaf can be generalized
to different plant formats and species, showing that it is capable of being used in a wide
range of applications.
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(a) (b) (c)

Figure 6.14: Example of leaf surface reconstruction using ProtectLeaf on a cherry
leaf. From left to right, (a) damaged leaf, (b) trace of damaged leaf
edge regions, (c) leaf reconstruction using image inpainting.

Figure 6.15: Leaf analysis results. Rows 1–6 (and 7–12): images after segmentation
and defoliation, leaf edge restoration, damaged areas, detection of in-
sect predation, reconstructed leaves with image blending, and inpaint-
ing.
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6.5.1 Ongoing research projects using the software

The scientific method of leaf analysis of ProtectLeaf has been investigated in
other studies, where the performance and assertiveness evaluations of the software were
discussed. The potential for generalization to different species, leaf analysis at moderate
to advanced levels of predation and computational efficiency with lightweight processes
in the detection of areas affected by insects (VIEIRA et al., 2022), leaf reconstruction
(VIEIRA et al., 2021) and defoliation estimation (VIEIRA et al., 2022), (VIEIRA et al.,
2024) were demonstrated.

6.5.2 A list of all scholarly publications enabled by the software

1. G. S. Vieira, N. M. de Sousa, B. Rocha, A. U. Fonseca, F. Soares, A method for
the detection and reconstruction of foliar damage caused by predatory insects,
in: 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC),2021, pp. 1502–1507. (VIEIRA et al., 2021)

2. G. S. Vieira, B. M. Rocha, A. U. Fonseca, N. M. de Sousa, J. C. Ferreira, C.
D. Cabacinha, F. Soares, Automatic detection of insect predation through the
segmentation of damaged leaves, Smart Agricultural Technology 2 (2022) 100056.
(VIEIRA et al., 2022)

3. G. S. Vieira, A. U. Fonseca, B. M. Rocha, N. M. Sousa, J. C. Ferreira, J. P. Felix, J.
C. Lima, F. Soares, Insect predation estimate using binary leaf models and image-
matching shapes, Agronomy 12 (11) (2022). (VIEIRA et al., 2022)

4. G. S. Vieira, A. U. Fonseca, N. M. de Sousa, J. C. Ferreira, J. P. Felix, C. D.
Cabacinha, and F. Soares. An automatic method for estimating insect defoliation
with visual highlights of consumed leaf tissue regions. Information Processing in
Agriculture (2024). (VIEIRA et al., 2024)

6.6 Conclusion

This chapter presented the software developed by the authors to handle defolia-
tion estimation, leaf damage detection, and reconstruction of the injured leaf surface. In
addition to presenting quantitative results, the tool shows visual outcomes that can as-
sist in leaf analysis and inspection. In the defoliation estimate, the soybean, corn, potato,
blueberry, grape, strawberry, and raspberry presented a correlation coefficient greater than
0.96. In predation detection, the experimental tests showed precision and recall scores
close to 1.00 for blueberry, grape, and strawberry. Also, SSIM scores were between 0.68
and 0.94 in leaf reconstruction. In this sense, the developed computer program can per-
form on different types of crops, assisting in leaf analysis with accurate results.



CHAPTER 7
Soybean Pests Classification and Foliar
Predation Recognition Using Bite Traces

I saw you.

John 1:48

Soybeans are a popular food source and the most essential vegetable protein
worldwide. However, soybean crops are susceptible to attacks, where defoliating insects
are among the most aggressive enemies. Traditionally, manual collection is used to cap-
ture and identify pests, but it is insufficient to meet production needs due to subjective
aspects and low efficiency. In this sense, classification using computer models is one of
the trends in agriculture. Nevertheless, unlike related works that use images for pest iden-
tification, we investigated the feasibility of classifying data based on the foliar damage.
Thus, classification can be performed without capturing and collecting organisms harm-
ful to agriculture, eliminating the need to prepare and purchase traps. We compare four
deep neural network architectures (VGG16, ResNet50, Xception, and EfficientNetB0) to
classify four soybean defoliators (caterpillar, green cow, gastropod, grasshopper) and pre-
pared a novel methodology to simulate pest attack on soybean leaves. According to the
experimental tests, VGG16 performed better and obtained 90.39% accuracy in the multi-
class classification. On the other hand, when multi-classification was treated as a binary
problem, VGG16 obtained an assertiveness of 99% for classifying caterpillars and green
cows. Based on the results, we conclude that classifying pests based on the damage they
cause to leaves is a viable alternative for crop monitoring.

7.1 Introduction

Numerous actions have been continuously updated to meet the agricultural
demands in obtaining economically competitive products. The expansion of production
to other regions, changes in cultivation systems, food production without contamination,
considerations regarding environmental preservation, and adaptation of crops to local
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fauna have been some of the concerns of experts and farmers. Additionally, the automation
and digitalization of agricultural processes have converted hours of human work into just
a few hours of activity and have enhanced application areas such as farm machinery,
irrigation systems, weed and pest control, fertilizer application, greenhouse management,
and storage systems (SUBEESH; MEHTA, 2021).

Actions taken by producers have demonstrated the feasibility of expanding agri-
cultural production. Technological mastery related to crop management, the genetic po-
tential of cultivars, and new perspectives for recovering degraded pastures have con-
tributed to large-scale production (GAZZONI et al., 2019). In addition, using a new set of
agricultural technologies has helped growers in agricultural management (PIVOTO et al.,
2023). For example, different aspects of digital technologies such as advanced sensors,
smartphone applications, image recognition (portable devices, drones, and satellites), In-
ternet of Things (IoT), big data, computer vision, and artificial intelligence are part of
agricultural ecosystems and have contributed to the positive outcomes of grain produc-
tion in recent years (JÚNIOR; LOPES, 2023).

Among grain commodities, soybeans are a popular food source and are the
most important vegetable protein worldwide (BUENO et al., 2023; PARK et al., 2023).
Moreover, among world producers, Brazil is currently the world leader in soybean
cultivation. In 2023, Brazilian soybean production reached 161 million metric tons (Mmt),
while the second and third largest producers, the United States and Argentina, reached 112
Mmt and 48 Mmt, respectively (USDA, 2024). One factor explaining high productivity
is related to correctly identifying traditional pests and those more recently adapted to
soybeans. As soybean production is susceptible to attacks from germination to harvest,
crops must be constantly watched. When early detection of pest population growth is not
adequately monitored, production expectations can be reduced considerably.

Defoliating insects are among the most aggressive enemies of soybean planta-
tions. These insects are most prominent in the vegetative and flowering phases and re-
sult in significant biotic stress because they consume regions of the leaf surface (SOSA-
GÓMEZ et al., 2023). Although there are more than six million insect species, only 20
to 30 are important pests for major crops (GARCíA-LARA; SALDIVAR, 2016). Among
the herbivorous arthropods considered significant economic pests are the Anticarsia gem-

matalis Hübner, 1818 (Insecta: Lepidoptera: Noctuidae) and the Diabrotica speciosa

(Coleoptera: Chrysomedidae) (HORIKOSHI et al., 2021; HESLER et al., 2018). Other
soybean pests are categorized as occasional or sporadic but can be potentially problem-
atic, such as Rhammatocerus schistocercoides (Orthoptera: Acrididae: Gomphocerinae)
and gastropods (slugs and snails) (SOSA-GÓMEZ et al., 2023).

Leaf loss impacts agricultural productivity since defoliation reduces the pho-
tosynthetic capacity of plants (ROTH-NEBELSICK; KRAUSE, 2023; LAWSON; MIL-
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LIKEN, 2023), causing damage to pod formation and grain filling (SILVA et al., 2022;
FERNANDES et al., 2022). In addition to pests causing direct harm to cultivated plants
by feeding on them, they can indirectly transmit plant viruses, which leads to signifi-
cant yield losses (JEER, 2022). Herbivorous insects from the order Coleoptera and Lep-
idoptera, such as beetles and caterpillars (ALI et al., 2024), and several other defoliators
(SOSA-GÓMEZ et al., 2023), compromise the structure of plants where the severity of
the damage can harm the entire crop. It is estimated that defoliation rates above 30%
in soybeans’ vegetative stage can considerably compromise production. Defoliation at
the soybean reproduction stage is even more restrictive, where defoliation control is es-
timated to be done before 15% to avoid significant losses (FERNANDES et al., 2022;
HAYASHIDA et al., 2023).

