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RESUMO 

THOMÉ, MATEUS GOMES. Instituto Federal Goiano, câmpus Rio Verde, GO, 

setembro de 2023. Oxidative balance and photochemical performance throughout 

the development of Sapium glandulosum (Euphorbiaceae) leaf galls induced by 

Neolithus fasciatus (Hemiptera: Triozidae) Orientador: Vinícius Coelho Kuster. 

Coorientador: Diego Ismael Rocha. Programa de Pós-Graduação em Biodiversidade e 

Conservação 

 

A indução de galhas nas plantas hospedeiras geralmente é associada a um aumento do 

estresse oxidativo mediado pelas espécies reativas de oxigênio. O estresse é regulado 

por vias de dissipação que minimizam a peroxidação lipídica no tecido galhado. Assim, 

o objetivo desse estudo foi avaliar os níveis de estresse oxidativo, suas vias de 

dissipação e o impacto no metabolismo fotossintético durante o desenvolvimento das 

galhas foliares de Sapium glandulosum (Euphorbiaceae) induzidas por Neolithus 

fasciatus (Hemiptera: Triozidae). Para isso, folhas não-galhadas e galhas nos estágios 

jovem, maduro e senescente foram submetidas a análises histoquímicas, da atividade 

fotossintética, dosagem de pigmentos, quantificação do estresse oxidativo, substâncias 

fenólicas e de enzimas antioxidantes. O peróxido de hidrogênio foi marcado no tecido 

fotossintético da folha e nos feixes vasculares das galhas durante os diferentes estágios 

de desenvolvimento. O conteúdo de malondialdeído foi maior nas folhas e nas galhas 

senescentes, já a quantificação de fenólicos não apresentou diferença entre a folha e as 

galhas. A atividade da catalase, peroxidase e ascorbato peroxidase foram superiores nas 

folhas com relação às galhas. Diferentemente, para superóxido dismutase, os maiores 

valores foram encontrados para as galhas em relação à folha. Os teores de clorofila 

chegaram a ser quatorze vezes maiores na folha do que nos três estágios de 

desenvolvimento das galhas. Mesmo assim, não houve diferença no rendimento 

quântico máximo entre os tratamentos exceto para galhas senescentes. A galha de S. 

glandulosum parece regular eficientemente o estresse oxidativo principalmente pela 

atividade do superóxido dismutase, mantendo seu rendimento fotoquímico similar ao da 

folha. 

Palavras-chave: Enzimas antioxidantes; Estresse oxidativo; Fotossíntese; ROS. 

 

 



 

 

 

ABSTRACT 

THOMÉ, MATEUS GOMES. Instituto Federal Goiano, câmpus Rio Verde, GO, 

setembro de 2023. Oxidative balance and photochemical performance throughout 

the development of Sapium glandulosum (Euphorbiaceae) leaf galls induced by 

Neolithus fasciatus (Hemiptera: Triozidae) Supervisor: Vinícius Coelho Kuster. Co-

supervisor: Diego Ismael Rocha. Postgraduate program – Master in ‘Biodiversidade e 

Conservação’ 

 

The induction of galls in the host plants is usually associated with an increase in 

oxidative stress mediated by reactive oxygen species. The stress is regulated by 

dissipation pathways, which minimize lipid peroxidation in the galled tissues. Thus, the 

aim the current study was to evaluate the levels of oxidative stress, its dissipation 

pathways, and the impact on photosynthetic metabolism during the development of leaf 

galls of Sapium glandulosum (Euphorbiaceae) induced by Neolithus fasciatus 

(Hemiptera: Triozidae). So, non-galled leaves and galls in the young, mature, and 

senescent stages were submitted to histochemical analysis, photosynthetic activity, 

pigment dosage, quantification of oxidative stress, phenolic substances and antioxidant 

enzymes. Hydrogen peroxide was labeled in the photosynthetic tissue of the leaf and in 

the vascular bundles of the galls during the different stages of development. The 

malondialdehyde content was higher in the leaves and senescent galls, while the 

quantification of phenolics showed no difference between the leaf and galls. The 

activity of catalase, peroxidase and ascorbate peroxidase were higher in the leaf than 

galls. In contrast for superoxide dismutase, the higher values for galls were found. The 

chlorophyll contents were fourteen times higher in the leaf than in the three 

developmental stages of galls, yet there was no difference in the maximum quantum 

yield between the treatments except for senescent galls. The gall of S. glandulosum 

seems to efficiently regulate oxidative stress mainly by the activity of superoxide 

dismutase, maintaining its photochemical yield similar to that of the leaf. 

Keywords: Antioxidant enzymes; Oxidative stress; Photosynthesis; ROS. 
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1. INTRODUCTION 

Galls are neoformed organs in host plants developed after the induction of 

different organisms (Mani 1964; Shorthouse et al. 2005). The gall formation changes in 

the morphogenic patterns of the host plant, structuring an environment that provides for 

the gall-inducer shelter, nutrition, and protection against natural enemies and abiotic 

factors (Ramalho 2010). Insect-induced galls are usually the most complex, with 

specialized tissues affected by galler feeding habits that can influence the level of 

oxidative stress (Ferreira et al. 2019; Kuster et al. 2022), usually higher in galls than the 

non-galled organs (Oliveira et al. 2006; Moura et al. 2008; Oliveira & Isaias 2009; 

Oliveira et al. 2016). 

