

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA GOIANO – IF GOIANO - CÂMPUS RIO VERDE PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE E CONSERVAÇÃO

Rodovia Sul Goiana, km 01, Zona Rural – Rio Verde - GO CEP: 75.901-970. Fones: (64) 3620-5641. Fax: (64) 3620-5640

ANA PAULA ELIAS BORGES

EFEITO DO RUÍDO DO TRÁFEGO NO COMPORTAMENTO DE VOCALIZAÇÃO DE *PHYSALAEMUS CUVIERI* (ANURA, LEPTODACTYLIDAE).

RIO VERDE-GO JULHO/2022

ANA PAULA ELIAS BORGES

EFEITO DO RUÍDO DO TRÁFEGO NO COMPORTAMENTO DE VOCALIZAÇÃO DE *PHYSALAEMUS CUVIERI* (ANURA, LEPTODACTYLIDAE).

Autora: Ana Paula Elias Borges

Orientadora: Dra. Levi Carina Terribile

Coorientador: Dr. Alessandro Ribeiro de Morais

Dissertação apresentada como parte das exigências para obtenção do título de MESTRE EM BIODIVERSIDADE E CONSERVAÇÃO no Programa de Pós-Graduação em Biodiversidade e Conservação do Instituto Federal de Educação, Ciência e Tecnologia Goiano – campus Rio Verde - Área de Concentração: Conservação dos Recursos Naturais.

Sistema desenvolvido pelo ICMC/USP Dados Internacionais de Catalogação na Publicação (CIP)

Borges, Ana Paula Elias Borges

EFEITO DO RUÍDO DO TRÁFEGO NO COMPORTAMENTO DE VOCALIZAÇÃO DE PHYSALAEMUS CUVIERI (ANURA, LEPTODACTYLIDAE). / Ana Paula Elias Borges Borges; orientadora Dra. Levi Carina Terribile Terribile; co-orientador Dr. Alessandro Ribeiro de Morais Morais. - Rio Verde, 2022.

49 p.

Dissertação (Mestrado em Programa de Pós-graduação em Biodiversidade e Conservação) -- Instituto Federal Goiano, Campus Rio Verde, 2022.

1. anfíbio. 2. vocalização. 3. fragmentação. 4. habitat. 5. ecologia de paisagem. I. Terribile, Dra. Levi Carina Terribile, orient. II. Morais, Dr. Alessandro Ribeiro de Morais, co-orient. III. Título.

TERMO DE CIÊNCIA E DE AUTORIZAÇÃO PARA DISPONIBILIZAR PRODUÇÕES TÉCNICO-CIENTÍFICAS NO REPOSITÓRIO INSTITUCIONAL DO IF GOIANO

Com base no disposto na Lei Federal nº 9.610, de 19 de fevereiro de 1998, AUTORIZO o Instituto Federal de Educação, Ciência e Tecnologia Goiano a disponibilizar gratuitamente o documento em formato digital no Repositório Institucional do IF Goiano (RIIF Goiano), sem ressarcimento de direitos autorais, conforme permissão assinada abaixo, para fins de leitura, download e impressão, a título de divulgação da produção técnico-científica no IF Goiano.

IDENTIFICAÇÃO DA PRODUÇÃO TĒCNICO-CIE	NTÍFICA
 ☐ Tese (doutorado) ☑ Dissertação (mestrado) ☐ Monografia (especialização) ☐ TCC (graduação) 	☐ Artigo científico☐ Capítulo de livro☐ Livro☐ Trabalho apresentado em evento
☐ Produto técnico e educacional - Tipo:	
Nome completo do autor: Ana Paula Elias Borges Título do trabalho:	Matrícula: 2020102310840039
EFEITO DO RUÍDO DO TRÁFEGO NO COMPORT	'AMENTO DE VOCALIZAÇÃO DE
PHYSALAEMUS CUVIERI (ANURA, LEPTODACT	YLIDAE).
RESTRIÇÕES DE ACESSO AO DOCUMENTO	
Documento confidencial: 🗹 Não 🔲 Sim, justifiq	ue:
Informe a data que poderá ser disponibilizado no RI	IF Goiano: // /
O documento está sujeito a registro de patente?]Sim □Não
O documento pode vir a ser publicado como livro?	□ Sim □ Não
DECLARAÇÃO DE DISTRIBUIÇÃO NÃO-EXCLUS	SIVA
O(a) referido(a) autor(a) declara:	
· Que o documento é seu trabalho original, detém os direit qualquer outra pessoa ou entidade;	os autorais da produção técnico-científica e não infringe os direitos de
	no documento do qual não detém os direitos de autoria, para conceder piano os direitos requeridos e que este material cujos direitos autorais idos no texto ou conteúdo do documento entregue;
 Que cumpriu quaisquer obrigações exigidas por contrato financiado ou apoiado por outra instituição que não o Insti 	ou acordo, caso o documento entregue seja baseado em trabalho tuto Federal de Educação, Ciência e Tecnologia Goiano.
	IF GOIANO - RIO VERDE, 09 /09 /2022 Local Data
Cina Paula	Elias Borges
	e/ou detentor dos direitos autorais
l)	~ + 11
Ciente e de acordo:	July Mark Me

Assinatura do(a) orientador(a)

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA GOIANO

Documentos 84/2022 - NREPG-RV/CPG-RV/DPGPI-RV/CMPRV/IFGOIANO

EFEITO DO RUÍDO DO TRÁFEGO NO COMPORTAMENTO DE VOCALIZAÇÃO DE PHYSALAEMUS CUVIERI (ANURA, LEPTODACTYLIDAE).

Autora: Ana Paula Elias Borges Orientadora: Prof^a. Dra. Levi Carina Terribile

TITULAÇÃO: Mestre em Biodiversidade e Conservação - Área de Concentração Conservação dos Recursos Naturais

APROVADA em 27 de julho de 2022.

Prof. Dr. Matheus Souza Lima Ribeiro Avaliador Interno UFJ/Jataí Prof. Dr. Fábio Hepp Silva Fernandes dos Santos Avaliador externo UFRJ/Rio de Janeiro

Prof^a. Dra. Levi Carina Terribile UFJ/Jataí

Documento assinado eletronicamente por:

- Fábio Hepp Silva Fernandes dos Santos, Fábio Hepp Silva Fernandes dos Santos Professor Avaliador de Banca Universidade Federal do Rio de Janeiro (33663683000116), em 22/08/2022 14:35:40.
- Matheus de Souza Lima Ribeiro, Matheus de Souza Lima Ribeiro Professor Colaborador Universidade Federal de Jatai (35840659000130), em 15/08/2022 09:25:29.
- Levi Carina Terribile, Levi Carina Terribile Professor Colaborador Universidade Federal de Jatai (35840659000130), em 12/08/2022 21:23:26.

Este documento foi emitido pelo SUAP em 08/07/2022. Para comprovar sua autenticidade, faça a leitura do QRCode ao lado ou acesse https://suap.ifgoiano.edu.br/autenticar-documento/ e forneça os dados abaixo:

Código Verificador: 406286 Código de Autenticação: 6a688a9d14

INSTITUTO FEDERAL GOIANO Campus Rio Verde Rodovia Sul Goiana, Km 01, Zona Rural, None, None, RIO VERDE / GO, CEP 75901-970 (64) 3620-5600

Dedicatória

Dedico este trabalho a todos que colaboraram na execução deste estudo, com seus conhecimentos e disponibilidade. Da mesma forma, dedico a todos que se esforçam na construção de um conhecimento científico factual.

AGRADECIMENTOS

Uma palavra que representa a minha trajetória como mestranda foi Gratidão. Primeiramente, sou grata a Deus. Sou bióloga e creio na existência de um Deus que anseia o melhor para todos que crerem, portanto, sou grata pela a oportunidade de cursar o mestrado em Biodiversidade e Conservação.

Segundamente, sou grata a todos que contribuíram na realização deste estudo. Meus sinceros agradecimentos a toda equipe, visto que trabalhamos pelo melhor resultado. Grata a minha Orientadora, Professora Doutora Levi Carina Terribile, que me auxiliou e aconselhou em todas as etapas deste mestrado. Obrigada por todo apoio que me concedeu, sem a sua ajuda, não seria possível concluir este trabalho. Sou grata ao meu Coorientador Professor Doutor Alessandro Ribeiro de Morais, que disponibilizou os dados e tirou nossas duvidas quando existiam. Da mesma forma, sou imensamente grata pelos nossos colaboradores Larissa Sayuri M. Sugai e Roniel Freitas, os quais me ajudaram nas análises deste estudo, com suas disponibilidades, benevolência e conhecimento, é um sentimento de gratidão imensurável.

Gratidão aos meus familiares e amigos que estiveram comigo me apoiando nos momentos difíceis. Grata aos meus colegas de mestrado, no qual compartilhamos momentos juntos. E por fim, grata ao Instituto Federal de Educação Ciência e Tecnologia Goiano Campus Rio Verde, por possibilitar cursar o mestrado em Biodiversidade e Conservação. Agradeço ao laboratório de Macroecologia da Universidade Federal de Jataí por fornecer materiais e meios para a realização da pesquisa, à FAPEG pelo financiamento do projeto e a CAPES pela oportunidade de uma bolsa acadêmica, que tornou a minha trajetória viável e segura.

A TODOS MUITO OBRIGADA!

BIOGRAFIA DA AUTORA

Ana Paula Elias Borges, nascida em Jataí-GO em 24 de abril de 1996. Concluiu o ensino médio no Colégio Estadual Nestório Ribeiro, na cidade de Jataí/GO. Em 2013, cursou Habilitação Técnica de Nível Médio em Controle Ambiental, pelo serviço nacional de Aprendizagem Comercial (SENAC-GO). Graduada em Ciências Biológicas modalidade Licenciatura no ano de 2019/1, pela Universidade Federal de Goiás, campus Jataí, atualmente Universidade Federal de Jataí (UFJ). Em 2020 ingressou na pós-graduação Stricto Sensu, pelo Instituto Federal de Educação, Ciência e Tecnologia Goiano, no Programa de Pós-graduação em Biodiversidade e Conservação, nível- Mestrado.