Therefore, when the insect population rate is high, damage to the leaf surface
becomes a concern since the productive loss indicates economic risks. In the same way,
herbivorous gastropods, such as slugs and snails, can cause defoliation and even plant
death. Although they mainly attack the early stages of crop development, they can also
occur at the end of the soybean cycle, causing clogging of the harvesters (SOSA-GÓMEZ
et al., 2023). Traditionally, manual collection, such as the beating tray method, and traps,
such as those based on chemical signals (pheromone traps) or adhesive substances (sticky
traps), are strategies used to capture and identify pests in farming. In this case, equipment
acquisition, adequate preparation of the tools, and the presence of experts are required to
collect and classify the pests. Although these approaches are important, the recognition
method based on manuals and instruments is insufficient to meet production needs due to
its subjective characteristics and low efficiency (FU et al., 2023).

On the other hand, the automation of agricultural processes has made it possible
to create more efficient and low-cost work models. As computer-aided processes can deal
with a massive amount of data, computational models achieve results with high precision,
reduce human subjectivity, present performance comparable to experts, and assist farmers
in analysis and decision-making tasks. Crop image analysis is among the most recent
areas of research helping to consolidate the use of new technologies in agriculture. By
registering an image, objects of interest can be observed, and their features can be used
in detection, counting, and classification tasks. In this sense, pest characteristics can be
encoded for subsequent processing and analysis on a computer or a smartphone device.

In the wake of the development of new cutting-edge technologies and the pop-
ularization of artificial intelligence, numerous studies have emerged proposing computa-
tional models to optimize demands arising from rural environments. Computational tools
have been developed for leaf loss estimation (VIEIRA et al., 2022; GOSHIKA et al.,
2024; VIEIRA et al., 2023), tree segmentation (VIEIRA et al., 2019a; VIEIRA et al.,
2019b; LI et al., 2023), insect predation detection (VIEIRA et al., 2022), foliar recon-
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struction (VIEIRA et al., 2021a), pest recognition (FU et al., 2023), 3D insect modeling
(DOAN; NGUYEN, 2023), fruit damage identification (ZHANG et al., 2022a), insect
monitoring (RUSTIA et al., 2023), and insect classification (YANG et al., 2023). These
research initiatives have brought promising results for the insertion of new technologies
on farms, and a contribution that stands out is the help given to rural producers in decision-
making through the presentation of highly accurate information.

Other important research works are those of (ESGARIO et al., 2022), which used
the UNet and PSPNet architectures to segment target objects, and AlexNet, GoogLeNet,
VGG16, and ResNet50 architectures to classify leaf symptoms. (YANG et al., 2023) that
proposed a standard garden insect classifier in complex natural environments and com-
pared different deep neural networks such as SqueezeNet and AlexNet. (KASINATHAN
et al., 2021) that presented an insect pest detection algorithm consisting of foreground ex-
traction and contour identification using an original convolutional neural network (CNN).
(ZHANG et al., 2024), which developed a multispecies pest counting solution based on
neural network architectures such as VGG19 and FPN; and (ZHU et al., 2024) that in-
vestigated the application of deep learning techniques to locate pest-infested leaves and
proposed a YOLO-based network to classify pest insects.

Our recent work discussed the potential of classifying insects from leaf damage
(VIEIRA et al., 2022). We started a debate about the advantages of classification by
foliar damage instead of classification by insect image. We pointed out that insects can
be difficult to capture, requiring the preparation of appropriate traps. They can hide
and camouflage among vegetation. They can live in clusters, making segmentation and
isolation difficult. They can have varied habits; in some phases of development, they can
be diurnal, and in other phases, they can have nocturnal habits. Furthermore, they can
move fast, making insect monitoring difficult for cameras. On the other hand, the damage
left by insects remains on plantations with distinct visual characteristics. The issue is to
prepare models that can differentiate injured leaves and indicate the organisms that caused
them.

In this line of investigation, Zhu et al. (2024) presented a neural network model
capable of distinguishing two types of soybean-defoliating insects based on leaf damage.
Like the authors, we also believe that studies of this type provide valuable support for pest
monitoring and control by agricultural workers. In this sense, we conducted this study on
classifying insects based on foliar defects caused by insects in soybean leaves. Using a
database of healthy soybean leaves, we apply synthetic damage that simulates predation
from four soybean defoliators (caterpillar, green cow, gastropod, grasshopper), and we
compare four deep neural network architectures (VGG16, ResNet50, Xception, and
EfficientNetB0) in classifying these disturbances. This study performs some experiments
on predation recognition using only one leaf per image, where exploratory tests show the
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ability of neural networks to classify bite patterns with high accuracy considering different
levels of defoliation. Thus, the main research topics are related to the accuracy rates of
well-known deep neural networks in classifying bite patterns on soybean leaves and what
results can be obtained with variation in defoliation levels and, consequently, the impact
of similar bite patterns in classifying predation on leaves.

This chapter presents four significant contributions to the field:

• An investigation into image classification using bite patterns.
• A comparison between convolutional neural networks in classifying predation on

soybean leaves.
• A new methodology to simulate pest attack on the foliar canopy of soybean crops.
• A defoliation assessment considering statistical measurements and visual inspec-

tions.

The remainder of the chapter is structured as follows. Section 7.2 details the
methodology used to simulate predation, the attributes of the pests considered in this
study, and the preparation of a new image dataset containing defoliated soybean leaves.
Section 7.3 presents the experimental results and a discussion considering models as-
sertiveness and time performance of different convolutional neural networks. Finally, the
work is concluded in Section 7.4.

7.2 Materials and Method

7.2.1 Pests that attack soybean leaves

Soybean plantations are susceptible to attacks that compromise seedlings, roots,
petioles, stems, leaves, and pods. As this study proposes to investigate machine learning
models for classifying leaf damage, we only considered pests that cause defoliation.

According to Sosa-Gómez et al. (2023), insects that attack leaves harm the en-
ergy potential of plants, causing losses in crop productivity. Among the defoliating in-
sects, the soybean caterpillar (Anticarsia gemmatalis Hübner, 1818 (Insecta: Lepidoptera:
Noctuidae)), gastropods (slugs and snails that are under the phylum of Mollusca (OUMA,
2023)), green cow (Diabrotica speciosa Germar, 1824 (Coleoptera: Chrysomelidae)),
and grasshoppers (Rhammatocerus schistocercoides Rehn, 1906 (Orthoptera: Acrididae:
Gomphocerinae)) stand out. The caterpillar is a voracious insect that can cause defoliation
of up to 100% of the plantation (HOFFMANN-CAMPO et al., 2000). They reproduce
quickly, which requires frequent monitoring (ZHU et al., 2024). Gastropods can cause
defoliation and early death of plants, occurring both in the initial phase of crop develop-
ment and at the end of the soybean cycle (SOSA-GÓMEZ et al., 2023). The green cow
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is a tiny insect that feeds on leaves, causing more or less regular and circular holes in the
foliage (SANTOS, 2011). Its presence is worrying as it generally occurs in large popula-
tions (HOFFMANN-CAMPO et al., 2000). Likewise, grasshoppers of migratory species
tend to live in groups, causing the effect known as the "cloud of grasshoppers" (IMENES;
IDE, 2002). For this reason, high populations can cause a total reduction in leaf area.