The main stress molecule are reactive oxygen species (ROS), produced naturally 

by the intrinsic plant metabolism in mitochondria and chloroplasts (Harir et al. 2009) as 

well as over the course of gall development under biotic stress (Isaias et al. 2015). 

Superoxide anion (O2
.-), hydrogen peroxide (H2O2), hydroxyl radical (OH-) and singlet 

oxygen (1O2) are examples of ROS, being formed by the reduction of the molecular 

oxygen (O2) (Apel & Hirt 2003). These molecules are signalers of plant development 

(Apel & Hirt 2003; Isaias et al. 2015), but at high levels they can be harmful to cells, 

providing damages in the lipid membranes and in the genetic material (Jaleel et al. 

2009). The inefficiency in the control of oxidative stress can cause a homeostatic 

imbalance and a consequent peroxidation of membrane lipids, with the formation of 

malondialdehyde (MDA) (Bailly et al. 2000). 

 Reduction in photosynthetic rates in galls has been associated with increased 

oxidative stress in their tissues (Oliveira et al. 2011; Castro et al. 2012; Isaias et al. 

2015), as demonstrated for galls induced by Eugeniamyia dispar (Cecidomyiidae) on 
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the leaves of Eugenia uniflora (Myrtaceae) (Rezende et al. 2018). The reduction of 

photosynthetic capacity in galls can be related to the lower content of chloroplastid 

pigments and the expressive cellular hypertrophy (Oliveira et al. 2017), as well as to the 

redifferentiation of photosynthetic tissue from the non-galled organ to new functional 

compartments, the gall (Ferreira et al. 2019). Maintaining photosynthetic machinery in 

the gall can reduce hypoxia levels and hypercarbia (Haiden et al. 2012; Oliveira et al. 

2017), which are usually high in galls because they have compact tissues and few or no 

stomata (Heldt & Piechulla 2010). Thus, photosynthetic activity may be multi-usefull 

for galls. In some cases, they may maintain the same levels that the non-galled organs. 

(Oliveira et al. 2011), even as, in rare cases, the levels may be like that of the non-galled 

organs (Fernandes et al. 2010; Oliveira et al. 2011). 

 The production of phenolic compounds acts on the uptake and dissipation of 

ROS in galls, contributing to their homeostatic balance (Isaias et al. 2015; Smith 2002). 

Associated with these compounds, an efficient enzymatic antioxidant defense system, 

i.e., peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT), and superoxide 

dismutase (SOD), also aids in the control of oxidative homeostasis acting in the 

scavenging of ROS in plant tissues (Posmyk et al. 2009; Yang et al. 2008; Zagorchev et 

al. 2018). The role of phenolic compounds in the dissipation of ROS in galls has been 

discussed in Neotropical host-gall systems (Ferreira et al. 2018; Kuster et al. 2019), but 

there are few studies approaching antioxidant enzymes essays, which affects the real 

understanding of stress dissipation pathways in galls.   

The POX is an oxidoreductase found mainly in cell walls and vacuoles, reducing 

H2O2 stress acting as an oxidant (Barbosa et al. 2014). POX is involved in the process of 

lignification of the cell wall, tissue healing, plant development, and defense against 

pathogens, among other functions (Gaspar et al. 1982). APX is a class I hemeproteins of 
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the peroxidase superfamily, which can be found in the cytosol, mitochondria, 

peroxisomes, chloroplasts, and cell walls (Gill & Tuteja 2010; Mittler 2002). It acts in 

the elimination of H2O2 using ascorbic acid (AsA) as a reducer (Barbosa et al. 2014; 

Gill & Tuteja 2010). CAT acts on peroxisomes, glyoxysomes and mitochondria, in a 

process of ROS detoxification mainly under stress conditions, as it catalyzes the 

decomposition of H2O2 to H2O and O2 during photorespiration (Gill & Tuteja 2010; 

Barbosa et al. 2014). SOD is a metallo-enzyme that provides the first line of defense 

against ROS by catalyzing the dismutation of two superoxide anions O2
.- into H2O2 and 

O2 in chloroplasts, mitochondria, cytosol, and peroxisomes (Mittler 2002). In general, 

they are found in different sites in the plant body, e.g., Mn-SOD in the mitochondrial 

matrix, cytosolic Cu/Zn-SOD and Fe-SOD present in the chloroplast stroma, and their 

amount varied from plant to plant (Bowler et al. 1992).  

The aim of the present study was to evaluate the levels of oxidative stress and its 

dissipation pathways during the development of leaf galls of Sapium glandulosum (L.) 

Morong (Euphorbiaceae) induced by Neolithus fasciatus Scott, 1882 (Hemiptera: 

Triozidae), as well as the influence of gall formation and development in photosynthetic 

activity. The high number of galls on S. glandulosum allows biochemical analyses, 

which were the main reason for choosing that system. The following questions were 

addressed: (i) What are the levels of oxidative stress in galls? (ii) How is the antioxidant 

system in galls composed? and (iii) What is the impact of gall stress on the quantum 

yield of photosynthesis and other associated parameters? 
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2. MATERIAL AND METHODS 

2.1 Plant material and study area  

 Sapium glandulosum (L.) Morong (Euphorbiaceae) (Figure 1A) is popularly 

known as a “leiteira” and occurs in the Jataí municipality, Goiás state (17° 52′ 33" S, 

51° 43′ 17" W), Brazil. Sapium glandulosum has large green globoid leaf galls induced 

by Neolithus fasciatus Scott, 1882 (Hemiptera: Triozidae). The galls are completely 

closed and the individual chambers open when the gall inducers reach the adult stage 

(Hanson et al. 2014). The leaves of S. glandulosum have a uniseriate epidermis and are 

hypostomatic, with dorsiventral mesophyll and collateral vascular bundles (Rosa 2022). 