INDICE

	Página
RESUMO	10
ABSTRACT	11
1. INTRODUÇÃO	12
2. MATERIAL E MÉTODOS	14
2.1. Espécie modelo	14
2.2. Área de estudo e pontos de coleta de dados	16
2.3 Coleta de dados de Vocalização, Ruído e Vegetação	17
2.4. Análise Acústica e Ruído Rodoviário	17
2.5. Análise da Vegetação	18
2.6. Análise Estatística	19
3. RESULTADOS	19
4. DISCUSSÃO	22
5. REFERÊNCIAS BIBLIOGRÁFICAS	25
6. ANEXOS	30

INDICE TABELAS

				Página
TABELA 1. COEF	ICIENTES E VALOR	ES DE P PARA	O MODELO	GLM DAS
VARIÁVEIS DIST <i>Â</i>	ÀNCIA E PORCENTA	GEM DE VEGETA	AÇÃO COM A	TAXA DE
VOCALIZAÇÃO				20
TABELA 2. COEF	TICIENTES E VALOR	ES DE P PARA	O MODELO	GLM DAS
VARIÁVEIS SRN	E PORCENTAGEM	DE VEGETAÇÃ	O COM A	TAXA DE
VOCALIZAÇÃO				22

INDICE FIGURAS

									Pá	ígina
FIGURA	1.	MAPA	DE	DISTRIE	BUIÇÃO	DA	ESPÉCII	E PHY	SALAEMU	IJ S
CUVIERI.									1	4
FIGURA 2	2. <i>PH</i>	<i>SALAEMU</i>	US CUV	<i>IERI</i> (FIT:	ZINGER,	1826)	(FOTO: MI	CHEL DI	E AGULA	ιR
PASSOS)									1	15
FIGURA :	3. ESI	PECTROG	RAMA	DA ESP	ÉCIE <i>PH</i>	YSALA	EMUS CU	VIERI (F.	ITZINGE	R,
1826)										15
FIGURA	4. DI	STRIBUI	ÇÃO I	OS PON	TOS CO	LETAI	OOS, PON	TOS VE	RMELHO	S
INDICAM	LOC	ALIZAÇÃ	O CON	A DISTÂN	CIA INFI	ERIRO	A 150 MET	ROS DA	RODOV	ĺΑ
E PONTO	S VEF	RDES A M	AIS 500) METROS	S					16
FIGURA	5. TA	XA DE	VOCA:	LIZAÇÃO	ENTRE	PONT	OS DISTA	ANTES I	E PONTO	S
PROXIMO	OS A F	RODOVIA								20
FIGURA	6.	RELAÇ	ÄO	ENTRE	A T	AXA	DE V	OCALIZA	Ą ÇÃO	E
DISTÂNC	IA								2	21
FIGURA 7	7. RE	LAÇÃO E	ENTRE	A TAXA	DE VO	CALIZA	AÇÃO E P	ORCENT	AGEM I	ÞΕ
VEGETA	ÇÃO									21
FIGURA 8	B. REL	AÇÃO EN	NTRE A	TAXA D	E VOCAI	LIZAÇÂ	ĂO E SRN			22

LISTA DE SIMBOLOS, SIGLAS E ABREVIAÇOES

IUCN União Internacional para Conservação da Natureza

FAPEG Fundação de Amparo à Pesquisa do Estado de Goiás

MAP Monitoramento Acústico Passivo

P_A_N Porcentagem de Vegetação Nativa

NP Manchas Florestais

SRN Relação Sinal Ruído

GLM Modelos Lineares Generalizados

DIST_NORM Distancia padronizada

PA_NORM Porcentagem de Vegetação padronizada

TAXVOC Taxa de Vocalização

BORGES, A. P. E. **Efeito do ruído do tráfego no comportamento de vocalização de** *Physalaemus cuvieri* (**Anura, Leptodactylidae**). Instituto Federal Goiano – Campus Rio Verde – julho/2022.

RESUMO

O ruído antropogênico é uma perturbação ambiental capaz de provocar uma variedade de respostas no comportamento animal. Animais que vivem constantemente em ambientes ruidosos são capazes de apresentar mudanças ao longo do tempo na morfologia, fisiologia e no comportamento. Os anfíbios são animais que necessitam da transmissão e recepção de sinais acústicos para se reproduzirem e são capazes de ajustar seus parâmetros acústicos para lidar com o ruído de várias maneiras. O canto de anuncio é fortemente influenciado por fatores ambientais, a perda do habitat, pode ocasionar efeitos negativos ou positivos, dependendo do grupo taxonômico. Neste estudo pretende-se testar a influência das rodovias e a modificação de paisagem na vocalização da *Physalaemus cuvieri*. O estudo foi realizado no bioma Cerrado e a atividade acústica da P. cuvieri foi analisada a partir de pontos amostrados nas margens das rodovias do Estado de Goiás, em áreas com represas e/ou poças d'água, localizados próximos - até 150m de distância - e distantes - pelo menos 500m - das rodovias. A atividade de vocalização nestes pontos foi analisada com a ajuda do programa Audacity 3.0.2 e software R 4.1.0. Estabelecemos uma zona de amortecimento (buffer) de 500m a partir de cada ponto, e através de imagens de satélite, extraímos a porcentagem da vegetação nativa. Testamos se a distância, a relação sinal-ruído (SRN), a porcentagem de vegetação e o número de fragmentos afetam a taxa de vocalização da espécie. Aplicamos dois modelos lineares generalizados, um utilizando a distância e a porcentagem de vegetação como preditoras da taxa de vocalização e outro utilizado o SRN e porcentagem de vegetação como preditoras da taxa de vocalização. Nossos resultados mostraram que P. cuvieri diminui sua taxa de vocalização em ambientes mais ruidosos e aumenta sua taxa de canto nos ambientes mais distante da rodovia. Em ambiente com menos vegetação a sua taxa de vocalização aumentou.

Palavras-chave: anfíbio; vocalização; ecologia de paisagem; fragmentação de habitat:

BORGES, A. P. E. Effect of traffic noise on the vocalization behavior of **Physalaemus cuvieri (Anura, Leptodactylidae).** Federal Institute of Goiás – Campus Rio Verde – July/2022.

ABSTRACT

Anthropogenic noise is an environmental disturbance capable of provoking a variety of responses in animal behavior. Animals that live constantly in noisy environments are able to show changes over time in morphology, physiology and behavior. Amphibians are animals that need the transmission and reception of acoustic signals to reproduce and are able to adjust their acoustic parameters to deal with noise in various ways. The advertisement call is strongly influenced by environmental factors, habitat loss can cause negative or positive effects, depending on the taxonomic group. In this study we intend to test the influence of roads and landscape modification on the vocalization of *Physalaemus cuvieri*. The study was carried out in the Cerrado biome and the acoustic activity of P. cuvieri was analyzed from points sampled on the roadsides of the State of Goiás, in areas with dams and/or water puddles, located close - up to 150m away - and distant - at least 500m - from highways. Vocalization activity at these points was analyzed with the help of the Audacity 3.0.2 program and R 4.1.0 software. We established a buffer zone of 500m from each point, and through satellite images, we extracted the percentage of native vegetation. We tested whether distance, signal-to-noise ratio (SRN), percentage of vegetation and number of fragments affect the species' vocalization rate. We applied two generalized linear models, one using distance and percentage of vegetation as predictors of vocalization rate and the other using SRN and percentage of vegetation as predictors of vocalization rate. Our results showed that P. cuvieri decreases its vocalization rate in noisier environments and increases its singing rate in environments further away from the highway. In an environment with less vegetation, its vocalization rate increased.

Keywords: amphibian; vocalization; landscape ecology; habitat fragmentation;

1- INTRODUÇÃO

O ruído antropogênico é uma perturbação ambiental capaz de provocar uma variedade de respostas no comportamento animal, a sua presença pode ter efeitos diretos e indiretos na comunicação animal (NAGUIB, 2013). Animais que vivem constantemente em ambientes ruidosos são capazes de apresentar mudanças ao longo do tempo na morfologia, fisiologia e no comportamento (KIGHT; SWADDLE, 2011; MCMULLEN; SCHMIDT; KUNC, 2014; ZAFFARONI-CAORSI et al., 2022). Por exemplo, aves podem começar a cantar mais cedo em locais com altos níveis de ruídos (DORADO-CORREA; RODRÍGUEZ-ROCHA; BRUMM, 2016).

Um ambiente é composto por uma diversidade de sons que, em conjunto, caracterizam uma paisagem sonora (PIJANOWSKI et al., 2011a). As variedades de sons que encontramos no ambiente são classificadas como: fontes sonoras biológicas, chamadas de biofonia; sons não-biológicos, chamados de geofonia; e sons produzidos por objetos executados pelo homem, chamados de antropofonia (PIJANOWSKI et al., 2011b).

Compreender as respostas comportamentais dos animais aos ruídos tem sido o foco em vários trabalhos (TENNESSEN; PARKS; LANGKILDE, 2016), que têm mostrado seu impacto em mamíferos (ERBE; DUNLOP; DOLMAN, 2018; FINCH; SCHOFIELD; MATHEWS, 2020), aves (HERRERA-MONTES; AIDE, 2011; RHEINDT, 2003), a

nfíbios (HOSKIN; GOOSEM, 2010; LUKANOV S., SIMEONOVSKANIKOLOVA D., 2014; NELSON et al., 2016; VARGAS-SALINAS et al., 2014; YI; SHERIDAN, 2019) e peixes (POPPER; HASTINGS, 2009; VOELLMY et al., 2014). Esses estudos sugerem que há um custo para os organismos com exposição crônica à antropofonia. Uma alta exposição ao ruído representa uma ameaça significativa nas comunidades de animais, visto que pode dificultar a percepção dos sons e trocas de informações (WILEY, 2013). Segundo BRUMM; SLABBEKOORN (2005), altos níveis de ruído afetam a distância e a área que os sinais acústicos podem ser percebidos pelos animais. Assim, ambientes ruidosos forçam os indivíduos a investir energia em mecanismos de compensação, por exemplo, algumas espécies de sapo prolongam a duração de sua chamada (LOVE; BEE, 2010) ou acabam se afastando da fonte do ruído (GOUTTE; DUBOIS; LEGENDRE, 2013). Neste estudo realizado por CAORSI et al., (2019), os anfíbios têm sido utilizados como modelos para investigar o efeito dos ruídos antropogênicos no comportamento.

Os anfíbios são animais que necessitam da transmissão e recepção de sinais acústicos para se reproduzirem (ZINA; HADDAD, 2005). Por consequência, mudanças no ambiente acústico causadas pelo ruído antropogênico podem interferir e comprometer a comunicação,

impactando negativamente o sucesso do acasalamento (GOUTTE; DUBOIS; LEGENDRE, 2013; MCGREGOR et al., 2013). Anfíbios anuros, entre outros animais, são capazes de ajustar seus parâmetros acústicos (frequência dominante, duração de canto e taxa de canto) para lidar com o ruído de várias maneiras, aumentando a relação sinal/ruído, ampliando a probabilidade de uma comunicação eficaz (GOMES et al., 2022).