According to the mouthparts they have and, consequently, according to the way
they feed, insects can be classified as suckers or chewers (IMENES; IDE, 2002). Sucking
insects consume the tissue sap of green leaves, directly harming the tissue by damaging
the epidermal cells or indirectly acting as viral carriers (ATA, 2024). Examples of
sucking insects are aphids, whiteflies, and thrips. In contrast, chewing insects physically
consume the plant tissues with their mouth parts evolved for chewing (ALI et al., 2024).
Chewing insects, such as caterpillars, follow a particular pattern when feeding, removing
uniform pieces of leaf tissue in a highly choreographed and predictable manner (HOWE;
JANDER, 2008; ALI et al., 2024). On the other hand, slugs and snails damage the crops
by eating plant leaves and destroying seedlings at their emergence, leading to raged holes
on the plant leaves, with slime trails often close to the damaged spot (OUMA, 2023).

Caterpillars in the adult stage can cause sharp perforations in the leaves but small
holes when they are in the first stages. As gastropods feed on young leaves, they can easily
reduce the number of plants per unit area. The green cow causes small holes in the leaf
surface, but when there are high populations of this insect, the damage can increase in size.
The same happens with groups of grasshoppers whose foliar damage can be pretty severe,
especially on the crop border. Considering the potential damage to agricultural yields, we
investigated the capacity of deep neural network models to classify foliar damage caused
by pests that are dangerous to soybean crops. Figure 7.1 shows an image of each pest
investigated in this study.

7.2.2 Simulation of defoliation on soybean leaves

Preparing databases is one crucial issue for developing computational machine
learning models. From the data, classifiers can learn features, the identified patterns can
be used to represent categories, and new data can be evaluated according to previously
encoded patterns. In the same way, when preparing deep neural networks for computer
vision systems, image datasets are required so that classifiers can identify relevant features
in images.

However, building image databases is not a trivial task. Although there are
several accessible initiatives, such as ImageNet and Cifar-10, preparing datasets for
specific problems may require a multidisciplinary team, data collection, and image
annotations. Precision agriculture goes through this bottleneck where the cost of building
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Figure 7.1: Dangerous pests for soybean crops.

databases can make research proposals unfeasible or difficult to achieve. For this reason,
data simulation has been an essential instrument for developing machine learning models.
Simulations mimic real-world environments and can be used to test complex systems
that are not always available. For example, (MUENZBERG et al., 2022) used simulated
data to predict decision-relevant outcomes such as agricultural management and harvest
optimization. Likewise, (CECCARELLI et al., 2022) proposed several simulations to
predict seasonal energy needs in agricultural buildings. Also, (SILVA et al., 2019),
(SILVA et al., 2021), and (VIEIRA et al., 2024) prepared synthetic leaf image damage
methods to estimate defoliation.

In this work, the data simulation process generates leaf damage at different levels
of severity in healthy soybean leaves. The results obtained by the simulation resemble real
damage caused by target pests whose bite characteristics are replicated. Leaf damage is
inserted into the images so that the removal of pixels is visually perceived and presented as
holes. Then, an artificial simulation is applied to fill the removed regions and reconstitute
the images considering the background of the scenes.

The damage simulation is made from herbivory collected from natural defolia-
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tion environments where the damage present on the leaves was manually segmented with
fine detail of the bite traces. Each bite segment represents a sample that characterizes the
predation, and the set of samples represents the diversity of pests bite shapes. For each
pest, 40 samples were collected. As the pests of interest are 4, the total bite samples are
160. After segmentation, all bite samples were rescaled to size 70×70 pixels to maintain
data uniformity and the resulting images were binarized with the area of interest labeled
with the value 1 and the background area with the value 0. Figure 7.2 shows some of the
bite segments of the target pests.

Figure 7.2: Some bite samples from (a) caterpillars, (b) gastropods, (c) grasshop-
pers, and (d) green cows.



7.2 Materials and Method 158

After manually preparing the bite sample models, the following defoliation
simulation steps are fully automated. The simulated leaf damage process has four steps.
In the first, a bite sample is randomly selected, and the selected bite sample is randomly
rotated and scaled according to adjustment limits defined by parameterization (see Section
7.2.3). In the second step, the resulting bite image is arbitrarily placed on some leaf
region, and the overlapping pixels contained in the original image are removed. In the
third step, the percentage of compromised leaf area is computed, and the calculated
value is used to verify that the amount of damage meets the desired level of defoliation.
If the percentage of defoliation is above or below the established level, the simulation
process is continuously repeated until the desired level of damage is reached. Finally,
in the fourth step, the damaged image regions are artificially filled by considering the
background pixels of the scene. Figure 7.3 shows a complete view of the defoliation
simulation workflow.

Figure 7.3: Defoliation simulation workflow.
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Therefore, the parameters that must be defined in the simulation are the lower
and upper limits for transforming bite samples (rotation and scale) and the acceptable
range for the desired defoliation level. In the case of filling in injured leaf regions,
the simulation uses image reconstruction through interpolation in a technique known as
inpainting (BORNEMANN; MÄRZ, 2007). The program inputs are bite samples and a
healthy leaf image. After selecting one of the bite samples, the selected sample is rotated
and rescaled. Then, the transformed bite sample is positioned in the leaf area, and the
overlapping pixels are removed from the original image. From there, the number of pixels
removed is computed, serving as a parameter for the continuity or interruption of the
program. If it is not within the expected defoliation limits, the program returns to the bite
sample selection stage and continues. Otherwise, the loop is concluded, and the removed
leaf regions are filled using inpainting.

7.2.3 Soybean leaf predation dataset

In this study, the dataset is constructed based on applying leaf damage simulation
caused by different pests in healthy soybean leaf images. We partially used the dataset
prepared by Hughes and Salathé (2015), which contains images from 14 plant species
separated into leaf samples contaminated by different infectious diseases and leaf samples
without any contamination. The healthy soybean class is our target object whose leaves
category has 5,090 data points with variations in leaf canopy shape, different lighting
intensities, and image acquisition with leaves in distinct positions. The size of the images
is 256×256 pixels.

Before simulating defoliation, images of healthy soybean leaves are shuffled and
separated into five groups of 1,008 images. In one of the groups, the images remain intact
to represent the group of images with healthy leaves. The other four groups represent
classes of herbivory caused by caterpillars, gastropods, grasshoppers, and green cows.

Each of the four categories representing classes of defoliating is subdivided into
six subgroups of 168 images. In the first subgroup, defoliation simulation is applied at a
severity level between 1 and 5%, the second subgroup contains defoliation levels between
6 and 10%, the third subgroup between 11 and 15%, the fourth subgroup between 16%
and 20%, the fifth subgroup between 21 and 25%, and the sixth group between 26 and
30%. Thus, each class has images with damaged levels between 1 and 30% defoliation.
In addition to the desired defoliation level, the parameters related to the transformation
of the bite samples were set with rotation between 0 and 360◦ and resizing (width and
height) between 10 and 40 pixels. These two parameters are randomly defined during the
execution of the defoliation simulation program.

It is worth mentioning that the original bite sample size cannot be maintained
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as a single sample could represent leaf damage above 25%. As the dataset with healthy
soybean leaves is 256× 256, a bite sample of size 70× 70 could occupy a significant
portion of the healthy leaf, making it difficult to obtain lower defoliation severity levels.
This condition brings up two interesting points of observation. The first is the possibility
of building more varied simulations, as more than one bite sample will be needed to
reach the desired level of defoliation. On the other hand, resizing the bite sample reduces
the image resolution, which can hide insect bite patterns, making leaf damage caused
by different insects very similar to be distinguished by the classifiers. Figure 7.4 shows
examples of valid bite samples versus the original bite sample size.

Figure 7.4: Bite sample sizes. (a) Valid bite samples and (b) original bite size (not
used).