The young gall has a uniseriate epidermis, with few stomata and cortex composed of 

parenchyma with reduced cells and collateral vascular bundles (Rosa 2022). Mature 

galls have larger cortex cells with starch grains, as well as hypertrophied vascular 

bundles (Rosa 2022). Senescent galls have a histological structure like the mature stage, 

but with some collapsed epidermal cells and cortex with apparently absent cellular 

content (Rosa 2022).  

For the present study, mature non-galled leaves of the 5th node (n= 3-10) (Figure 

1B) and galls (n= 3-10) were used for physiological, histochemical, biochemical and 

stress analyses, with evaluation of galls in three stages of development: young i.e., 

growing and developing (Figure 1C), mature (Figure 1D) and senescent (Figure 1E). 

Young galls were small and in growing, with gall inducer on the 2nd or 3rd instar. 

Mature galls had ended differentiation, with inductor in the 5th instar. Senescent galls no 

longer possessed the gall inducer, with an open ostiole in its apical portion.  
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Figure 1. Individual of the host plant, Sapium glandulosum in the field (A), leaves (B) and galls induced 

by Neolithus fasciatus, in three stages of development: young (C), mature (D) and senescent (E). 

2.2 Relative water content (RWC) 

The relative water content was measured in leaf discs of 1cm2 of the middle 

portion of the leaf (n=10) and gall, in the different stages of development (n=10). The 

collection was carried out between 8:00 and 9:00 am, with subsequent weighing on an 

analytical balance (Marte® AL 500C) to obtain the fresh mass (FM). Then, the samples 

were immersed in water for 48 h and weighed to obtain the turgid mass (TM), followed 

by drying in an oven for 48 h at 50 ºC to obtain the dry mass (DM). From these data, the 

RWC was obtained according to the calculation of Turner (1981), where the RWC = 

((FM-DM)/(TM-DM)) X 100. 
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2.3 H2O2 histolocalization  

The histochemical analyses were based on fresh plant samples, and the sections 

were freehand made. For the labeling of hydrogen peroxide, leaf and gall samples at 

different stages of development (n= 3) were submitted to 3,3' diaminobenzidine (DAB) 

for 20 minutes in the dark (Rosseti & Bonnatti 2001). Then, the samples were washed 

and mounted in distilled water. All slides were photographed under a light microscope 

(Leica DM750) with a digital camera attached (Leica ICC50 HD). 

2.4 Oxidative stress analyses  

 For the quantification of oxidative stressful and ROS stress-dissipating 

molecules, samples of leaves (n=6) and galls in the three stages of development (n=6 for 

each stage) were collected in the field and immediately inserted into liquid nitrogen, 

with subsequent storage in an ultrafreezer at -80°C until analyses.  

The quantification of hydrogen peroxide (H2O2) was performed in 0.100 g of 

samples, which were macerated in liquid nitrogen, homogenized in potassium 

phosphate buffer 50 mM (pH 6.5) and hydroxylamine 1mM, and then centrifuged at 

10.000 xg for 15 min at 4 °C (Kuo & Kao 2003). The supernatant was added to the 

reaction medium consisting of 100 μM FeNH4(SO4), 25 mM sulfuric acid, 250 μM 

xylenol orange and 100 mM sorbitol (Gay & Gerbicki 2000). The samples were kept in 

the dark for 30 min and the absorbance was determined at 560 nm. The H2O2 

concentration was estimated based on a standard H2O2 curve and was expressed in nmol 

g-1 of fresh weight (FW). 

 The concentration of superoxide anion O2
.- was determined in 0.100 g of 

samples, homogenized in sodium phosphate buffer 100 mM (pH 7.0), containing 1 mM 
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of sodium diethyldithiocarbamate (DDC). The homogenate was centrifuged at 22.000 

xg for 20 min at 4 °C. After centrifugation, 0.1 ml of the supernatant was added to 1.9 

ml of the solution consisting of sodium phosphate buffer 100 mM (pH 7.0), DDC 1 mM 

of p-nitrotetrazolium blue 0.25 mM. The concentration of O2
.- was determined by the 

absorbance of the product subtracted from the initial absorbance at 540 nm (ABS 540 

min−1 g−1FW) (Chaitanya & Naithani 1994).  

The quantification of Malondialdehyde (MDA), which reflects lipid peroxidation 

in tissues, was based on the protocol described by Cakmak & Horst (1991). Plant 

samples of 0.150 g were macerated in liquid nitrogen, and the material was 

subsequently homogenized in 2 mL of 1% (w/v) trichloroacetic acid (TCA). The 

homogenate was centrifuged at 15.000 xg for 20 min at 4 °C. After centrifugation, 0.5 

mL of the supernatant was added to 1.5 mL of 0.5% thiobarbiuric acid solution (m/v) 

and incubated in a water bath at 95 °C for 30 min. After that, the reaction was stopped 

in an ice bath and the samples were centrifuged at 9.000 xg for 5 min at 15 °C. The 

MDA concentration was calculated using the extinction coefficient of 155 mM-1 cm-1 

and expressed in nmol g-1 of fresh weight (FW) (Heath & Packer 1968). 