Diferenças no comportamento de chamada já foram determinados em várias espécies de anuros que se encontram em áreas com altos níveis de ruídos de tráfego (ENGBRECHT et al., 2015; GRACE; NOSS, 2018; KRUGER; DU PREEZ, 2016; WEIPERTH et al., 2016). Por exemplo, a espécie *Boana bischoffi* apresenta mudanças significativas no padrão de sua chamada durante o estímulo do ruído do tráfego, reduzindo cerca de 60% as suas taxas de chamadas. E alguns machos dessa espécie apresentam uma diminuição de suas frequências dominantes em resposta ao ruído de tráfego ao longo do tempo (CAORSI et al., 2017). Além disso, alterações de curto prazo estão relacionadas à plasticidade do sinal. (ZIEGLER; ARIM; NARINS, 2011).

Diante do exposto, estudos mostram que alterações na fisiologia e na reprodução têm sido atribuídos ao ruído antropogênico, consequentemente afetando a abundância das espécies (BENÍTEZ-LÓPEZ; ALKEMADE; VERWEIJ, 2010; MCCLURE et al., 2013). Da mesma forma, estudos evidenciam que os anuros podem responder à perturbação antropogênica de diferentes formas, visto que são capazes de alterar o tempo do canto ou manter localizações espaciais específicas dentro do coro, para minimizar a sobreposições de sons de outros animais (NARINS, 2013).

As características temporais dos cantos de anuncio (taxa, duração, notas ou pulsos) são fortemente influenciadas por fatores ambientais como: temperatura e vegetação (RICHARDS; WILEY, 1980). Um fator que pode gerar alteração no comportamento animal é a fragmentação, ocasionando efeitos negativos ou positivos, dependendo do grupo taxonômico (CABRERA-GUZMÁN; REYNOSO, 2012). Porém, há evidências de que uma alta fragmentação ambiental amplifica o efeito da poluição sonora (BARBER; CROOKS; FRISTRUP, 2010), prejudicando os animais que vocalizam. A fragmentação ainda inclui diminuição da área total do habitat, diminuição do tamanho e aumento de manchas de habitat e reduz a qualidade do habitat (KEYGHOBADI, 2007). Segundo FLETCHER et al., (2018), a perda do habitat pode indicar efeitos negativos para a espécie e/ou população.

Segundo a IUCN (2021), entre as classes dos vertebrados, os anfíbios são os mais ameaçados, com 41% das espécies existentes classificada em alto riscos de extinção. Assim, ampliar os estudos para espécies ainda não analisadas pode trazer novas evidências para contribuir na conservação desses animais e entender o efeito da poluição sonora na ecologia

comportamental dos anfíbios. Diante disso, neste estudo, avaliamos o efeito do ruído rodoviário na espécie *Physalaemus cuvieri* Fitzinger 1826, bem como o efeito da redução da quantidade de habitat disponível no comportamento de vocalização. Especificamente, testamos a hipótese de que o ruído do tráfego interfere na vocalização da espécie, com a predição de que, em locais mais distantes da rodovia (ou seja, com menor ruído de tráfego), os indivíduos vocalizam mais do que em locais mais próximos. Quanto a redução do habitat disponível, testamos a hipótese de que a mudança na paisagem interfere no comportamento de vocalização da espécie, com a predição de que, a taxa de vocalização será maior em corpos d'água com mais cobertura de vegetação, do que nos corpos d'água com menos cobertura de vegetação.

2. MATERIAL E MÉTODOS

2.1 Espécie modelo

Physalaemus cuvieri Fitzinger, 1826, popularmente conhecida como rã-cachorro, é uma espécie pertencente à classe Amphibia, ordem Anura e família Leptodactylidae. A espécie apresenta uma ampla distribuição pelo território brasileiro (Figura 1), ocorrendo em alguns países da América do Sul (FROST, 2020).

Figura 1: Mapa de distribuição da espécie *Physalaemus cuvieri* (Fonte: IUCN, 2021).

Physalaemus cuvieri (Figura 2) aparenta uma coloração dorsal variada, podendo ser desde esverdeada à bege. Ocupam margens de poças e riachos e seus ovos são depositados em ninhos de espuma na água (VAZ-SILVA et al., 2020). Em relação ao seu canto de

anúncio, os harmônicos são claros e altos, e os sub-harmônicos estão sempre presente. Contém uma alta frequência (<400 Hz), produzindo bandas em formas de S, ao considerar todo o canto (HEPP; POMBAL JR, 2020), como mostra o espectrograma da espécie (Figura 3). Ainda segundo os autores (HEPP; POMBAL JR, 2020), a chamada de anuncio da *P. cuvieri* geralmente possui cerca de 0,257 a 0,311s, e a frequência dominante em média varia de 690 a 780 Hz.

O período de vocalização da *P. cuvieri* ocorre entre os meses de setembro a março (CANELAS; BERTOLUCI, 2007; VASCONCELOS; ROSSA-FERES, 2005). Os indivíduos de *P. cuvieri* são encontrados geralmente durante a noite, em formações abertas, campos encharcados e/ou lagoas. São terrestres e aquáticas, apresentando uma alta diversidade alimentar, porém existe preferência para insetos na sua dieta (SANTOS; ALMEIDA; VASCONCELOS, 2004)

Figura 2: Physalaemus cuvieri (Fitzinger, 1826) (Foto: Michel de Agular Passos).

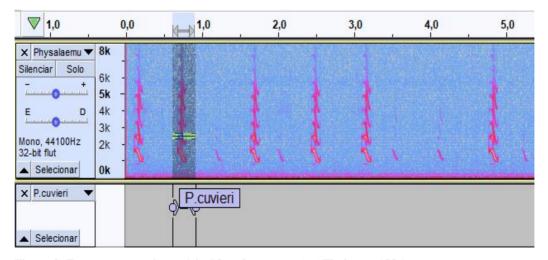


Figura 3: Espectrograma da espécie *Physalaemus cuvieri* Fitzinger, 1826.

2.2 Área de estudo e pontos de coleta de dados

O estudo foi realizado no bioma Cerrado, um bioma heterogêneo em termos de biodiversidade e fitofisionomias (ZUIN, 2020). Devido à diversidade de habitats, pode ser encontrado uma grande variedade de espécies. No entanto, inúmeras espécies de plantas e animais estão em risco de extinção pelo avanço da fronteira agrícola (MYERS et al., 2000).

A coleta de dados foi realizada em pontos localizados em municípios do estado de Goiás (Figura 4), pela facilidade de acesso e proximidade em relação ao centro de pesquisa dos envolvidos neste trabalho. A atividade acústica da *P. cuvieri* foi analisada a partir de pontos amostrados ao longo de rodovias do estado de Goiás, em áreas com represas e/ou poças d'água, em uma distância que variou entre 150m e mais que 500m de distância da rodovia, totalizando 23 pontos (Tabela A1, Anexo 1).

Para mensurar o efeito do ruído rodoviário na vocalização de *P. cuvieri*, calculamos a distância em metros das rodovias para cada ponto, e comparamos com a taxa de vocalização dos pontos próximos e distantes das rodovias.

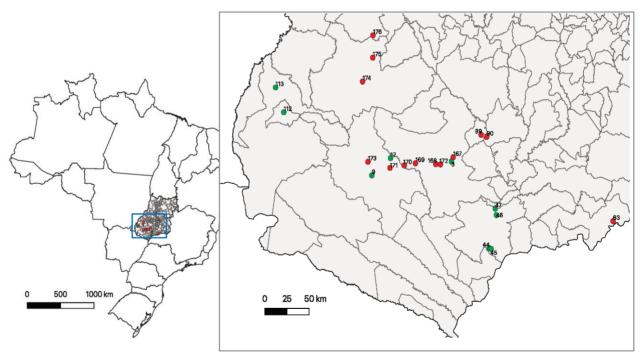


Figura 4. Distribuição dos pontos coletados, pontos vermelhos indicam localização com distância inferior a 150 metros das rodovias e pontos verdes a mais 500 metros.

2.3 Coletas de dados de Vocalização, Ruído e Vegetação

Os dados de vocalização foram obtidos a partir de gravações acústicas coletadas no contexto dos projetos "Mudanças climáticas, modelos de nicho e a conservação "in situ" das espécies de Anuros ameaçadas e deficiente de dados do Cerrado" financiado pela Fundação O Boticário, e "Impacto da mudança climática e conservação de espécies da fauna e da flora ameaçadas e deficientes em dados no Cerrado" financiado pela FAPEG.

Do total de pontos amostrados, 12 apresentaram atividades de vocalização da espécie (p.3, p.12, p.44, p.45, p.46, p.47, p.63, p.89, p.112, p.114, p.170 e p.176. (Tabela A2, Anexo 2). Para coletar as gravações foi utilizada a técnica de Monitoramento Acústico Passivo (MAP) nos pontos amostrados mencionados anteriormente. Foram utilizados os gravadores Audio-Gravador Tigrinus[®] GT001-T1.0V, composto pelos gravadores TASCAN[®] modelo DR-05, que registram áudios em formato WAV. Esses gravadores ficaram na área de estudo por 14 dias, ligando e desligando por 5 minutos a cada hora.

Os dados do ruído do trafego rodoviário, foi obtido mediante às gravações, com a finalidade de verificar o impacto do ruído rodoviário no canto da espécie *P. cuvieri*, utilizamos como auxílio do programa *Audacity 3.0.2*, sendo quantificado manualmente (ouvindo todas as gravações) a atividade vocal da espécie por áudio, e dois momentos de passagem de automóvel (movimento de tráfego rodoviário).

A coleta de dados do conjunto de vegetação, foi obtida utilizando imagens de satélite, estabelecendo uma zona de amortecimento (*buffer*) de 500 metros a partir de cada ponto amostrado, referente a da data de gravação da vocalização. Foram extraídas as métricas de paisagens: porcentagem de vegetação nativa (p_a_n (%)) e número de manchas florestais (np).

2.4 Analise Acústica e Ruído Rodoviário

A fim de verificar a atividade vocal da espécie *Physalaemus cuvieri*, foi realizado inicialmente um levantamento da espécie nos pontos amostrados, constatando em quais localidades (pontos) houve atividade acústica da espécie (Tabela A2, Anexo 2), através de uma leitura manual nos áudios entre os horários 18h às 23:00h, horário ativo da espécie, realizado no programa *Audacity 3.0.2*. Em seguida, descartamos os pontos sem atividade acústica para as análises subsequentes.