To study the percentage of defoliation in each picture, we calculated the level
of defoliation caused in the soybean leaf images. In our dataset, the defoliation rate is
equally distributed, ranging from 1.01% to 29.99%, with an average of 15.04%. As shown
in Figure 7.5(a), our dataset has a diversity of damage levels that balances significant
and minor damages, which is beneficial for evaluating model performance regarding
generalization. Also, in actual application scenarios, the amount of damage per leaf can
differ as different regions of the same leaf can be attacked. As shown in Figure 7.5(b),
the amount of damage per leaf sample is also varied in our dataset, ranging from 1 to
more than 50 compromised areas. Additionally, we evaluate the similarity between any
two images in our dataset using the structural similarity index measure (SSIM) (WANG et

al., 2004). This metric provides a numerical way to understand the structural differences
between two complex images. As shown in Figure 7.5(c), the dataset similarity ranges
from 0.3% to 68.1%, with an average of 17.91%. Most image pairs have a similarity of
less than 20%.

After completing the defoliation simulation, the dataset was divided into three
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(a) Predation proportion (b) Damaged area count

(c) Similarity between images

Figure 7.5: Statistics of the soybean leaf predation dataset.

parts corresponding to the set of images for training, validation, and testing. The propor-
tion used to divide the three groups was 70% for training, 20% for validation, and 10%
for testing. Therefore, each of the five image classes has 702 data points for training, 204
for validation, and 102 for testing. Figure 7.6 shows some images from the leaf damage
simulation process. As can be seen, the damage resembles actual insect predation, and the
differentiation between image classes appears relatively complex. The dataset is publicly
available (see Section A.1.5).

7.2.4 Deep classification neural networks

Deep neural networks are powerful tools for image classification tasks. Even in
highly complex scenarios, these networks have achieved satisfactory results in research
studies from different fields. Among neural network architectures, convolutional networks
can deal with the complexity of digital images, such as lighting variations, scale and
rotation problems, scene shading, occlusion, and object discontinuity, in such a way that
the prepared computational models obtain very assertive results.
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Figure 7.6: Image samples from the soybean leaf predation dataset. Simulation of
leaf damage caused by (a) caterpillars, (b) gastropods, (c) grasshoppers,
and (d) green cows. Healthy leaves are presented in (e).

In convolutional networks, an ordered series of matrix operators transforms data
into multidimensional images to highlight features and identify patterns. The input images
(input layer) are processed by convolutional layers that produce a series of resulting
images, which are successively processed by other blocks (hidden layers) in a pipeline.
The first convolutional layers identify low-level patterns such as edges and corners, and
the deeper layers identify high-level patterns as unambiguous features that differentiate
target objects. Although each architecture has different building blocks and several layers,
convolutional networks always end with a fully connected layer that connects all the
outputs before presenting the classifier’s responses.
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We selected four well-known convolutional networks and compared them in
classifying insect predation on soybean leaves. VGG16 (SIMONYAN; ZISSERMAN,
2014), ResNet50 (HE et al., 2016), Xception (CHOLLET, 2017), and EfficientNetB0
(TAN; LE, 2019) are networks frequently investigated in agriculture and were selected
for study in this work. (ISHENGOMA et al., 2022) analyzed VGG16, ResNet50, and
Xception in detecting infested maize plants with fall armyworms. (NIGAM et al., 2023)
investigated EfficientNet’s performance in disease identification in wheat crops. (SUTAJI;
YıLDıZ, 2022) applied Xception to improve plant disease prediction. Furthermore, (LIN
et al., 2024) and (HU et al., 2022) combined RestNet50 with other networks for forest-
type identification and diseased pine detection and classification, respectively.

From deep learning architectures, it is possible to build new models from pre-
trained data. In this sense, we consider applying a machine learning technique, named
transfer learning, to fine-tune a model trained on one task to a different task. For this, the
last layer of the convolutional network, i.e., the fully connected layer, must be replaced by
a new layer suitable for the number of classes of the new task. Thus, we replaced the last
layer of the pre-trained networks VGG16, ResNet50, Xception, and EfficientNetB0 with
a global average pooling layer, a fully connected layer, a dropout, and a softmax layer.
The softmax layer classifies the input leaf images into five classes: caterpillar, gastropod,
grasshopper, green cow, and healthy.

Transfer learning is best suited for scenarios with somewhat similar databases.
Thus, the convolutional layers are frozen to keep the network weights unchanged. As
the databases used in pre-training differ from those for the new tasks, the layers must
be unfrozen to obtain better results. In our study case, the models were pre-trained on
the ImageNet dataset, which differs considerably from our database. For this reason, we
unfreeze all layers of the networks and apply small changes to the previously trained
weights using the backpropagation algorithm until the models fit the data.

Data augmentation techniques were applied to produce and propagate new
images in each new batch, and the images were standardized with height and width
equal to 256 and 3 color channels. In total, 3,510 images were used to train the models,
1,020 images to validate them, and 510 for the testing stage. During network training,
the models with the best accuracy results in the validation set were saved, and their
performance was verified with the test images using known evaluation metrics. The
experiments were programmed using Python, Keras, and Tensorflow and conducted on
a notebook with a Core i7-9750H (2.6GHz; 12MB Cache), 16 GB RAM, and an NVIDIA
RTX 2060 Graphics Processing Unit (GPU) with CUDA 11.8. Table 7.1 presents the
hyperparameters used in all experiments.
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Table 7.1: Training hyperparameters of the deep neural networks.

Parameter Value

Optimizer Stochastic Gradient Descent

Loss function Cross entropy

Epochs 200

Learning rate 0.0001

Momentum 0.9

Batch size 16

7.2.5 Evaluation metrics

For the classification task, the following metrics were considered: Precision,
Recall, F1-score, Accuracy, and False Positive Rate (FPR). Precision shows how much
the models get right when the prediction labels the data into a true class. If there are
few false positives, the percentage of success increases and shows the assertiveness of
the models in correctly classifying the data (Eq. 7-1). On the other hand, data belonging
to one class but labeled for a different class are considered false negatives and can be
measured with Recall. The Recall score indicates the models’ ability to correctly label
the data considering data mistakenly labeled for other classes (Eq. 7-2). As Precision and
Recall operate in different data analysis perspectives, the F1-score harmonizes these two
metrics by considering the number of false positive and false negative results in a single
evaluation measure (Eq. 7-3). Likewise, Accuracy promotes a conciliatory view of the
data regarding classification success and errors (Eq. 7-4).

These metrics are computed by observing a classifier’s correct prediction of a
target class and its penalty when the wrong prediction occurs. In this case, the number
of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) is
calculated. TP represents the number of correctly predicted data points for a target class,
TN indicates the number of data points belonging to other classes that were not predicted
for a target class, FP is the number of data points belonging to other classes but wrongly
predicted for a target class, and FN denotes the number of data points belonging to a target
class but not labeled for it.

Precision =
T P

T P+FP
(7-1)
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Recall =
T P

T P+FN
(7-2)

F1-score =
2∗T P

2∗T P+FP+FN
(7-3)

Accuracy =
T P+T N

T P+T N +FP+FN
(7-4)

FPR =
FP

FP+T N
(7-5)

In evaluating the architectures of deep neural networks, we also present con-
fusion matrices, Receiver Operating Characteristic (ROC) curves, and visual results with
Gradient-weighted Class Activation Mapping (Grad-CAM). Confusion matrices show the
number of correctly classified target points and indicate incorrect predictions by pointing
out which classes the data points were mistakenly labeled for. ROC curves show the be-
havior of the models in the face of variation in the rates of true and false positives, i.e.,
the variation between True Positive Rate (or Recall - Eq. 7-2) and False Positive Rate
(FPR, Eq . 7-5). From the ROC curves, a statistical concept known as the Area Under the
Curve (AUC) is computed so that the performance of the models can be compared. Addi-
tionally, the outputs of the convolutional layers can be observed by building localization
maps that highlight important regions of images for classification in a technique known
as Grad-CAM (SELVARAJU et al., 2017).