2.5 Analyses of the antioxidant system that dissipate oxidative stress 

 At first, 0.250 g of samples were macerated in liquid nitrogen, and homogenized 

in 2 mL of potassium phosphate buffer 50 mM (pH 6.8), containing 

ethylenediaminetetraacetic acid (EDTA) 0.1 mM, phenylmethylsulfonic fluoride 

(PMSF) 1 mM and polyvinylpyrrolidone (PVPP) 5 % (m/v). The homogenate was 

centrifuged at 15.000 xg for 20 min at 4 °C and the supernatant was used as an extract 

for enzymatic determinations. After that, enzymatic extract was used to determine the 

activity of the enzymes catalase (CAT), ascorbate peroxidase (APX), superoxide 
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dismutase (SOD), and peroxidase (POX). The protein concentration in each sample was 

determined by the Bradford method (1976) to obtain the standard curve. 

The CAT activity was determined by the method of Cakmak & Marshner 

(1992). The reaction mixture consisted of 50 Mm potassium phosphate buffer (Ph 7.0) 

and H2O2 in a volume of 2 mL. The reaction was initiated by the addition of 50 μL of 

the sample extracts, in which the activity was determined by the consumption of H2O2 

at 240 nm for 1 min at 25 °C. The molar extinction coefficient of 36 M-1 cm (Anderson 

et al. 1995) was used to determine the activity of CAT, which was expressed in nmol 

min-1 mg-1 of protein.  

The APX activity was determined by the method of Nakano & Asada (1981), 

with some modifications. 50 μL of the samples were added to a solution composed of 

potassium phosphate buffer 50 mM (pH 6.8), H2O2 1 mM and ascorbate 0.8 mM, and 

the final volume was corrected to 2 mL. The reaction was measured by the oxidation of 

ascorbate dependent H2O2 at 290 nM for 5 min at 25ºC. The molar extinction 

coefficient of 2.8 mM-1 cm-1 was used to calculate the APX activity, which was 

expressed in μmol min-1 mg-1 of protein.  

The SOD activity was determined by adding 50 μL of the samples to 1.94 mL of 

reaction mixture consisting of distilled water 50 μL, sodium phosphate buffer 50 nM 

(Ph 7.8), methionine 13 nM, p-nitrotetrazolium blue (NBT) 75 μM, EDTA 0.1 nM and 

riboflavin 2 μM (Del Longo et al. 1993). The reaction occurred at 25 °C under 

illumination of 15 W lamps. After 5 min of light exposure, the illumination was 

interrupted and the blue formazan produced by NBT photoreduction was measured in a 

spectrophotometer (Evolution 60, Thermo Fisher Scientific Inc., Massachusetts - USA), 

at 560 nM (Giannopolittis & Ries 1977). The control samples had their absorbances 
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measured at 560 nM, using reaction mixture kept in the dark for 5 min. The values 

obtained were subtracted from the sample readings of the repetitions of the treatments 

that received illumination. SOD activity was expressed in SOD units per min-1 mg-1 of 

protein. 

The POX activity was determined by the methodology proposed by Kar & 

Misha (1976), by the oxidation of pyrogallol. The reaction mixture consisted of distilled 

water, potassium phosphate buffer 25 mM (pH 6.8), pyrogallol 20 nM and H2O2 nM in 

a volume of 2 mL. The reaction was initiated by the addition of 50 μL of the sample, 

and the activity was determined by the consumption of H2O2 at 420 nM, for 1 min, at 25 

°C (Chance & Maehley 1955). POX activity was expressed in μmol of purpurogalin 

produced min-1 mg-1 of protein.  

For total soluble phenolic compounds (TSPC), 0.1 g of samples were macerated 

with liquid nitrogen with subsequent addition of 1 mL of 80% methanol. The solution 

remained for 4 h on an agitator table at 300 rpm at room temperature and, subsequently, 

was centrifuged at 17.000 xg for 30 min. The supernatant was used for the 

determination of TSPC. The concentration of TSPC was determined through the method 

developed by Zieslin & Ben Zaken (1993), with some modifications. The reaction was 

initiated with the addition of 0.2 M Folin-Ciocalteu Phenol at 150 μL of the samples, 

followed by incubation at 25ºC for 5 min and addition of 0.1 M sodium carbonate. 

Absorbance was obtained at 725 nm and TSPC concentration was performed based on a 

calibration curve using gallic acid as standard. 

2.6 Determination of photosynthetic activity and cloroplastidic pigments 

The measurement of chlorophyll a fluorescence (n= 8) was made directly in the 

field using a Handy FluorCam – PSI portable equipment (Photon Systems Instruments, 
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Czech Republic). Measurements were obtained between 8.00 and 10.00 am after 

adaptation to the dark for 30 minutes (Rascher et al. 2000) on leaves and galls in the 

three stages of development. The following parameters were obtained: F0 = minimum 

fluorescence in dark-adapted state; FM= maximum fluorescence in dark-adapted state; 

Fv/Fm = maximum PSII quantum yield in dark-adapted state; NPQ = steady-state non-

photochemical quenching; Rfd = fluorescence decline ratio in steady-state and (F'm-

F')/F'm = PSII operational efficiency (where F'm is the fluorescence signal when all PSII 

centers are closed in the light-adapted state, and F' is the measurement of the light-

adapted fluorescence signal).  