Para os pontos cuja atividade vocal indicou a presença da espécie, realizamos os seguintes procedimentos:

a. Anotação (marcação no Audacity) a passagem de tráfego e atividade vocal;

- b. Anotação, para cada gravação, de dois momentos de "silêncio"(sem *Physalaemus cuvieri* e nem tráfego) e dois momentos de máximo de tráfego;
- c. Quantificação do número de vocalizações por gravação, proporção de passagens de tráfego na gravação, nível de ruído (valores lineares) de tráfego em relação ao "silêncio".

Os seguintes códigos foram estabelecidos: "tráfego" é a passagem de um veículo que deixa um "sinal" no espectrograma, "silêncio" é o momento em que não há atividade de *Physalaemus cuvieri* e nem tráfego de fundo e "max" significando o ruído máximo produzido pelo tráfego de veículos.

Após quantificar os dados nas gravações, foi realizado o cálculo da taxa de canto, extraindo o valor da taxa de canto por minuto, usando a seguinte fórmula:

Taxa de vocal =
$$\underline{n}^{\circ}$$
 de cantos
Tempo do áudio.

Logo depois, foi realizado o cálculo do SRN, o qual indica o quanto o tráfego é mais ruidoso que o momento de silencio de cada áudio, usando a seguinte fórmula:

A fórmula Relação Sinal-Ruído (SRN) expressa o quanto o tráfego é mais alto que o barulho de fundo (silêncio). Valores negativos significam que o barulho de fundo é mais ruidoso que o tráfego e valores positivos indicam que o tráfego é mais alto que o barulho de fundo. Para este cálculo, utilizamos como referência site (https://ravensoundsoftware.com/knowledge-base/signal-to-noise-ratio-snr/) do Software Raven (Signal to noise ratio). Os cálculos: taxa de vocalização e SRN, foram realizados no programa R 4.1.0 (R CORE TEAM, 2021), utilizando os seguintes pacotes: "tuneR" e "seewave" (UWE LIGGES, et al., 2018), (SUEUR, J., AUBIN, T., SIMONIS, C., 2008). Foram analisadas 924 gravações no total; destas, 537 possuíam trechos de passagem de tráfego e/ou silêncio, mas apenas 391 gravações continham as duas informações, possibilitando o cálculo do SRN. A taxa de canto foi possível de ser estimada em 237 gravações.

2.5 Análise da Vegetação

Para análise de paisagem utilizamos dados de uso do solo do MapBiomas coleção 6.0 referentes ao ano de 2020 (MAPBIOMAS, 2022). Para isso, transformamos os dados de uso

do solo em binário, considerando como valor 1 as classes de: floresta, formação florestal, formação savânica, campo alagado e área pantanosa, formação campestre e formação natural não florestal. Após, utilizamos o pacote "landscapemetrics" (HESSELBARTH; WITH, 2019) para extrair as métricas de paisagens, porcentagem de vegetação nativa (p_a_n (%)) e número de manchas florestais (np), usando as funções "lsm_p_area" e "get_patches", respectivamente, considerando uma paisagem de 500 metros de raio em torno do ponto amostrado. Todas as análises foram feitas no programa do R 4.1.0 (R CORE TEAM, 2021).

2.6 Análise Estatística

Com os dados da taxa de vocalização, SRN, porcentagem de vegetação, número de fragmentos e a distância (Tabela A3, Anexo 3), testamos se a distância, o SRN, a porcentagem de vegetação e o número de fragmentos afetam na atividade vocal de Physalaemus cuvieri. Para isso, aplicamos um modelo linear generalizado (GLM). Este modelo relaciona a distribuição da variável resposta aos preditores por meio de uma função de regressão (DA SILVA FR, et al., 2022), desse modo usamos a distribuição Poisson e utilizamos uma ligação logarítmica. Considerando que não foi possível obter os valores de SRN para todos os registros de vocalização da espécie, construímos dois modelos, utilizando diferentes variáveis preditoras (SRN, taxa de vegetação e distância) da taxa de vocalização (variável resposta). Para o modelo com SRN, o tamanho amostral foi de 391 registros, e para o modelo sem SRN, o tamanho amostral foi de 537 registros. As variáveis de porcentagem de vegetação e número de fragmentos apresentaram correlação r = 0.6, portanto, utilizamos a porcentagem de vegetação para avaliar o efeito da disponibilidade de hábitat. As variáveis preditoras foram padronizadas pela média e desvio-padrão de cada variável. Verificamos também a homogeneidade da variância e normalidade dos resíduos. Todas as análises e representações gráficas foram feitas no ambiente do R 4.1.0 (R CORE TEAM, 2021), utilizando os pacotes "ggplot" e "stats" (WICKHAM, H., 2016), (R CORE TEAM, 2021), usando as funções: ggplot (), plot() e glm ()

3. RESULTADOS

A taxa média de vocalização da espécie *Physalaemus cuvieri* nos pontos amostrados foi 16,74221 ± 1.144543E-15 (cantos/min) (Figura 5), verificou-se uma dispersão dos dados nos pontos próximos à rodovia, devido ao tamanho do número amostral. Nos pontos inferiores a 150m de distância da rodovia, a taxa média de vocalização foi 6,053212 ± 2.227E-29 (cantos/min), e nos pontos superiores a 500m de distância da rodovia, a taxa média

de vocalização foi 30,06992 ± 3.6821E-28 (cantos/min), apresentando diferença na taxa de vocalização conforme a distância do ponto à rodovia.

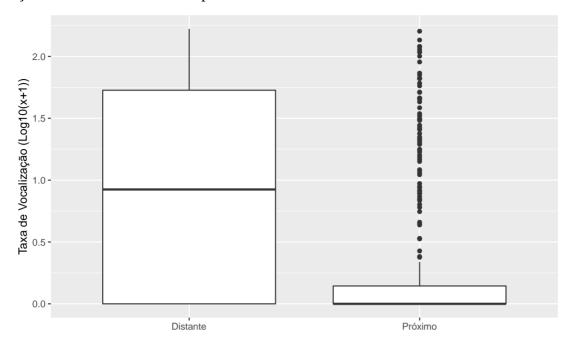


Figura 5: Taxa de vocalização entre pontos distantes e pontos próximos a rodovia.

O modelo linear generalizado (GLM) das variáveis taxa de vocalização, distância e porcentagem de vegetação (Tabela 1), apresentou uma relação significativa positiva entre distância e taxa de vocalização (Figura 6) e uma relação negativa significante entre taxa de vocalização e porcentagem de vegetação (Figura 7). Ou seja, a variável distância influenciou na atividade vocal da *P. cuvieri*, quanto maior a distância, mais a espécie vocaliza. A relação negativa entre taxa de vocalização e porcentagem de vegetação resulta que, quanto mais vegetação no local, menos a espécie vocaliza. O teste de resíduos para o modelo com a distância (Figura A4, Anexo 4) indicou que o modelo com Poisson parece ser adequado para o ajuste dos dados em termos de homogeneidade de variância.

Tabela 1: Coeficientes e valores de p para o modelo GLM das variáveis distância e porcentagem de vegetação com a taxa de vocalização.

	Coeficiente	p-valor	
Intercepto	-0.88739	< 2e-16	***
Distância	0.49059	5.29e-13	***
% de vegetação	-0.74204	8.11e-16	***

Níveis de significância: 0 '***'; 0.001 '**'; 0.01 '*'; 0.05 '.'

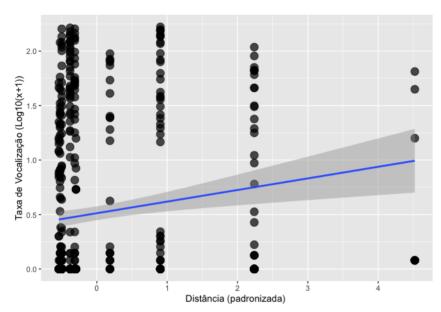


Figura 6: Relação entre a taxa de vocalização e distância.

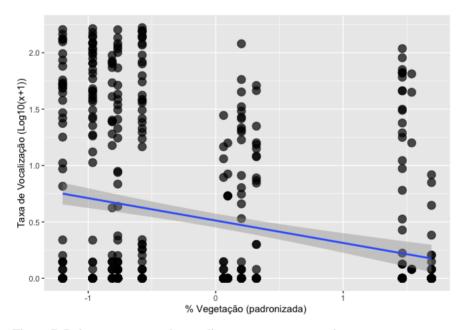


Figura 7. Relação entre taxa de vocalização e porcentagem de vegetação.

No modelo GLM entre as variáveis taxa de vocalização, SRN e porcentagem de vegetação (Tabela 2), verificou-se que existe uma relação significativa intermediaria negativa entre as mesmas, significando que, quando o ruído de tráfego aumenta a taxa de vocalização diminui (Figura 8), e quanto maior a porcentagem de vegetação, menor é a taxa de vocalização da espécie. O teste de resíduos para o modelo com SNR (Figura A5, Anexo

5), segundo a diagnose básica indicou que o modelo com Poisson parece ser adequado para o ajuste entre as variáveis em termos de homogeneidade de variância.

Tabela 2: Coeficientes e valores de p para o modelo GLM das variáveis SRN e porcentagem de vegetação com a taxa de vocalização.

	Coeficiente	p-valor	
Intercepto	-1.5624	< 2e-16	***
SRN	-0.2881	0.01470	*
% de vegetação	-0.3581	0.00303	**

Níveis de significância: 0 '***'; 0.001 '**'; 0.01 '*'; 0.05 '.'

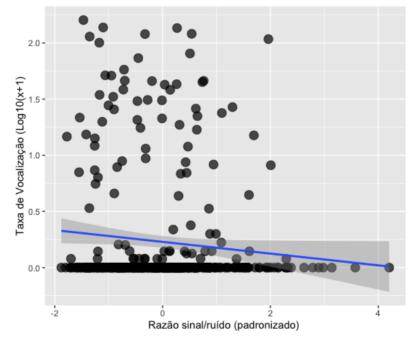


Figura 8: Relação entre taxa de vocalização e SRN.

4. DISCUSSÃO

Entender a ecologia comportamental é necessário para a conservação animal. Segundo HORTAL et al., (2015) é preciso conhecer para conservar. Nosso estudo demonstrou que a taxa média de vocalização varia conforme a distância do ponto à rodovia. A taxa de vocalização foi maior em pontos mais distantes da rodovia. Existem evidências na literatura em que os anuros evitam criadouros de gado próximo a rodovias, em virtude dos altos níveis do ruído rodoviário (EIGENBROD et al., 2009), logo, uma razão provável para explicar essa grande diferença da taxa de vocalização de *P. cuvieri* ser maior nos pontos

distantes da rodovia é a influência do ruído rodoviário, visto que, em ambientes mais distantes da rodovia o ruído é menor.