7.3 Results and Discussion

In supervised learning, models are trained from labeled data that categorizes
each data point. During training, machine learning algorithms identify relevant patterns
using training data, and the effectiveness of the learning is evaluated with validation data
used to tune the models progressively. After training is complete, the models are tested
with data not seen in the training stage, and the overall performance of the models is
established. In this sense, while validation checks the training behavior, evaluation verifies
the generalization capacity of the tested models.

In this session, we present results from the evaluation of the models and com-
parative analyses that discuss the assertiveness of deep neural architectures in the face of
unseen data. Table 7.2 shows the performance of the VGG16, ResNet50, Xception, and
EfficientNetB0 architectures in classifying insects based on leaf damage. The Xception
network obtained the best precision values for classifying gastropods and the second-best
average recall, precision, and F1 score. The ResNet50, Xception, and EfficientNetB0 net-
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works correctly classify the healthy leaf images without getting confused with the other
categories, and Resnet50 presented the best recall score for the classification of gastro-
pod bites. On the other hand, the VGG16 network obtained the best results in average
precision, recall, and F1-score, with an average score above 90%.

Table 7.2: Comparison of deep learning architectures in classifying insect predation
on leaves. The bold values indicate the best results.

Category Performance VGG16 ResNet50 Xception EfficientNetB0

Caterpillar

Precision 88.39 70.00 85.21 86.60

Recall 97.05 96.07 96.07 95.09

F1-score 92.52 80.99 90.32 90.65

Gastropod

Precision 88.54 77.67 89.85 86.04

Recall 83.33 85.29 60.78 36.27

F1-score 85.85 81.30 72.51 51.03

Grasshopper

Precision 81.90 81.69 67.76 54.77

Recall 84.31 56.86 80.39 84.31

F1-score 83.09 67.05 73.54 66.40

Green cow

Precision 94.73 90.36 86.13 90.42

Recall 88.23 73.52 85.29 83.33

F1-score 91.37 81.08 85.71 86.73

Healthy

Precision 99.01 98.07 98.07 98.07

Recall 99.01 100.0 100.0 100.0

F1-score 99.01 99.02 99.02 99.02

Average

Precision 90.51 83.56 85.41 83.18

Recall 90.39 82.35 84.50 79.80

F1-score 90.37 81.89 84.22 78.77
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The confusion matrices presented in Figure 7.7 complement the analysis by
showing which direction the classifiers were mistaken. As can be seen, the models pre-
sented errors mainly when classifying gastropods and grasshoppers. ResNet50 correctly
classifies only 56.9% of grasshoppers and EfficientNetB0 only 36.3% of gastropods.
VGG16 and Xception achieved better results but had incorrect predictions with gas-
tropods and grasshoppers. Despite this, EfficientNetB0, ResNet50, Xception, and VGG16
achieved accuracy of 79.8%, 82.3%, 84.5%, and 90.3%, respectively.

(a) VGG16 (b) ResNet50

(c) Xception (d) EfficientNetB0

Figure 7.7: Confusion matrix with the prediction results using VGG16, ResNet50,
Xception, and EfficientNetB0 architectures.

Figure 7.8 shows the prediction results when the multi-classification problem
is treated as a binary problem. For example, when Caterpillar is the target class, the
others are put together in a unique class, and the classifier’s task is to predict whether
leaf damage was caused by caterpillars or not. This is a valuable way of interpreting the
data because, in many cases, the farmer does not need to classify each insect but checks
whether a typical inset is present in his/her crop. Some insects are more prominent in
some continental regions than others, and some cultivars may be less prepared to deal
with a specific insect. In these cases, checking whether a particular insect is present can be
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sufficient. As demonstrated by the ROC and AUC curves, all neural network architectures
achieved high accuracy in binary classification. VGG16 correctly classified 99% of
images with caterpillar and green cow damage. ResNet50, Xception, and EfficientNetB0
presented results above 97% for these two insects. Even in the classification of gastropods
and grasshoppers, the classifiers achieved scores above 92%.

(a) VGG16 (b) ResNet50

(c) Xception (d) EfficientNetB0

Figure 7.8: ROC curves using VGG16, ResNet50, Xception, and EfficientNetB0 ar-
chitectures.

Figure 7.9 presents the activation maps (Grad-CAM) of each of the thirteen
convolutional layers of the VGG16 architecture considering an injured leaf. As can be
seen, the edge regions, such as leaf canopy and insect bite contours, are highlighted in
the initial convolutional layers (Figures 7.9a–7.9d). Then, the leaf loss regions begin to
attract the attention of the classifier, which are visually presented in Figures 7.9k–7.9m.
This visual inspection shows that the classifier emphasizes some image regions before
presenting the prediction.

According to the activation maps obtained with Grad-CAM, image regions that
deserve attention are highlighted, and the presentation of visual results can help us
understand the models’ limitations. In Figure 7.10a, VGG16 and ResNet50 performed
an excellent assignment detecting leaf damage regions. However, the models presented
erroneous predictions due to the similarities between the bite patterns of caterpillars and
grasshoppers. In contrast, Figure 7.10b shows that Xception and EfficientNetB0 did not
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Figure 7.9: Activation maps of the VGG16 convolutional layers using Grad-CAM.
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correctly highlight areas of leaf damage, leading the classifiers to predict erroneous insect
categories.

In this sense, this case study observes two limitations. The first refers to the sim-
ilarity between leaf damage marks that can lead classifiers to make incorrect predictions.
The second occurs when models are unable to focus their attention on leaf damage and,
for this reason, present wrong predictions. To overcome these limitations, databases with
more leaf samples injured by insects can help classifiers better distinguish bite patterns.
Likewise, other machine learning architectures, fine-tuning strategies, and hyperparam-
eter configurations can be investigated in insect leaf predation classification to improve
prediction results.

Figure 7.10: Model limitations observed with Grad-CAM. (a) Models accurately de-
tect leaf damage but perform inaccurate predictions. (b) Models empha-
size erroneous leaf regions and, consequently, make wrong predictions.

Finally, Table 7.3 presents the average training time per epoch in seconds and
the average inference time in milliseconds of the selected architectures. The training time
of Xception is longer than the others, and its number of parameters is relatively high. The
inference time was similar among the architectures, but the EfficientNetB0 obtained the
shortest time, requiring fewer parameters. Although VGG16 obtained the most assertive
results, it presented the third-best inference time, and it was the second architecture with
the smallest number of parameters.
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Table 7.3: Model size, average training and inference time.

Model Parameters (M) Training (s/epoch) Inference (ms)

VGG16 14.9 63.3 7.03

ResNet50 24.6 61.6 5.81

Xception 87.9 81.6 7.32

EfficientNetB0 4.06 63.3 4.28

7.4 Conclusion

This work investigated the feasibility of classifying pests from injured leaves.
We prepared a dataset to simulate damage to soybean leaves caused by caterpillars,
gastropods, grasshoppers, and green cows. The dataset was prepared with different
amounts of compromised leaf areas and defoliation levels ranging from 1 to 30%. Also,
we fine-tuned the VGG16, ResNet50, Xception, and EfficientNetB0 convolutional neural
networks to differentiate bite patterns and classify predation.

The evaluated deep neural network architectures presented promising classifica-
tion results for predicting predation on soybean leaves, where VGG16 achieved the best
results in our dataset with an accuracy of 90.39%. When multi-classification was treated
as a binary problem, VGG16 obtained an assertiveness of 99% for classifying caterpil-
lars and green cows. Besides, VGG16’s training and inference time was similar to those
obtained by other architectures, and it was modeled with the second smallest number of
parameters. Hence, in this case study, VGG16 performed better.

We conclude that identifying the pest causing leaf damage directly on the
compromised leaf can be a profitable tool in pest control. The classification can help
farmers monitor their crops and manage agricultural pesticides or biological control
suitable for combating the identified insects. With this new approach, classification can be
performed without capturing and collecting insects and mollusks, eliminating the need to
prepare and purchase traps. Therefore, classifying pests based on the damage they cause
to leaves is a viable alternative for crop monitoring and a complementary approach for
decision-making processes that involve increasing production and yields.