Photosynthetic pigments (n= 8) were quantified using leaf discs of 1 cm2, 

immersed in 80% acetone for 48 hours and centrifuged at 1.500 rpm for 5 minutes in a 

centrifuge (Fanen Mod 206 BL). The absorbance of the supernatant at 470, 646 and 663 

nm was performed in a spectrophotometer (Thermo Spectronic Mod. Genesys 10 UV) 

and the calculation of chlorophyll a, chlorophyll b and carotenoids performed according 

to Lichtenthaler & Wellburn (1983). 

 

2.7 Statistical analyses  

The quantitative data were initially submitted to the normality and 

homoscedasticity test. Thus, ANOVA was used, followed by Tukey test in Rstudio® for 

all analyses. 5% significance was adopted. 

3. RESULTS 

3.1 Histochemical analyses 

Hydrogen peroxide was detected in leaves, mainly in the chlorophyllous tissue 

and in the vascular bundles (Figure 2A). This compound was present in the different 
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stages of gall development, being detected in the epidermis, chlorophyllous outer cortex 

and vascular bundles of young galls (Figure 2B, C). In the mature galls, hydrogen 

peroxide was histolocalized mainly in the cortex that surrounds the nymphal chamber 

and in the vascular bundles (Figure 2D, E), while in the senescent galls the labeling was 

concentrated in the epidermis, vascular bundles, and cortex (Figure 2F). The laticifers 

showed extensive hydrogen peroxide labeling throughout the development of the galls 

(Figure 2G). 

Figure 2. Histochemical detection of hydrogen peroxide with the DAB test in leaves (A) of Sapium 

glandulosum and in galls induced by Neolithus fasciatus in the young (B, C), mature (D, E) and senescent 

(F, G) stages. G- Laticifer. * Brown coloration shows positive reaction. Abbreviations: Ep – Epidermis; 
EpAd – Epidermis on the adaxial face; EpAb – Epidermis on the abaxial face; PP – Palisade parenchyma; 

SP – Spongy parenchyma; VB - Vascular bundle; Co – Cortex; NC – Nymphal camera; La – Laticifer. 

3.2 ROS and lipid peroxidation 

The concentration of hydrogen peroxide (H2O2) was higher in leaves (422.96 

nmol g-1 FW ± 65.07) than galls and equal between the stages of development, i.e. 

young galls (207.63 nmol g-1 FW ± 34.67), mature galls (213.24 nmol g-1 FW ± 55.37) 

and senescent galls (232.27 nmol g-1 FW ± 42.41) (Figure 3A). The superoxide anion 

(O2
.-) was highest in the young galls (3.23 nmol g-1 FW ± 1.85), followed similarly by 
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mature galls (1.65 nmol g-1 FW ± 0.75) and senescent galls (1.30 nmol g-1 FW ± 0.51) 

and lower in leaves (0.78 nmol g-1 FW ± 0.15) (Figure 3B).  

The lipid peroxidation, evaluated by malondialdehyde (MDA) concentration, 

was higher in leaves (0.10 nmol g-1 FW ± 1.42e-2) and senescent galls (0.08 nmol g-1 FW 

± 2.74e-3), being lower in young galls (0.05 nmol g-1 FW ± 1.06e-2) and mature galls 

(0.05 nmol g-1 FW ± 4.69e-3) (Figure 3C). 

 

Figure 3. Quantification of oxidative stress in leaves of Sapium glandulosum and in the galls induced by 

Neolithus fasciatus in the young, mature, and senescent stages. A- Concentration of hydrogen peroxide 

(H2O2); B – Concentration of superoxide anion (O2
.-) and C – Concentration of malondialdehyde (MDA). 

Data were represented as mean ± standard deviation. *Means followed by equal letters do not indicate 

difference by Tukey's test, at 5% significance. 
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3.3 Antioxidant system analyses and phenolics 

The enzymatic activity in leaves was different in relation to the galls (Figure 4). 

The catalase activity (CAT) was higher in the leaves (34.3e-6 μmol min-1 mg-1 prot ± 

5.06e-6) than in all stages of galls, reaching lower activity in the senescent galls (5.08e-7 

μmol min-1 mg-1 prot ± 1.83e-6) (Figure 4A). The activity of ascorbate peroxidase (APX) 

and peroxidase (POX) were similar, and the values found in the leaves were higher than 

in all stages of galls (Figure 4B, C). For superoxide dismutase (SOD), the young, 

mature and senescent galls had higher values than leaves (13.9e-4 μmol min-1 mg-1 prot ± 

2.64e-4), as well as similar to each other (29.7e-4 μmol min-1 mg-1 prot ± 3.68e-4, 31.7e-4 

μmol min-1 mg-1 prot ± 3.93e-4, 28.3e-4 μmol min-1 mg-1 prot ± 3.30e-4, respectively) 

(Figure 4D). The phenolic compound contents showed similar results between leaves 

and galls at all stages of development (mg/kg) (Figure 4E). 
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Figure 4. Enzymatic activity and phenolic contents in leaves of Sapium glandulosum and galls induced by 

Neolithus fasciatus in the young, mature, and senescent stages. A- Catalase activity (CAT); B- Ascorbate 

peroxidase activity (APX); C- Activity of peroxidase enzymes (POX); D- Superoxide dismutase activity 

(SOD); E – Total soluble phenolic compounds (TSPC). Data were represented as mean ± standard 

deviation. *Means followed by equal letters do not indicate difference by Tukey's test, at 5% significance. 