Neste trabalho verificamos que, de algum modo, o tráfego rodoviário tem afetado na vocalização da *P. cuvieri*, o qual à medida que o ruído aumenta, a taxa de vocalização reduz. É sabido que o ruído de trafego interfere nas características dos canais de comunicação e ameaça a sobrevivência dos anfíbios (TROÏANOWSKI et al., 2017). Diversos estudos já foram realizados verificando o efeito do ruído na vocalização (CAORSI et al., 2017; LUKANOV S., SIMEONOVSKA-NIKOLOVA D., 2014; VARGAS-SALINAS et al., 2014; YI; SHERIDAN, 2019), constatando que este pode dificultar a percepção dos sons e trocas de informações (WILEY, 2013), alterar a fisiologia e a reprodução. Logo a poluição sonora é uma imensa ameaça subestimada que afeta espécies altamente dependentes da comunicação acústica (CAORSI et al., 2017).

As características do canto de anúncio são fortemente influenciadas por fatores ambientais (RICHARDS; WILEY, 1980). Um elemento que pode gerar alteração no comportamento animal é a perda do habitat (CABRERA-GUZMÁN; REYNOSO, 2012), visto que, a perda de habitat pode afetar a diversidade funcional das espécies (GOMES et al., 2019). Espécies que vivem em ambientes com alta fragmentação estão sujeitas a sofrer um efeito negativo na diversidade de espécies (FLETCHER et al., 2018), bem como nos padrões de atividades dos indivíduos. Um resultado interessante do nosso estudo foi a relação negativa entre quantidade de vegetação e taxa de canto de P. cuvieri, ou seja, à medida que a porcentagem de vegetação aumenta, a taxa de vocalização diminui. Os indivíduos dessa espécie são encontrados geralmente durante a noite e em formações abertas (SANTOS; ALMEIDA; VASCONCELOS, 2004). Portanto, é de preferência dessa espécie ambientes mais abertos, conseguindo sobreviver mesmo em ambientes com pouca cobertura vegetal e alta fragmentação ambiental. Além disso, a relação da taxa de vocalização da P. cuvieri com o número de fragmentos (manchas) foi negativa, indicando que, mesmo em ambientes fragmentados a espécie não tem sua taxa de vocalização alterada, ou ainda, tem taxa de vocalização maior (Figura A6, Anexo 6). Estudos demonstram que os efeitos causados pela fragmentação nas aves depende do grupo taxonômico (SANTILLÁN et al., 2018), e não é muito diferente para os anfíbios. Neste caso, a espécie P.cuvieri consegue se adequar bem aos ambientes com pouca cobertura vegetal sem prejudicar sua taxa de canto, possivelmente não afetando seu sucesso reprodutivo. Porém, é importante considerar que esse efeito negativo da vegetação pode ser uma consequência da amostra, uma vez que o número de pontos distantes da rodovia com maior quantidade de vegetação foi bem menor que o número de pontos próximos da rodovia (Figura A7, Anexo 7).

A abordagem do nosso estudo fornece evidências de resposta do comportamento de vocalização da espécie *Physalaemus cuvieri* perante uma fonte de ruído antropogênico, resultante do ruído de tráfego rodoviário. Concluímos que *P. cuvieri* diminui sua taxa de vocalização em ambientes mais ruidosos e aumenta a taxa de canto nos ambientes mais distante da rodovia. Em ambiente com menos vegetação a sua taxa de vocalização aumenta. Recomendamos que estudos nesta área se tornam mais frequentes, visto que, 41% das espécies existentes dos anfíbios são classificadas com alto riscos de extinção (IUCN, 2021).

5. REFERÊNCIAS BIBLIOGRÁFICAS

BARBER, J. R.; CROOKS, K. R.; FRISTRUP, K. M. The costs of chronic noise exposure for terrestrial organisms. **Trends in Ecology & Evolution**, v. 25, n. 3, p. 180–189, mar. 2010.

BENÍTEZ-LÓPEZ, A.; ALKEMADE, R.; VERWEIJ, P. A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis. **Biological Conservation**, v. 143, n. 6, p. 1307–1316, 2010.

BRUMM, H.; SLABBEKOORN, H. Acoustic Communication in Noise. **Advances in the Study of Behavior**, v. 35, n. 05, p. 151–209, 2005.

CABRERA-GUZMÁN, E.; REYNOSO, V. H. Amphibian and reptile communities of rainforest fragments: Minimum patch size to support high richness and abundance. **Biodiversity and Conservation**, v. 21, n. 12, p. 3243–3265, 2012.

CANELAS, M. A. S.; BERTOLUCI, J. Anurans of the Serra do Caraça, southeastern Brazil: species composition and phenological patterns of calling activity. **Iheringia. Série Zoologia**, v. 97, n. 1, p. 21–26, mar. 2007.

CAORSI, V. et al. Anthropogenic substrate-borne vibrations impact anuran calling. **Scientific Reports**, v. 9, n. 1, p. 19456, 19 dez. 2019.

CAORSI, V. Z. et al. Effects of traffic noise on the calling behavior of two Neotropical hylid frogs. **PLOS ONE**, v. 12, n. 8, p. e0183342, 30 ago. 2017.

DA SILVA FR, et al., **Análises ecológicas no R**. Nupeea : Recife, PE, Canal 6 : São Paulo. 640 p. ISBN 978-85-7917-564-0.2022

DORADO-CORREA, A. M.; RODRÍGUEZ-ROCHA, M.; BRUMM, H. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird. **Royal Society Open Science**, v. 3, n. 7, p. 160231, jul. 2016.

EIGENBROD, F. et al. Quantifying the Road-Effect Zone: Threshold Effects of a Motorway on Anuran Populations in Ontario, Canada. v. 14, n. 1, 2009.

ENGBRECHT, N. J. et al. Upland Calling Behavior in Crawfish Frogs (Lithobates areolatus) and Calling Triggers Caused by Noise Pollution. **Copeia**, v. 103, n. 4, p. 1048–1057, 2015.

ERBE, C.; DUNLOP, R.; DOLMAN, S. Effects of Noise on Marine Mammals. In: [s.l: s.n.]. p. 277–309.

FINCH, D.; SCHOFIELD, H.; MATHEWS, F. Traffic noise playback reduces the activity and feeding behaviour of free-living bats. **Environmental Pollution**, v. 263, p. 114405, ago. 2020.

- FLETCHER, R. J. et al. Is habitat fragmentation good for biodiversity? **Biological Conservation**, v. 226, p. 9–15, out. 2018.
- FROST, D. R. Amphibian Species of the World: an Online Reference. Version 6.1 (Date of access). **American Museum of Natural**, v. History, N, 2020.
- GOMES, L. et al. Influence of Anthropogenic Sounds on Insect, Anuran and Bird Acoustic Signals: A Meta-Analysis. **Frontiers in Ecology and Evolution**, v. 10, n. February, p. 1–10, 2022.
- GOMES, M. A. et al. Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. **biotropica**, n. May, p. 1–11, 2019.
- GOUTTE, S.; DUBOIS, A.; LEGENDRE, F. The Importance of Ambient Sound Level to Characterise Anuran Habitat. **PLoS ONE**, v. 8, n. 10, p. e78020, 21 out. 2013.
- GRACE, M. K.; NOSS, R. F. Evidence for selective avoidance of traffic noise by anuran amphibians. **Animal Conservation**, v. 21, n. 4, p. 343–351, ago. 2018.
- HEPP, F.; JR, J. P. P. Review of bioacoustical traits in the genus Physalaemus Fitzinger, 1826 (Anura: Leptodactylidae: Leiuperinae). [s.l: s.n.]. v. 4725
- HERRERA-MONTES, M. I.; AIDE, T. M. Impacts of traffic noise on anuran and bird communities. **Urban Ecosystems**, v. 14, n. 3, p. 415–427, 16 set. 2011.
- HESSELBARTH, M. H. K.; WITH, K. A. Software notes. **Ecography**, p. 1648–1657, 2019.
- HORTAL, J. et al. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. **Annual Review of Ecology, Evolution, and Systematics**, v. 46, p. 523–549, 2015.
- HOSKIN, C. J.; GOOSEM, M. W. Road Impacts on Abundance, Call Traits, and Body Size of Rainforest Frogs in Northeast Australia. **Ecology and Society**, v. 15, 2010.
- IUCN. 2021. **A Lista Vermelha de Espécies Ameaçadas da IUCN**. Versão 2021-3 . https://www.iucnredlist.org. Acessado em: 15/05/2022.
- KEYGHOBADI, N. The genetic implications of habitat fragmentation for animals. **Canadian Journal of Zoology**, v. 85, n. 10, p. 1049–1064, 2007.
- KIGHT, C. R.; SWADDLE, J. P. How and why environmental noise impacts animals: An integrative, mechanistic review. **Ecology Letters**, v. 14, n. 10, p. 1052–1061, 2011.
- KRUGER, D. J. D.; DU PREEZ, L. H. The effect of airplane noise on frogs: a case study on the Critically Endangered Pickersgill's reed frog (Hyperolius pickersgilli). **Ecological Research**, v. 31, n. 3, p. 393–405, 2016.
- LOVE, E. K.; BEE, M. A. An experimental test of noise-dependent voice amplitude regulation in Cope's grey treefrog, Hyla chrysoscelis. **Animal Behaviour**, v. 80, n. 3, p. 509–

515, set. 2010.

LUKANOV S., SIMEONOVSKA-NIKOLOVA D., T. N. Effects of traffic noise on the locomotion activity and vocalization of the Marsh Frog, Pelophylax ridibundus. **North-Western journal of zoology**, v. 10, p. 359–364, 2014.

MAPBIOMAS, **Projeto- Coleção** [6.0] **da série anual do Mapas de Uso e Cobertura do Solo do Brasil**, acessado em 22 de maio de 2022.

MCCLURE, C. J. W. et al. An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. **Proceedings of the Royal Society B: Biological Sciences**, v. 280, n. 1773, 2013.

MCGREGOR, P. K. et al. Anthropogenic Noise and Conservation. [s.l: s.n.].

MCMULLEN, H.; SCHMIDT, R.; KUNC, H. P. Anthropogenic noise affects vocal interactions. **Behavioural Processes**, v. 103, p. 125–128, 2014.

MYERS, N. et al. Biodiversity hotspots for conservation priorities. **Nature**, v. 403, n. 6772, p. 853–858, 15 fev. 2000.

NAGUIB, M. Living in a noisy world: Indirect effects of noise on animal communication. **Behaviour**, v. 150, n. 9–10, p. 1069–1084, 2013.

NARINS, P. Behavioral responses of anuran amphibians to biotic, synthetic and anthropogenic noise. **Proceedings of Meetings on Acoustics**, v. 19, n. Dc, p. 6–11, 2013.