Although this case study focused on soybean leaves, the methodology presented
can be extended to other crops by preparing other datasets and configuring convolutional
networks according to the number of classes. In future work, we intend to investigate pre-
dation on different plants and harmful species by exploring the construction of simulated
leaf damage and preparing databases with true defoliation by considering the complexity
of natural environments.



CHAPTER 8
Final Considerations

I am ever with you, even to the end of

the world.

Matthew 28:20

In this thesis, we present original computer-based methods for leaf analysis and
describe improvements made to proposed computational models for leaf loss estimation,
predation detection, leaf surface reconstruction, and pest classification. To perform leaf
analysis, we identify compromised leaf areas and use them to estimate the percentage
of leaf damage, highlight leaf predation, and perform leaf reconstruction. Recognizing
injured regions makes it possible to indicate areas of attention that experts can use to
direct strategic planning actions through precision information.

As the defoliation location is crucial for leaf analysis tasks, we built models
based on template matching to indicate compromised leaf areas. This computational
technique allowed the tracing of compromised leaf silhouettes and the preparation of
efficient and low-cost algorithms. With template matching, our models only require a few
samples of healthy leaves to detect defoliation points. In other research, variations of leaf
damage in numerous samples were necessary to train learning models. The experimental
results showed a linear correlation for defoliation estimate above 0.98 for soybean, grape,
strawberry, and potato leaves. In detecting and segmenting bite marks, precision close to
1.00 was achieved for blueberry, grape, and strawberry, and reconstruction scores between
68% and 94% by using image inpainting.

Another novelty of this thesis is image classification based on the signature of
bite traces. While related work has prepared insect shape, color, and texture descriptors,
we investigate leaf damage tracks to encode and classify biting features. In comparing
convolutional neural networks, VGG16 performed better and obtained 90% accuracy in
the multi-class classification. Also, VGG16 obtained an impressive result above 98%
when the classification was treated as a binary problem, and the classification purpose
could correctly determine classes such as caterpillars, green cows, and grasshoppers.
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Thus, deep learning models could determine which pest caused the leaf damage by
considering only bite traces.

In conducting this study, we needed databases to investigate our research prob-
lems, but datasets with defoliation samples are not available to the general public. To
overcome this limitation, we proposed defoliation simulation strategies in which algo-
rithms were developed to apply damage in various formats and different levels of severity
using samples of actual pest damage. Hence, we showed that defoliation can be simulated
by developing computer programs capable of deforming healthy leaves. As a result, we
were able to build image databases with samples of injured leaves that closely resemble
leaves with actual damage.

Based on the results, we underline that agricultural producers can use the solu-
tions presented to optimize leaf analysis through automated processes. It is well known
that automation reduces subjectivity, human effort in tedious and repetitive tasks, and
the operational complexity of hiring expert analysts. Furthermore, automation increases
data processing capacity, investigative possibilities, and accuracy in presenting results.
In this sense, our method for estimating leaf damage can assist producers in agricultural
management by supporting decision-making on applying insecticides or biological pest
control. Likewise, our predation detection method can assist in applying selective spray-
ing in farming areas with a strong presence of pests, and our leaf reconstruction proposal
can assist analysts in recognizing the main damaged regions of the leaf surface. Addition-
ally, our classification strategy based on bite signatures eliminates the use of traps and
the laborious collection of insects and mollusks that may be camouflaged, hidden, or liv-
ing in clusters, as well as venomous, nocturnal, or fast-moving insects. Experimental tests
demonstrate that our results are highly assertive, converge quickly, and can be generalized
to different plant species.

In future work, we intend to work with leaf image samples that illustrate the
complexity of crop plantations, such as complex backgrounds, more than one leaf per
image, occlusions, and variations in natural lighting. This research study used a database
of leaf images acquired in environments with some background and lighting controls.
Although it was sufficient to evaluate the proposals, our models must be continually
updated to meet new application scenarios and reduce limitations such as dealing with leaf
samples at different growth stages, shading on leaf surfaces, and discrepant leaf shapes.
In this way, we intend to build new image databases, explore image classification models
for detecting leaf damage, investigate semantic segmentation methods to highlight bite
traces and classify different pest species using their mandibular signatures.
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Laureano, Junio Cesar de Lima, Ronaldo M. Costa, Juliana Paula Félix, and Thamer
H. Nascimento. "Towards Integrated Image Contrast Models in Segmentation of
Trees." In 2019 IEEE Canadian Conference of Electrical and Computer Engineer-
ing (CCECE), pp. 1-4. IEEE, 2019. (VIEIRA et al., 2019d) (Qualis A3)

10. da Silva Vieira, Gabriel, Bruno M. Rocha, Fabrizzio Soares, Júnio César Lima,
Helio Pedrini, Ronaldo Costa, and Júlio Ferreira. "Extending the aerial image
analysis from the detection of tree crowns." In 2019 IEEE 31st International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 1681-1685. IEEE,
2019. (VIEIRA et al., 2019a)(Qualis A3)

11. da Silva Vieira, Gabriel, Fabrizzio AAMN Soares, Junio Cesar de Lima, Gustavo
T. Laureano, Samuel A. Santos, Ronaldo M. Costa, and Rogerio Salvini. "Trunk
detection and tree disparity calculation in uncontrolled environments." In 2019
IEEE Symposium on Computers and Communications (ISCC), pp. 1-6. IEEE,
2019. (VIEIRA et al., 2019b) (Qualis A2)

12. Vieira, Gabriel S., et al. Accelerated stereo matching using parallel programming
approaches in CUDA. The manuscript is being prepared for submission to a journal.

A.1.3 Other publications as coauthor

1. Rodrigues, Welington G., Gabriel S. Vieira, Christian D. Cabacinha, Renato F.
Bulcão-Neto, and Fabrizzio Soares. "Applications of artificial intelligence and
LiDAR in forest inventories: A Systematic Literature Review." Computers and
Electrical Engineering 120 (2024): 109793. (RODRIGUES et al., 2024) (Qualis
A2)

2. Nogueira, Emília Alves, Bruno Moraes Rocha, Gabriel S. Vieira, Afonso U. Fon-
seca, Juliana Paula Felix, Antonio Oliveira, and Fabrizzio Soares. "Enhancing Corn
Image Resolution Captured by Unmanned Aerial Vehicles with the Aid of Deep
Learning." IEEE Access (2024). (NOGUEIRA et al., 2024) (Qualis A3)
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3. da Fonseca, Afonso Ueslei, Poliana Lopes Parreira, Gabriel da Silva Vieira, Juliana
Paula Felix, Marcus Barreto Conte, Marcelo Fouad Rabahi, and Fabrizzio Soares.
"A novel tuberculosis diagnosis approach using feed-forward neural networks and
binary pattern of phase congruency." Intelligent Systems with Applications 21
(2024): 200317. (FONSECA et al., 2024) (Qualis A3)

4. Nascimento, Thamer Horbylon, Deborah Fernandes, Diego Siqueira, Gabriel
Vieira, Gustavo Moreira, Leonardo Silva, and Fabrizzio Soares. "Land Vehicle
Control Using Continuous Gesture Recognition on Smartwatches." In International
Conference on Human-Computer Interaction, pp. 207-224. Cham: Springer Nature
Switzerland, 2024. (NASCIMENTO et al., 2024) (Qualis A3)

5. Fonseca, Afonso U., Juliana P. Felix, Hedenir Pinheiro, Gabriel S. Vieira, Ýleris
C. Mourão, Juliana CG Monteiro, and Fabrizzio Soares. "An Intelligent System to
Improve Diagnostic Support for Oral Squamous Cell Carcinoma." In Healthcare,
vol. 11, no. 19, p. 2675. MDPI, 2023. (FONSECA et al., 2023b) (Qualis A3)