3.4 Pigment content, chlorophyll a fluorescence and relative water content  

The total chlorophyll values were higher in leaf than galls in the different stage 

of development (Table 1). The chlorophyll a/b ratio showed similar results between 

leaf, mature galls, and senescent galls, being higher than the young galls (Table 1). The 

total concentration of carotenoids was higher in the leaf, followed similarly between 

mature and senescent galls and lower in the young galls (Table 1). The 

chlorophyll/carotenoid ratio was higher for the leaf, with lower ratio for the mature and 

senescent galls (Table 1). The relative water content was higher in young galls than 

leaves, mature and senescent galls (Table 1). 

Table 1. Chloroplastid pigments and relative water content in Sapium glandulosum leaves and galls 

induced by Neolithus fasciatus in the young, mature and senescent stages. Data were represented as mean 

± standard deviation. 

 

Total chlorophyll 

(µg g-1MF) 

Chlorophyll 

(a/b) 

Total carotenoids 

(µg g-1MF) 

Total 

chlorophyll/carotenoids 

Relative water 

content (RWC) (%) 

Leaf 3311,0 ± 502,6a 4,1 ± 0,3a  273,7 ± 35,9a 12,0 ± 0,6a 63,32 ± 5,33b 

Young gall  157,2 ± 53,4b 3,3 ± 0,8b 48,3 ± 16,1c  3,29 ± 0,5b 84,4 ±5,56a 

Mature gall  232,4 ± 93,9b 3,8 ± 0,5a 121,8 ± 43,4b 1,8 ± 0,1c 73,74 ± 8,02b 

Senescent gall  190,2 ± 54,8b 3,5 ± 0,5a 95,6 ± 20,0b 1,9 ± 0,1c 63,24 ± 12,82b 

* Means followed by equal letters in the same column indicate no difference by Tukey's test, at 5% 

significance. 

The minimum fluorescence of PSII in the state adapted to the dark (F0) had 

higher values for the mature galls, followed equally by the leaf and young galls, and the 

senescent galls (Table 2). The maximum fluorescence of PSII in the dark-adapted state 

(FM) was higher in the mature galls, followed similarly by the leaf and young galls, in 

addition to a lower value in the senescent galls (Table 2). The quantum yield of 

photosystem II in steady state adapted to light, the (F'm-F)/F'm, had similar values for 

all treatments (Table 2). The maximum quantum yield of photosystem II (Fv/Fm) 



29 

 

presented similar values for the treatments except for senescent galls (Table 2). The 

non-photochemical dissipation of energy (NPQ) was higher in the leaf, followed equally 

by the young and mature galls, and finally by the senescent galls (Table 2). The steady-

state fluorescence decline ratio (Rfd), an empirical parameter used to assess plant 

vitality, was higher in leaf, followed by young galls, and being similarly lower in 

mature and senescent galls (Table 2). 

Table 2. Chlorophyll a fluorescence in leaves of Sapium glandulosum and its galls induced by Neolithus 

fasciatus in the young, mature, and senescent stages. Data were represented as mean ± standard deviation. 

 
Leaf 

 Gall  

  
Mature 

 

 
Young Mature Senescent 

F0 
 

59,04 ± 4,78b 
 

 

65,30 ± 9,48ab 71,91 ± 16,29a 52,06 ± 10,68b 

FM 
 

230,12 ± 28,16b 
 

 228,44 ± 57,11b 293,02 ± 101,44a 140,25 ± 52,45c 

Fv/Fm 
 

0,74 ± 0,03a   0,69 ± 0,09a 0,73 ± 0.06a  0,59 ± 0,10b 

(F’m-F)/F’m 
 

0,46 ± 0,04a   0,48 ± 0,08a 0,56 ± 0,08a 0,48 ± 0,11a 

NPQ 
 

2,32 ± 0,31a 
 

 1,56 ± 0,25b 1,22 ± 0.29b 0,63 ± 0,26c 

Rfd 
 

3,04 ± 0,19a  
 

 2,07 ± 0,27b 1,55 ± 0,36c 1,02 ± 0,35c 

Abbreviations: F0- Minimal fluorescence of PSII in the state adapted to the dark; Fm- maximum 

fluorescence of PSII in the state adapted to the dark; Fv/Fm- maximum quantum yield of photosystem II; 

(F'm–F')/F'm- PSII operational efficiency; NPQ- Non-photochemical quenching during light adaptation; 

Rfd- Steady-state fluorescence decline ratio. * Means followed by equal letters on the same line do not 

indicate difference by Tukey's test, at 5% significance. 

 

4. DISCUSSION 

4.1 Oxidative stress and antioxidant activity  

 In the galls of S. glandulosum, the hydrogen peroxide occurred in few tissues, 

mostly in the feeding site of the gall-inducer, and in higher amount in leaves than galls. 