NELSON, D. V. et al. Calling at the highway: The spatiotemporal constraint of road noise on Pacific chorus frog communication. **Ecology and Evolution**, v. 7, n. 1, p. 429–440, jan. 2016.

PIJANOWSKI, B. C. et al. Soundscape Ecology: The Science of Sound in the Landscape. **BioScience**, v. 61, n. 3, p. 203–216, mar. 2011a.

PIJANOWSKI, B. C. et al. What is soundscape ecology? An introduction and overview of an emerging new science. **Landscape Ecology**, v. 26, n. 9, p. 1213–1232, 1 nov. 2011b.

POPPER, A. N.; HASTINGS, M. C. The effects of anthropogenic sources of sound on fishes. **Journal of Fish Biology**, v. 75, n. 3, p. 455–489, ago. 2009.

RAVEN SOUND SOFTWARE. Signal-to-noise ratio (snr) – user protocol. Disponível em: https://ravensoundsoftware.com/knowledge-base/signal-to-noise-ratio-snr/. Acesso em: 25 de maio. 2022

R CORE TEAM (2021). R: A language and environment for statistical computing. \mathbf{R} . Version 4.1.0

RHEINDT, F. E. The impact of roads on birds: Does song frequency play a role in determining susceptibility to noise pollution? **Journal of Ornithology**, v. 144, n. 3, p. 295–306, jul. 2003.

RICHARDS, D. G.; WILEY, R. H. Reverberations and Amplitude Fluctuations in the Propagation of Sound in a Forest: Implications for Animal Communication. **The American Naturalist**, v. 115, n. 3, p. 381–399, 1980.

SANTILLÁN, V. et al. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. **Oecologia**, 2018.

SANTOS, E. M.; ALMEIDA, A. V.; VASCONCELOS, S. D. Feeding habits of six anuran (Amphibia: Anura) species in a rainforest fragment in Northeastern Brazil. **Iheringia. Série Zoologia**, v. 94, n. 4, p. 433–438, 2004.

SOFTWARE AUDACITY® copyright ©. Audacity Team 3.0.2. 1999-2021.

SUEUR J, AUBIN T, SIMONIS C. Seewave: a free modular tool for soundanalysis and synthesis. Bioacoustics, 18: 213-226,2008.

TENNESSEN, J. B.; PARKS, S. E.; LANGKILDE, T. L. Anthropogenic noise and physiological stress in wildlife. **Advances in Experimental Medicine and Biology**, v. 875, p. 1145–1148, 2016.

TROÏANOWSKI, M. et al. Effects of traffic noise on tree frog stress levels, immunity, and color signaling. **Conservation Biology**, v. 31, n. 5, p. 1132–1140, 2017.

UWE LIGGES, et al. tuneR: Analysis of Music and Speech. URL:https://CRAN.R-project.org/package=tuneR,2018.

VARGAS-SALINAS, F. et al. Does traffic noise alter calling time in frogs and toads? A case study of anurans in Eastern Ontario, Canada. **Urban Ecosystems**, v. 17, n. 4, p. 945–953, 4 dez. 2014.

VASCONCELOS, T. DA S.; ROSSA-FERES, D. DE C. Diversidade, distribuição espacial e temporal de anfíbios anuros (Amphibia, Anura) na região noroeste do estado de São Paulo, Brasil. **Biota Neotropica**, v. 5, n. 2, p. 137–150, 2005.

VAZ-SILVA, W. et al. Guia de identificação das espécies de anfíbios (Anura e Gymnophiona) do estado de Goiás e do Distrito Federal, Brasil Central. [s.l.] Sociedade Brasileira de Zoologia, 2020.

VOELLMY, I. K. et al. Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. **Animal Behaviour**, v. 89, p. 191–198, mar. 2014.

WEIPERTH, A. et al. Soundscape Dynamics at Anuran Reproductive Sites in Pannonian Biogeographical Region: Effects of Road Noise on Vocal Activity. **Asian Herpetological Research**, v. 7, p. 34–40, 2016.

WICKHAM, H. Ggplot2: Elegant Graphics for Data Analysis. **Springer-**Verlag New York, 2016

WILEY, R. H. Signal Detection, Noise, and the Evolution of Communication. p. 7–30,

2013.

YI, Y. Z.; SHERIDAN, J. A. Effects of traffic noise on vocalisations of the rhacophorid tree frog Kurixalus chaseni (Anura: Rhacophoridae) in Borneo. **Raffles Bulletin of Zoology**, v. 67, p. 77–82, 2019.

ZAFFARONI-CAORSI, V. et al. Effects of anthropogenic noise on anuran amphibians. **Bioacoustics**, v. 00, n. 00, p. 1–31, 2022.

ZIEGLER, L.; ARIM, M.; NARINS, P. M. Linking amphibian call structure to the environment: The interplay between phenotypic flexibility and individual attributes. **Behavioral Ecology**, v. 22, n. 3, p. 520–526, 2011.

ZINA, J.; HADDAD, C. F. B. Reproductive activity and vocalizations of Leptodactylus labyrinthicus (Anura: Leptodactylidae) in southeastern Brazil. **Biota Neotropica**, v. 5, n. 2, p. 119–129, 2005.

ZUIN, V. G. What Can Be Learnt from the Brazilian Cerrado? In: **Biomass Burning** in **Sub-Saharan Africa**. Dordrecht: Springer Netherlands, 2020. p. 143–160.

6. ANEXOS

Anexo 1

Tabela A1. Pontos amostrados nas rodovias do Cerrado.

					distância	
Ponto	Estado	Município	Latitude	Longitude	em metros	Rodovia
3	Goiás	Rio Verde	-17,797500	-50,897464	775	BR 452
9	Goiás	Jataí	-17,92975	-51,751567	1017.174	BR 364
12	Goiás	Jataí	-17,764433	-51,5508	8766.689	GO 050
44	Goiás	Quirinópolis	-18,626861	-50,489250	4557.079	GO 164
45	Goiás	Quirinópolis	-18,634250	-50,470000	2298.123	GO 164
46	Goiás	Quirinópolis	-18,309750	-50,415083	510.691	GO 164
47	Goiás	Quirinópolis	-18,247306	-50,427306	721.295	GO 164
63	Goiás	Itumbiara	-18,367533	-49,162222	87.677	GO 309
89	Goiás	Acreúna	-17,540750	-50,579056	136.764	BR 060
90	Goiás	Acreúna	-17,561389	-50,518694	68.743	GO 164
112	Goiás	Mineiros	-17,32493	-52,6963	64.529	GO 194
113	Goiás	Mineiros	-17,08785	-52,78408	13272.098	GO 194
114	Goiás	Mineiros	-17,041910	-52,795620	15961.816	GO 194
167	Goiás	Jataí	-17,7561	-50,8788	6.874	BR 060
168	Goiás	Jataí	-17,8220	-51,0659	45.795	BR 060
169	Goiás	Jataí	-17,8136	-51,2839	77.12	BR 060
170	Goiás	Jataí	-17,8349	-51,4033	61.441	BR 060
171	Goiás	Jataí	-17,8581	-51,557	24.225	BR 060
172	Goiás	Jataí	-17,8249	-51,0159	34.318	BR 060
173	Goiás	Jataí	-17,7991	-51,793	19.315	BR 158
174	Goiás	Caiapônia	-17,0321	-51,8511	10.847	BR 158
175	Goiás	Caiapônia	-16,8030	-51,742	29.267	BR 158
176	Goiás	Piranhas	-16,5888	-51,7389	10.488	BR 158

Anexo 2

Tabela A2. Pontos que apresentaram atividade vocal de *P. cuvieri*.

Ponto	Atividade Vocal
3	Presente
9	Ausente
12	Presente
44	Presente
45	Presente
46	Presente
47	Presente
63	Presente
89	Presente
90	Ausente
112	Presente
113	Ausente
114	Presente
167	Ausente
168	Ausente
169	Ausente
170	Presente
171	Ausente
172	Ausente
173	Ausente
174	Ausente
175	Ausente
176	Presente

Anexo 3

Tabela A3. Valores taxa de vocalização(tx_voc), SNR, porcentagem de vegetação (p_a_n) e distancia em metros.

										Distancia em
	site	SNR_au	dio_linear	n_cal	l	duration	tx_voc	p_a_n(%)	np	metros
1	3		0.609000945	NA		NA	NA	18.2901866	2	775
2	3		-0.126714583	NA		NA	NA	18.2901866	2	775
3	3		-0.36303019	NA		NA	NA	18.2901866	2	775
4	3		-0.085021379	NA		NA	NA	18.2901866	2	775
5	3		-0.529721463	NA		NA	NA	18.2901866	2	775
6	3		-0.116800511	NA		NA	NA	18.2901866	2	775
7	3	NA			13	2.96666667	4.382022	18.2901866	2	775
8	3		-0.217876456	NA		NA	NA	18.2901866	2	775
9	3		-0.598601798	NA		NA	NA	18.2901866	2	775
10	3		-0.005578845	NA		NA	NA	18.2901866	2	775
11	3	NA			44	2.9705	14.81232	18.2901866	2	775
12	3	NA			13	2.97016667	4.376859	18.2901866	2	775
13	3	NA			22	2.96966667	7.408239	18.2901866	2	775
14	3	NA			13	2.97016667	4.376859	18.2901866	2	775
15	12		0.303339286	NA		NA	NA	29.0012034	5	8766.689
16	12		0.647967754	NA		NA	NA	29.0012034	5	8766.689
17	12	NA			535	4.96416667	107.7724	29.0012034	5	8766.689
18	12	NA			266	2.981	89.2318	29.0012034	5	8766.689
19	12	NA			178	2.9805	59.72152	29.0012034	5	8766.689
20	12		0.454527745		68	2.98183333	22.80476	29.0012034	5	8766.689
21	12		-0.183667446		25	2.98016667	8.388793	29.0012034	5	8766.689
22	12	NA			5	2.9815	1.677008	29.0012034	5	8766.689
23	12		0.204175308		1	2.9775	0.335852	29.0012034	5	8766.689
24	12		-0.238380971	NA		NA	NA	29.0012034	5	8766.689
25	12		-0.112016337	NA		NA	NA	29.0012034	5	8766.689
26	12		0.020200178	NA		NA	NA	29.0012034	5	8766.689
27	12		-0.424581215	NA		NA	NA	29.0012034	5	8766.689
28	12		0.163448999	NA		NA	NA	29.0012034	5	8766.689
29	12	NA			91	2.97933333	30.54375	29.0012034	5	8766.689
30	12		0.346523013		7	2.978	2.350571	29.0012034	5	8766.689
31	12		-0.244160366	NA		NA	NA	29.0012034	5	8766.689
32	12		0.158304677		1	2.98183333	0.335364	29.0012034	5	8766.689
33	12		0.449668664		2	2.9805	0.671028	29.0012034	5	8766.689
34	12		0.046128249	NA		NA	NA	29.0012034	5	8766.689
35	12		0.022429518	NA		NA	NA	29.0012034	5	8766.689
36	12		0.104714194	NA		NA	NA	29.0012034	5	8766.689
37	12	NA			1	2.97483333	0.336153	29.0012034	5	8766.689
38	12		-0.480932571	NA		NA	NA	29.0012034	5	8766.689
39	12		0.028027242	NA		NA	NA	29.0012034	5	8766.689
40	12		-0.647351957	NA		NA	NA	29.0012034	5	8766.689