6. Fonseca, Afonso Ueslei, Juliana Paula Felix, Gabriel Silva Vieira, Bruno Moraes
Rocha, Emília Alves Nogueira, Carlos Eduardo Egito Araújo, Deborah Fernandes,
and Fabrizzio Soares. "Diagnosticando Tuberculose com Redes Neurais Artificiais
e Recursos BPPC." Journal of Health Informatics 15, no. Especial (2023). (FON-
SECA et al., 2023) (Qualis A4)

7. Fonseca, Afonso Ueslei, Juliana de Paula Félix, Gabriel da Silva Vieira, Deborah
Fernandes, and Fabrizzio Soares. "Automated Lung Region Segmentation in Pe-
diatric Chest Radiography." Revista de Informática Teórica e Aplicada 30, no. 2
(2023): 114-123. (FONSECA et al., 2023a) (Qualis B3)

8. Nogueira, Emília A., Juliana Paula Felix, Afonso Ueslei Fonseca, Gabriel Vieira,
Julio Cesar Ferreira, Deborah SA Fernandes, Bruna M. Oliveira, and Fabrizzio
Soares. "Upsampling of unmanned aerial vehicle images of sugarcane crop lines
with a Real-ESRGAN." In 2023 IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), pp. 285-290. IEEE, 2023. (NOGUEIRA et al.,
2023b) (Qualis A3)

9. Gomes, Pedro, Murillo Castro, Deborah Fernandes, Fabrizzio Soares, Gabriel
Vieira, Juliana Felix, and Thamer Horbylon Nascimento. "DrumsVR: Simulating
Drum Percussion in a Virtual Environment Using Gesture Recognition on Smart-
watches." In Proceedings of the 28th International ACM Conference on 3D Web
Technology, pp. 1-5. 2023. (GOMES et al., 2023) (Qualis A4)

10. Nascimento, Thamer Horbylon, Deborah Fernandes, Gabriel Vieira, Juliana Felix,
Murillo Castro, and Fabrizzio Soares. "MazeVR: Immersion and Interaction Using
Google Cardboard and Continuous Gesture Recognition on Smartwatches." In
Proceedings of the 28th International ACM Conference on 3D Web Technology,
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pp. 1-5. 2023. (NASCIMENTO et al., 2023) (Qualis A4)
11. Nogueira, Emília A., Juliana Paula Felix, Afonso Ueslei Fonseca, Gabriel Vieira,

Julio Cesar Ferreira, Deborah SA Fernandes, Bruna M. Oliveira, and Fabrizzio
Soares. "Deep Learning for Super Resolution of Sugarcane Crop Line Imagery from
Unmanned Aerial Vehicles." In International Symposium on Visual Computing, pp.
597-609. Cham: Springer Nature Switzerland, 2023. (NOGUEIRA et al., 2023a)
(Qualis A4)

12. Rocha, Bruno Moraes, Gabriel S. Vieira, Afonso U. Fonseca, Naiane M. Sousa,
Helio Pedrini, and Fabrizzio Soares. "Detection of Curved Rows and Gaps in
Aerial Images of Sugarcane Field Using Image Processing Techniques." IEEE
Canadian Journal of Electrical and Computer Engineering 45, no. 3 (2022): 303-
310. (ROCHA et al., 2022) (Qualis A3)

13. Fonseca, Afonso U., Bruno M. Rocha, Emília A. Nogueira, Gabriel S. Vieira, Deb-
orah SA Fernandes, Júnio C. Lima, Júlio C. Ferreira, and Fabrizzio Soares. "Tuber-
culosis Detection in Chest Radiography: A Combined Approach of Local Binary
Pattern Features and Monarch Butterfly Optimization Algorithm." In 2022 IEEE
46th annual Computers, Software, and Applications Conference (COMPSAC), pp.
1408-1413. IEEE, 2022. (FONSECA et al., 2022) (Qualis A2)

14. Rocha, Bruno, Gabriel Vieira, Helio Pedrini, Afonso Fonseca, Deborah Fernandes,
Júnio César de Lima, Júlio César Ferreira, and Fabrizzio Soares. "Skew angle
detection and correction in text images using RGB gradient." In International
Conference on Image Analysis and Processing, pp. 249-262. Cham: Springer
International Publishing, 2022. (ROCHA et al., 2022) (Qualis A3)

15. Da Fonseca, Afonso Ueslei, Juliana Paula Felix, Gabriel Da Silva Vieira, Deborah
Fernandes, and Fabrizzio Soares. "Automatic tuberculosis detection using binary
pattern of phase congruency." In 2022 international conference on computational
science and computational intelligence (CSCI), pp. 1646-1651. IEEE, 2022. (FON-
SECA et al., 2022) (Qualis A4)

16. Fonseca, Afonso U., Juliana P. Felix, Gabriel S. Vieira, Deborah SA Fernandes, and
Fabrizzio Soares. "Detecção de COVID-19 e Avaliação de Nível de Severidade:
Uma abordagem com BPPC e Redes Neurais Artificiais Rasas." In Congresso
Brasileiro de Automática-CBA, vol. 3, no. 1. 2022. (FONSECA et al., 2022)
(Qualis B4)

17. Fonseca, Afonso U., Juliana P. Felix, Gabriel S. Vieira, Rocha, Bruno, Nogueira,
Emília, Fernandes, Deborah, Soares, Fabrizzio. (2022). Detecção Eficiente de Tu-
berculose em Raio-X de Tórax via Seleção de Atributos LBP por Algoritmo de
Otimização da Borboleta Monarca. In XIX Congresso Brasileiro de Informática em
Saúde - CBIS. (FONSECA et al., 2022a) (Qualis B4)
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18. Fonseca, Afonso, Felix, Juliana, Vieira, Gabriel, Mourão, Yleris, Monteiro, Juliana,
Soares, Fabrizzio. (2022). Uma Rede Neural Artificial para Suporte ao Diagnóstico
de Carcinoma Espinocelular Oral. In IX Congresso Latino Americano de Engen-
haria Biomédica e XXVIII Congresso Brasileiro de Engenharia Biomédica. (FON-
SECA et al., 2022b) (Qualis B4)

19. Silva, Jhon Lucas S., Gabriel S. Vieira, Afonso U. Fonseca, and Fabrizzio Soares.
"Reconhecimento e Tradução de Sinais de Libras para Língua Portuguesa Escrita
usando Redes Neurais Profundas." In Congresso Brasileiro de Automática-CBA,
vol. 3, no. 1. 2022. (SILVA et al., 2022) (Qualis B4)

20. Felix, Juliana Paula, Hugo Alexandre Dantas Do Nascimento, Nilza Nascimento
Guimarães, Eduardo Di Oliveira Pires, Afonso Ueslei Da Fonseca, and Gabriel Da
Silva Vieira. "Automatic Classification of Amyotrophic Lateral Sclerosis through
Gait Dynamics." In 2021 IEEE 45th Annual Computers, Software, and Applica-
tions Conference (COMPSAC), pp. 1942-1947. IEEE, 2021. (FELIX et al., 2021)
(Qualis A2)

21. Fonseca, Afonso U., Gabriel S. Vieira, and Fabrizzio Soares. "Screening of viral
pneumonia and covid-19 in chest x-ray using classical machine learning." In 2021
IEEE 45th annual Computers, Software, and Applications conference (COMP-
SAC), pp. 1936-1941. IEEE, 2021. (FONSECA et al., 2021) (Qualis A2)

22. Kai, Priscila M., Bruna M. de Oliveira, Gabriel S. Vieira, Fabrizzio Soares, and
Ronaldo M. Costa. "Effects of resampling image methods in sugarcane classifica-
tion and the potential use of vegetation indices related to chlorophyll." In 2021 IEEE
45th Annual Computers, Software, and Applications Conference (COMPSAC), pp.
1526-1531. IEEE, 2021. (KAI et al., 2021) (Qualis A2)

23. de Sousa, Naiane Maria, Juliana Paula Felix, Gabriel da Silva Vieira, Bruno Morais
Rocha, and Fabrizzio Soares. "A Study of Saliency Methods for Tree Detection in
Aerial Images of Rural Areas." In 2021 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), pp. 1-4. IEEE, 2021. (SOUSA et al., 2021)
(Qualis A3)