These data are contrary to what is expected, which can demonstrate that in gall there is 

intracellular homeostatic balance and effective control of the ROS levels by the activity 

of an antioxidant system (Foyer & Noctor 2009). The galls of Aspidosperma australe 

(Apocynaceae) and A. tomentosum (Apocynaceae) had similar results, which were 
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associated with the lower stress caused by the sucking apparatus of the gall insects 

(Kuster et al. 2022), which is like that of Neolithus fasciatus. The senescence of the 

galls of S. glandulosum seems to be related to increased lipid peroxidation, which 

triggers a cumulative deterioration of membranes, as reported for senescent leaves of 

Nicotiana tabacum L. (Solanaceae) (Dhindsa et al. 1981). Senescence and lipid 

peroxidation have been associated in different plant species, such as Brassica oleracea 

L. (Brassicaceae) (Zhuang et al. 1995) and B. oleracea L. (Brassicaceae) (Cheour et al. 

1992). 

Superoxide (O2
.-) is the first ROS generated after the reduction of molecular O2 

and is considered to have strong reactivity and oxidizing capacity (Saibi & Brini 2018). 

That ROS was in higher amount in young galls of S. glandulosum than to the other 

stages, since after induction the galls increase growth rates and cellular (Isaias et al. 

2015). O2
.- arises in several cellular compartments, but mitochondrial respiration is one 

of the main producers of this ROS (Saibi & Brini 2018), which justifies its high 

concentration in the young galls of S. glandulosum. The high concentration of 

superoxide was not materialized in a secondary stress in galls, labeled here by 

malondialdehyde, which may be related to dissipation via SOD, which generally 

prevents lipid peroxidation (Gill & Tuteja 2010). 

The accumulation of phenolics has been reported for galls induced by insects 

and in different host plant species, such as in the galls induced by Leptocybe invasa 

(Hemynoptera) in Eucalyptus camaldulensis (Myrtaceae) (Isaias et al. 2018), reducing 

the harmful effects of free radicals (Gottlieb & Kaplan 1993). For this reason, the 

production of phenolic compounds in galls are typically hyper-stimulated by the gall-

inducers, as demonstrated for galls of Miconia albicans and M. ibaguensis 

(Melastomataceae) induced by Ditylenchus gallaeformans (Nematoda) (Ferreira et al. 
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2018). However, the storage of phenolic compounds was similar between the leaves and 

all stages of development of the galls of S. glandulosum, which may reflect the low 

stress pointed out for the galls. Despite the similarity, Rosa (2022) demonstrated that 

phenolics occurred mainly in the vascular bundles of mature galls of S. glandulosum, 

indicating that phenolic production sites are associated with tissues with higher 

hydrogen peroxide labeling.    

Antioxidant enzymes such as catalase (CAT), peroxidase (POX), ascorbate 

peroxidase (APX) and superoxide dismutase (SOD) are important in protecting 

membranes because they prevent lipid peroxidation and act in defense against reactive 

oxygen species (ROS) (Purvis & Shewfelt 1993). These enzymes remove peroxidized 

fatty acids from the membrane (Shewfelt & Brenda 2000) and thus prevent elevated 

oxidative stress (Barbosa et al. 2014). Under normal conditions, ROS molecules can be 

scavenging by the antioxidant defense mechanisms, but the oxidative balance can be 

affected by stress triggered by abiotic and biotic factors, which elevate oxidative stress 

through the production of H2O2 (Gill & Tuteja 2010). 

In the current work, a higher activity of antioxidant enzymes in the S. 

glandulosum leaves was reported compared to the three stages of gall development, 

possibly acting on the dissipation of the strongly labeled H2O2 in its chlorophyllous 

tissue. The photosynthetic process is responsible for the production of ROS in 

chloroplasts, mainly by the reduction of the O2 product from the water photolyzes, 

which can produce O2
.- and H2O2 (Khorobrykh et al. 2020). Chloroplasts have ROS 

elimination systems to prevent damage to the photosynthetic process (Asada 2008; 

Triantaphylidès et al. 2008), represented by the enzymes CAT, APX and POX in the S. 

glandulosum leaves and which apparently do not avoid the high levels of lipid 

peroxidation reported here. The increase in these enzymes is related to the dissipation of 
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biotic and abiotic stress in plants, as demonstrated in the leaves of Urochloa ruziziensis 

(Poaceae) under severe water stress (Bulegon et al. 2016). The lower activity of these 

enzymes in the galls may be related to the weak histochemical labeling of H2O2 in their 

tissues, possibly linked to the low oxidative stress promoted by the inducer's feeding 

habit (see Kuster et al. 2022). 