			1			1			
41	12	NA		208	2.97666667	69.87682	29.0012034	5	8766.689
42	12	NA		194	2.98016667	65.09703	29.0012034	5	8766.689
43	12	NA		196	2.97716667	65.83441	29.0012034	5	8766.689
44	12	-0.047243518		89	2.98183333	29.84741	29.0012034	5	8766.689
45	12	NA		55	2.9805	18.45328	29.0012034	5	8766.689
46	12	NA		30	2.9815	10.06205	29.0012034	5	8766.689
47	12	NA		15	2.98366667	5.027371	29.0012034	5	8766.689
48	12	0.677248148	NA		NA	NA	29.0012034	5	8766.689
49	12	-0.643444775	NA		NA	NA	29.0012034	5	8766.689
50	12	-0.341261265	NA		NA	NA	29.0012034	5	8766.689
51	12	0.244273387	NA		NA	NA	29.0012034	5	8766.689
52	12	-0.357330769	NA		NA	NA	29.0012034	5	8766.689
53	12	-0.692866587	NA		NA	NA	29.0012034	5	8766.689
54	12	0.016038083	NA		NA	NA	29.0012034	5	8766.689
55	12	-0.285702342	NA		NA	NA	29.0012034	5	8766.689
56	12	-0.209019837	NA		NA	NA	29.0012034	5	8766.689
57	12	0.302317072		134	2.97833333	44.99161	29.0012034	5	8766.689
58	12	NA		195	2.98016667	65.43258	29.0012034	5	8766.689
59	12	NA		134	2.9815	44.94382	29.0012034	5	8766.689
60	12	NA		50	2.98233333	16.7654	29.0012034	5	8766.689
61	12	-0.082957014	NA		NA	NA	29.0012034	5	8766.689
62	12	-0.365125626	NA		NA	NA	29.0012034	5	8766.689
63	170	0.734511934	NA		NA	NA	19.1261435	4	61.441
64	170	0.543602557		130	5.0285	25.85264	19.1261435	4	61.441
65	170	-0.364841192		286	5.03033333	56.85508	19.1261435	4	61.441
66	170	0.09737907	NA		NA	NA	19.1261435	4	61.441
67	170	-0.238549879		1	5.03066667	0.198781	19.1261435	4	61.441
68	170	-0.263825353	NA		NA	NA	19.1261435	4	61.441
69	170	-0.808723089	NA		NA	NA	19.1261435	4	61.441
70	170	-0.680141584	NA		NA	NA	19.1261435	4	61.441
71	170	-0.586641115		1	5.03166667	0.198741	19.1261435	4	61.441
72	170	-0.809377837		1	5.036	0.19857	19.1261435	4	61.441
73	170	-0.702178594	NA		NA	NA	19.1261435	4	61.441
74	170	-0.657658433	NA		NA	NA	19.1261435	4	61.441
75	170	-0.47801685	NA		NA	NA	19.1261435	4	61.441
76	170	0.119276277	NA		NA	NA	19.1261435	4	61.441
77	170	0.244802588		80	5.0325	15.89667	19.1261435	4	61.441
78	170	-0.253263263		99	5.03416667	19.66562	19.1261435	4	61.441
79	170	-0.546992273		95	5.0325	18.8773	19.1261435	4	61.441
80	170	-0.027940824		2	5.03416667	0.397285	19.1261435	4	61.441
81	170	-0.603779538		23	5.03516667	4.567873	19.1261435	4	61.441
82	170	-0.554182972			NA	NA	19.1261435	4	61.441
83	170	0.599460228			NA	NA	19.1261435	4	61.441
84	170	-0.733088289	NA		NA	NA	19.1261435	4	61.441
85	170	-0.416040117	NA		NA	NA	19.1261435	4	61.441
86	170	-0.193681742	NA		NA	NA	19.1261435	4	61.441

	ı				1	1			
87	170	-0.302245408	NA		NA	NA	19.1261435	4	61.441
88	170	-0.170121241	NA		NA	NA	19.1261435	4	61.441
89	170	-0.189021272		599	5.03166667	119.046	19.1261435	4	61.441
90	170	-0.4555953		162	5.03416667	32.1801	19.1261435	4	61.441
91	170	0.291304356		221	5.03466667	43.89566	19.1261435	4	61.441
92	170	0.236578564		126	5.03416667	25.02897	19.1261435	4	61.441
93	170	-0.252828251		148	5.03766667	29.37868	19.1261435	4	61.441
94	170	0.864400055		36	5.03166667	7.154687	19.1261435	4	61.441
95	170	-0.735896813		104	5.03733333	20.64584	19.1261435	4	61.441
96	170	-0.446730175		18	5.03766667	3.573083	19.1261435	4	61.441
97	170	-0.582989777		27	5.03733333	5.359979	19.1261435	4	61.441
98	170	-0.655371488		12	5.036	2.382844	19.1261435	4	61.441
99	170	0.097056939	NA		NA	NA	19.1261435	4	61.441
100	170	-0.070528626	NA		NA	NA	19.1261435	4	61.441
101	170	0.652896956	NA		NA	NA	19.1261435	4	61.441
102	176	0.2570465	NA		NA	NA	20.0461389	2	10.488
103	176	0.249825359		107	5.0155	21.33387	20.0461389	2	10.488
104	176	0.355025535		5	5.01683333	0.996645	20.0461389	2	10.488
105	176	0.159378377		30	5.0185	5.977882	20.0461389	2	10.488
106	176	-0.609049623		66	5.019	13.15003	20.0461389	2	10.488
107	176	NA		1	5.02383333	0.199051	20.0461389	2	10.488
108	176	-0.57642672	NA		NA	NA	20.0461389	2	10.488
109	176	0.133588432	NA		NA	NA	20.0461389	2	10.488
110	176	0.121934986	NA		NA	NA	20.0461389	2	10.488
111	176	-0.063960071	NA		NA	NA	20.0461389	2	10.488
112	176	0.359727586	NA		NA	NA	20.0461389	2	10.488
113	176	-0.358712832		227	5.02516667	45.17263	20.0461389	2	10.488
114	176	0.170586328		55	5.026	10.9431	20.0461389	2	10.488
115	176	-0.681896736		72	5.026	14.32551	20.0461389	2	10.488
116	176	-0.610237309		32	5.02733333	6.365204	20.0461389	2	10.488
117	176	NA		75	5.02683333	14.91993	20.0461389	2	10.488
118	176	-0.015416072	NA		NA	NA	20.0461389	2	10.488
119	176	-0.592609122	NA		NA	NA	20.0461389	2	10.488
120	176	0.173706465	NA		NA	NA	20.0461389	2	10.488
121	176	-0.08820928	NA		NA	NA	20.0461389	2	10.488
122	176	0.112014094	NA		NA	NA	20.0461389	2	10.488
123	176	-0.470711863		252	5.0185	50.21421	20.0461389	2	10.488
124	176	0.404429793		5	5.0225	0.99552	20.0461389	2	10.488
125	176	NA		34	5.02383333	6.76774	20.0461389	2	10.488
126	176	-0.610564471		56	5.0255	11.14317	20.0461389	2	10.488
127	176	-0.269213731	NA		NA	NA	20.0461389	2	10.488
128	176	-0.572549054	NA		NA	NA	20.0461389	2	10.488
129	176	-0.398927902	NA		NA	NA	20.0461389	2	10.488
130	176	-0.325996011	NA		NA	NA	20.0461389	2	10.488
131	44	0.316611835	NA		NA	NA	13.0367181	5	4557.079
132	44	0.002758872	NA		NA	NA	13.0367181	5	4557.079

			ı		T	ı		-	
133	44	NA		149	4.969	29.98591	13.0367181	5	4557.079
134	44	NA		469	4.97583333	94.25557	13.0367181	5	4557.079
135	44	NA		592	4.9655	119.2226	13.0367181	5	4557.079
136	44	NA		577	4.97716667	115.9294	13.0367181	5	4557.079
137	44	NA		115	4.96766667	23.1497	13.0367181	5	4557.079
138	44	NA		68	4.97766667	13.66102	13.0367181	5	4557.079
139	44	NA		5	4.978	1.004419	13.0367181	5	4557.079
140	44	0.5102	225031 N	NΑ	NA	NA	13.0367181	5	4557.079
141	44	0.6749	920161 N	NA	NA	NA	13.0367181	5	4557.079
142	44	NA		182	4.97716667	36.56699	13.0367181	5	4557.079
143	44	NA		307	4.98416667	61.59505	13.0367181	5	4557.079
144	44	NA		670	4.97116667	134.7772	13.0367181	5	4557.079
145	44	NA		204	4.9755	41.0009	13.0367181	5	4557.079
146	44	NA		4	4.97766667	0.803589	13.0367181	5	4557.079
147	44	NA		392	4.9815	78.69116	13.0367181	5	4557.079
148	44	NA		93	4.98283333	18.66408	13.0367181	5	4557.079
149	44	NA		1	4.97933333	0.20083	13.0367181	5	4557.079
150	44	NA		1	4.9815	0.200743	13.0367181	5	4557.079
151	44	0.0781	144335 N	NΑ	NA	NA	13.0367181	5	4557.079
152	44	-0.5855	588134 N	NΑ	NA	NA	13.0367181	5	4557.079
153	44	-0.4077	714914 N	NA	NA	NA	13.0367181	5	4557.079
154	44	0.8235	530383 N	NΑ	NA	NA	13.0367181	5	4557.079
155	44	-0.0893	305803 N	NA	NA	NA	13.0367181	5	4557.079
156	44	-0.0722	282929 N	NΑ	NA	NA	13.0367181	5	4557.079
157	44	0.2758	365585	1	4.975	0.201005	13.0367181	5	4557.079
158	44	0.3697	772032	2	4.96983333	0.402428	13.0367181	5	4557.079
159	44	NA		174	4.97233333	34.99363	13.0367181	5	4557.079
160	44	NA		101	4.97416667	20.30491	13.0367181	5	4557.079
161	44	NA		81	4.98416667	16.25146	13.0367181	5	4557.079
162	44	NA		187	4.97766667	37.5678	13.0367181	5	4557.079
163	44	NA		125	4.979	25.10544	13.0367181	5	4557.079
164	44	NA		4	4.9855	0.802327	13.0367181	5	4557.079
165	44	NA		3	4.98766667	0.601484	13.0367181	5	4557.079
166	44	-0.6517	776902 N	NA	NA	NA	13.0367181	5	4557.079
167	44	-0.5118	889961 N	NA	NA	NA	13.0367181	5	4557.079
168	44	NA		409	4.98983333	81.96667	13.0367181	5	4557.079
169	44	NA		779	4.99116667	156.0757	13.0367181	5	4557.079
170	44	NA		761	4.9925	152.4286	13.0367181	5	4557.079
171	44	NA		686	4.98633333	137.576	13.0367181	5	4557.079
172	44	NA		828	4.99283333	165.8377	13.0367181	5	4557.079
173	44	NA		773	4.99416667	154.7806	13.0367181	5	4557.079
174	44	NA		698	4.995	139.7397	13.0367181	5	4557.079
175	44	NA		270	4.989	54.11906	13.0367181	5	4557.079
176	44	NA		5	4.99633333	1.000734	13.0367181	5	4557.079
	44	NA		6	4.99716667	1.20068	13.0367181	5	4557.079
177 178	44		111792 N		NA	NA	13.0367181	5	4557.079