24. Fonseca, Afonso, Gabriel Silva Vieira, Juliana Felix, Paulo Freire Sobrinho, Áurea
Valéria Pereira Silva, and Fabrizzio Soares. "Automatic orientation identification
of pediatric chest x-rays." In 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC), pp. 1449-1454. IEEE, 2020. (FONSECA
et al., 2020) (Qualis A2)

25. Felix, Juliana Paula, Hugo Alexandre Dantas do Nascimento, Nilza Nascimento
Guimarães, Eduardo Di Oliveira Pires, Gabriel da Silva Vieira, and Wanderley
de Souza Alencar. "An Effective and Automatic Method to Aid the Diagnosis of
Amyotrophic Lateral Sclerosis Using One Minute of Gait Signal." In 2020 IEEE
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International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2745-
2751. IEEE, 2020. (FELIX et al., 2020) (Qualis A2)

26. Rocha, Bruno Moraes, Gabriel da Silva Vieira, Afonso U. Fonseca, Helio Pedrini,
Naiane Maria de Sousa, and Fabrizzio Soares. "Evaluation and detection of gaps
in curved sugarcane planting lines in aerial images." In 2020 IEEE Canadian
conference on electrical and computer engineering (CCECE), pp. 1-4. IEEE, 2020.
(ROCHA et al., 2020) (Qualis A3)

27. Rodrigues, Welington Galvão, Christian D. Cabacinha, Rogerio Salvini, Gabriel
Vieira, Deborah SA Fernandes, and Fabrizzio Soares. "Eucalyptus Volume Estima-
tion for Eucalyptus Clones Trees Using Artificial Neural Networks." In 2020 IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-5.
IEEE, 2020.(RODRIGUES et al., 2020) (Qualis A3)

28. de Sousa, Naiane Maria, Gabriel da Silva Vieira, Juliana Paula Felix, Junio Cesar
de Lima, and Fabrizzio Soares. "Image Saliency Analysis in Agricultural Environ-
ments: A Survey." In 2020 IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 1-4. IEEE, 2020. (SOUSA et al., 2020) (Qualis A3)

29. Santos, Samuel, Gabriel Vieira, Junio Lima, and Allan Santos. "Tecnologia assis-
tiva para reconhecimento de cartas de baralho utilizando aprendizado profundo."
In SIBGRAPI-Conference on Graphics, Patterns and Images. Instituto Federal
Goiano, 2019. (SANTOS et al., 2019) (Qualis A3)

30. Felix, Juliana Paula, Flávio Henrique Teles Vieira, Gabriel da Silva Vieira, Ricardo
Augusto Pereira Franco, Ronaldo Martins da Costa, and Rogerio Lopes Salvini.
"An Automatic Method for Identifying Huntington’s Disease using Gait Dynam-
ics." In 2019 IEEE 31st International Conference on Tools with Artificial Intelli-
gence (ICTAI), pp. 1659-1663. IEEE, 2019. (FELIX et al., 2019) (Qualis A3)

A.1.4 Original Software

1. ProtectLeaf

Description:
ProtectLeaf is a software designed to support crop monitoring activities
and decision-making in agricultural environments through defoliation
estimate, detection of insect predation on plant leaves, and leaf recon-
struction.

Elsevier Repository:
<https://github.com/ElsevierSoftwareX/SOFTX-D-23-00186>

CodeOcean Capsule:

https://github.com/ElsevierSoftwareX/SOFTX-D-23-00186
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<https://codeocean.com/capsule/7740985/tree/v1>
2. CBIR-ANR

Description:
CBIR-ANR is an acronym for content-based image retrieval (CBIR)
with accuracy noise reduction (ANR), which was developed to increase
assertiveness in image retrieval from large-scale data sets.

Elsevier Repository:
<https://github.com/SoftwareImpacts/SIMPAC-2022-294>

CodeOcean Capsule:
<https://codeocean.com/capsule/3022749/tree/v1>

3. DCF

Description:
The Disparity Computing Framework (DCF) is a software implemented
with the main components of a stereo vision system to facilitate dispar-
ity map construction.

Elsevier Repository:
<https://github.com/SoftwareImpacts/SIMPAC-2022-236>

CodeOcean Capsule:
<https://codeocean.com/capsule/4854862/tree/v1>

4. ATD

Description:
The Aerial Tree Detection (ATD) is a software developed for detecting
and segmenting treetops, delineating shaded areas, and indicating the
source of the light source.

Github Repository:
<https://github.com/gabrieldgf4/aerial-tree-detection>

5. SCC

Description:
The Segment Consistency Check (SCC) is a program designed for
the refinement of depth information obtained from a pair of images
(disparity maps).

Github Repository:
<https://github.com/gabrieldgf4/disparity-refinement-SCC>

https://codeocean.com/capsule/7740985/tree/v1
https://github.com/SoftwareImpacts/SIMPAC-2022-294
https://codeocean.com/capsule/3022749/tree/v1
https://github.com/SoftwareImpacts/SIMPAC-2022-236
https://codeocean.com/capsule/4854862/tree/v1
https://github.com/gabrieldgf4/aerial-tree-detection
https://github.com/gabrieldgf4/disparity-refinement-SCC
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A.1.5 New Datasets

1. Insect Defoliation Dataset

Description:
Defoliation estimation methods are difficult to compare because there
is no benchmarking for this purpose. Researchers use their datasets,
which are not accessible to the general public. In this sense, we prepared
a public image database with model data and test data by considering
12 plant species: apple, blueberry, cherry, corn, grape, peach, pepper,
potato, raspberry, soybean, strawberry, and tomato.

Github Repository:
<https://github.com/gabrieldgf4/insect-defoliation-dataset>

2. Insect Leaf Predation Dataset

Description:
The Insect Leaf Predation Dataset results from applying leaf damage
simulation caused by different insects in healthy soybean leaf images.
The dataset contains five classes. One class represents intact leaf sam-
ples, and the other four classes include images damaged by caterpil-
lars, gastropods, grasshoppers, and green cows. The defoliation rate is
equally distributed, ranging from 1.01% to 29.99%, with an average of
15.04%. The damage per leaf sample ranged from 1 to more than 50
compromised areas.

Github Repository:
<https://github.com/gabrieldgf4/insect-leaf-predation-dataset>

3. Tree Stereo Dataset

Description:
The Tree Stereo Dataset contains stereo image pairs and ground truth
disparity maps. Also, it contains tree and ground image masks and seg-
mented trees prepared by hand. The dataset was prepared with images
from rural and semi-rural environments registered with a monocular
RGB camera. For each scene, two shots shifted by a horizontal move-
ment of the camera were taken, which provided a stereo image pair.

Github Repository:
<https://github.com/gabrieldgf4/tree-stereo-dataset>

Github Repository:
<https://github.com/gabrieldgf4/insect-leaf-predation-dataset>

4. Tree Segmentation Dataset

Description: The Tree Segmentation Dataset contains images manually
segmented from outdoor environments in areas with trees. The dataset also contains

https://github.com/gabrieldgf4/insect-defoliation-dataset
https://github.com/gabrieldgf4/insect-leaf-predation-dataset
https://github.com/gabrieldgf4/tree-stereo-dataset
https://github.com/gabrieldgf4/insect-leaf-predation-dataset
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tree and ground image masks. Image segmentation is key in providing data to be
analyzed, influencing overall success in understanding the image. When it comes to
external scenes, the extraction of fundamental features can be quite complex due to
exposure to various adverse conditions, such as frequent changes in illumination
that create artifacts like shading, photometric distortion, and noise. Thus, this
dataset can be used to validate segmentation methods.

Github Repository:
<https://github.com/gabrieldgf4/tree-segmentation-dataset>

https://github.com/gabrieldgf4/tree-segmentation-dataset
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