The SOD acts at the beginning of antioxidant defense, mainly dismuting the 

superoxide anion O2
.- and decreasing the formation of the hydroxyl radical (OH-), which 

is one of the most offensive ROS in lipid degradation (Gill & Tuteja 2010). SOD was 

found in higher activity in galls in its three stages of development in relation to leaves, 

proving to be the main system of ROS dissipation in the S. glandulosum galls. This 

increased SOD activity may cause the other antioxidant enzymes to show a reduction in 

demand, as it is acting as the first line of defense (Saibi & Brini 2018). Associated with 

the action of SOD, there was a high labeling of H2O2 in the cell walls of the different 

tissues of young galls, which may come from the dismutation of O2
.-. H2O2 is a 

promoter of plant development, mainly by stimulating cell expansion (Isaias et al. 2015; 

Schmidt et al. 2016) and can therefore be a signal of the development of S. glandulosum 

galls. That cell expansion may also be driven by higher RWC in young galls, which 

generates a higher turgor pressure (Taiz et al. 2017). In galls of Cuscuta campestris 

(Convolvulaceae) induced by the gall insect Smicronyx sp. nov. (Coleoptera: 

Curculionidae) there was also an increase in SOD in response to increased metabolism 

and maintenance of photosynthetic activity (Zagorchev et al. 2018). SOD activity is 

critical for the scavenging of superoxide radicals generated during photosynthesis, even 

under ideal conditions of redox homeostasis (Foyer & Shigeoka 2011). 
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4.2 Chloroplastid pigments and chlorophyll a fluorescence  

The induction of galls in leaves usually causes a reduction in the concentration 

of chloroplastid pigments, represented by chlorophyll and carotenoids (Rezende et al. 

2018; Oliveira et al. 2017; Kuster et al. 2022). The pigment reduction of S. 

glandulosum galls follows the pattern reported for leaf galls of Eugenia uniflora 

induced by Eugeniamya dispar (Rezende et al. 2018) and for four leaf morphotypes 

induced in Aspidosperma spp. (Kuster et al. 2022). The drop in pigments is related to 

cellular hypertrophy and tissue hyperplasia (Mani 1964) and is usually associated with 

the dilution process, as reported for galls of M. guianensis (Oliveira et al. 2017). 

However, here the RWC was only higher in the young galls, being similar between the 

leaves and the other gall stages, which leads us to believe that the reduction in the 

chloroplastid pigments in the S. glandulosum galls is not due to a dilution process. Gall 

formation is based on the redifferentiation of cells and tissues through different 

cytohistological processes (Isaias et al. 2011; Oliveira et al. 2014), with the emergence 

of new morphofunctional compartments distinct from the pre-existing ones (Bragança et 

al. 2022). Thus, we believe that the change in tissue functionality is associated with the 

degradation of pigments in S. glandulosum and investment in new organelles and tissue 

structure. The reduction in chlorophyll concentration in the S. glandulosum galls was 

accompanied by increased initial fluorescence (F0) and maximum fluorescence (Fm) in 

mature galls, as well as demonstrated for galls of E. uniflora (Rezende et al. 2018). 

Higher values of F0 and Fm may indicate the biotic stress generated by gall induction, 

which may be associated with damage to photosystem II (PSII) and/or pairing in the 

excitation energy transfer of the antenna complex (Bolhar-Nordenkampf et al. 1989).  

 The lower concentration of carotenoids in the young galls of S. glandulosum 

compared to the other stages of development demonstrates loss in the process of energy 
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dissipation (Demming-Adams & Adams 1996; Taiz et al. 2017), which may be 

associated with prominent cytohistological reorganization at this stage. Lower 

carotenoid concentrations in young versus mature galls have also been reported for leaf 

galls induced by Pseudophacopteron longicaudatum on Aspidosperma tomentosum 

(Martini et al. 2020). That tissue restructuring also reduced non-photochemical 

quenching (NPQ) and tissue vitality, demonstrated by Rfd, in the gall relative to the 

leaf, as demonstrated for galls of M. guianensis (Oliveira et al. 2017). These parameters 

were more affected by gall senescence, where degradation of nuclei and encapsulation 

of organelles for cellular digestion have already been reported (Oliveira et al. 2010). 

Reduction of maximum PSII quantum yield (Fv/Fm) and PSII operational 

efficiency (F'm–F')/F'm) appears to be a usual response to leaf gall induction, as 

demonstrated for leaf galls of Eugenia uniflora (Rezende et al. 2018), Matayba 

guianensis (Oliveira et al. 2017), and Aspidosperma tomentosum (Martini et al. 2020). 

The reduction in quantum efficiency in galls is usually associated with decreased 

chlorophyll content, as demonstrated here, which is the site of light absorption and 

chemical energy formation (Oliveira et al. 2017). As well, the decrease in the 

mechanism of energy capacitation and dissipation may also be related to the reduction 

of quantum yield in PSII, as demonstrated for galls induced by D. gallaeformans 

(Nematoda) in leaves of Miconia albicans (Melastomataceae) (Ferreira et al. 2018). 

However, the galls of S. glandulosum are out of the ordinary, maintaining the quantum 

yield of the photosystem, being similar to that found in galls of Cecidomyiidae in leaves 

of Clusia arrudae (Clusaceae), which maintained the quantum yield similar to the non-

galled organ (Fernandes et al. 2010). The maintenance of quantum yield in galls may be 

a compensatory response, decreasing this negative effect of galls on plant development 

(Fay et al. 1993). 
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5. CONCLUSION 

The development of S. glandulosum galls was mediated by a low oxidative 

stress, controlled mainly by SOD activity as the first line of antioxidant defense. 

Unexpectedly, the leaf presented a high oxidative stress associated with photosynthetic 

tissue, even with high investment in antioxidant enzymes. This stress seems to have 

negatively impacted the quantum yield of photosynthesis, with performance similar to 

that of non-senescent galls, even with the reduction of chlorophyll concentration in 

galls. 
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