	T	I				T	1		1	
179	45	NA			121	4.9815	24.28987	11.1948332	2	2298.123
180	45	NA			16	4.98116667	3.212099	11.1948332	2	2298.123
181	45	NA			363	4.9785	72.91353	11.1948332	2	2298.123
182	45	NA			393	4.98366667	78.8576	11.1948332	2	2298.123
183	45	NA			2	4.98466667	0.40123	11.1948332	2	2298.123
184	45	NA			1	4.98016667	0.200796	11.1948332	2	2298.123
185	45		-0.068959872	NA		NA	NA	11.1948332	2	2298.123
186	45		0.057361921	NA		NA	NA	11.1948332	2	2298.123
187	45	NA			1	4.9825	0.200702	11.1948332	2	2298.123
188	45	NA			404	4.98366667	81.06481	11.1948332	2	2298.123
189	45	NA			117	4.98016667	23.49319	11.1948332	2	2298.123
190	45		0.011466408	NA		NA	NA	11.1948332	2	2298.123
191	45	NA			467	4.98066667	93.76255	11.1948332	2	2298.123
192	45	NA			2	4.98066667	0.401553	11.1948332	2	2298.123
193	45	NA			3	4.98716667	0.601544	11.1948332	2	2298.123
194	45	NA			2	4.98583333	0.401137	11.1948332	2	2298.123
195	45		-0.039550005	NA		NA	NA	11.1948332	2	2298.123
196	45	NA			1	4.98333333	0.200669	11.1948332	2	2298.123
197	45	NA			416	4.9815	83.50898	11.1948332	2	2298.123
198	45	NA			90	4.98633333	18.04933	11.1948332	2	2298.123
199	45	NA			265	4.98766667	53.13106	11.1948332	2	2298.123
200	45	NA			199	4.9885	39.89175	11.1948332	2	2298.123
201	45	NA			117	4.98633333	23.46414	11.1948332	2	2298.123
202	45		0.722577192		70	4.98416667	14.04447	11.1948332	2	2298.123
203	46		0.122710803	NA		NA	NA	9.99760249	3	510.691
204	46	NA			238	5.07033333	46.93971	9.99760249	3	510.691
205	46		0.18753573		404	5.07683333	79.57716	9.99760249	3	510.691
206	46	NA			404	5.08033333	79.52234	9.99760249	3	510.691
207	46	NA			354	5.08083333	69.67361	9.99760249	3	510.691
208	46	NA			62	5.0835	12.19632	9.99760249	3	510.691
209	46	NA			2	5.08683333	0.393172	9.99760249	3	510.691
210	46	NA			1	4.84133333	0.206555	9.99760249	3	510.691
211	46	NA			110	5.09433333	21.59262	9.99760249	3	510.691
212	46		0.099870012		90	5.09133333	17.6771	9.99760249	3	510.691
213	46		-0.001599205	NA		NA	NA	9.99760249	3	510.691
214	46		0.077315679	NA		NA	NA	9.99760249	3	510.691
215	46		0.39248054	NA		NA	NA	9.99760249	3	510.691
216	46	NA			6	5.08	1.181102	9.99760249	3	510.691
217	46		-0.53961772		694	5.086	136.453	9.99760249	3	510.691
218	46	NA			620	5.08566667	121.9113	9.99760249	3	510.691
219	46	NA			446	5.08566667	87.69745	9.99760249	3	510.691
220	46	NA			485	5.08816667	95.3192	9.99760249	3	510.691
221	46	NA			329	5.09033333	64.63231	9.99760249	3	510.691
222	46		-0.130652637		228	5.09	44.79371	9.99760249	3	510.691
223	46	NA			128	5.09033333	25.1457	9.99760249	3	510.691
224	46	NA			153	5.09033333	30.05697	9.99760249	3	510.691

	,									
225	46	-0.04	17013108	NA		NA	NA	9.99760249	3	510.691
226	46	-0.49	91338412	NA		NA	NA	9.99760249	3	510.691
227	46	-0.10	02463078	NA		NA	NA	9.99760249	3	510.691
228	46	0.08	37729129	NA		NA	NA	9.99760249	3	510.691
229	46	0.92	27493203	NA		NA	NA	9.99760249	3	510.691
230	46	NA			132	5.06816667	26.04492	9.99760249	3	510.691
231	46	NA			710	5.07433333	139.9199	9.99760249	3	510.691
232	46	-0.02	24205183		211	5.08083333	41.52862	9.99760249	3	510.691
233	46	NA			182	5.0895	35.7599	9.99760249	3	510.691
234	46	NA			88	5.093	17.27862	9.99760249	3	510.691
235	46	NA			177	4.517	39.1853	9.99760249	3	510.691
236	46	NA			227	5.09166667	44.58265	9.99760249	3	510.691
237	46	NA			2	5.09166667	0.392799	9.99760249	3	510.691
238	46	0.11	16457387	NA		NA	NA	9.99760249	3	510.691
239	46	-0.45	56181844	NA		NA	NA	9.99760249	3	510.691
240	46	-0.41	18504673	NA		NA	NA	9.99760249	3	510.691
241	46	-0.11	16207279	NA		NA	NA	9.99760249	3	510.691
242	46	0.25	50527774	NA		NA	NA	9.99760249	3	510.691
243	46	0.09	92195557	NA		NA	NA	9.99760249	3	510.691
244	46	NA			551	5.0825	108.4112	9.99760249	3	510.691
245	46	NA			827	5.08516667	162.6299	9.99760249	3	510.691
246	46	NA			535	5.08916667	105.1253	9.99760249	3	510.691
247	46	NA			607	5.09	119.2534	9.99760249	3	510.691
248	46	NA			764	5.09466667	149.9607	9.99760249	3	510.691
249	46	NA			504	5.09433333	98.93346	9.99760249	3	510.691
250	46	NA			618	5.096	121.2716	9.99760249	3	510.691
251	46	NA			295	5.09733333	57.8734	9.99760249	3	510.691
252	46	0.02	21600759		190	5.09733333	37.27439	9.99760249	3	510.691
253	46	NA			49	5.0965	9.614441	9.99760249	3	510.691
254	46	0.28	37618831	NA		NA	NA	9.99760249	3	510.691
255	47	-0.16	50926996	NA		NA	NA	8.15641118	2	721.295
256	47	NA			2	5.02416667	0.398076	8.15641118	2	721.295
257	47	-0.00	04161665	NA		NA	NA	8.15641118	2	721.295
258	47	NA			730	5.03416667	145.0091	8.15641118	2	721.295
259	47	NA			653	5.03816667	129.6106	8.15641118	2	721.295
260	47	NA			803	5.03683333	159.4256	8.15641118	2	721.295
261	47	NA			625	5.04033333	123.9997	8.15641118	2	721.295
262	47	NA			143	5.04166667	28.36364	8.15641118	2	721.295
263	47	NA			28	5.0455	5.5495	8.15641118	2	721.295
264	47	NA			42	5.0465	8.3226	8.15641118	2	721.295
265	47	NA			48	5.04333333		8.15641118	2	721.295
266	47		26938261	NA		NA	NA	8.15641118	2	721.295
267	47		.5509655	NA		NA	NA	8.15641118	2	721.295
268	47		13969718			NA	NA	8.15641118	2	721.295
269	47	0.57	76294966	NA		NA	NA	8.15641118	2	721.295
270	47	NA			284	5.04516667	56.2915	8.15641118	2	721.295

271 47 NA 272 47 NA		238	5.04166667	47.20661	8.15641118	2	701 000
272 47 NA			3.01100007	77.20001	0.13041110		721.295
212 T/ IVA		114	5.042	22.61008	8.15641118	2	721.295
273 47 NA		268	5.0425	53.14824	8.15641118	2	721.295
274 47 NA		128	5.04866667	25.35323	8.15641118	2	721.295
275 47 -0.25009870	5 NA	A	NA	NA	8.15641118	2	721.295
276 47 0.68481666	54	2	5.02683333	0.397865	8.15641118	2	721.295
277 47 NA		668	5.03766667	132.6011	8.15641118	2	721.295
278 47 NA		85	5.04466667	16.84948	8.15641118	2	721.295
279 47 NA		3	5.05083333	0.593961	8.15641118	2	721.295
280 47 NA		1	5.05083333	0.197987	8.15641118	2	721.295
281 47 NA		1	5.05083333	0.197987	8.15641118	2	721.295
282 47 -0.08106069	3 NA	1	NA	NA	8.15641118	2	721.295
283 47 -0.11366509	4 NA	\	NA	NA	8.15641118	2	721.295
284 47 0.84602955	2 NA	A	NA	NA	8.15641118	2	721.295
285 47 0.76949165	9 NA	1	NA	NA	8.15641118	2	721.295
286 47 1.85577540	2 NA	\	NA	NA	8.15641118	2	721.295
287 47 0.98436780	6 NA	A	NA	NA	8.15641118	2	721.295
288 47 0.63474795	8 NA	A	NA	NA	8.15641118	2	721.295
289 47 -0.19924204	8 NA	A	NA	NA	8.15641118	2	721.295
290 47 NA		2	5.03983333	0.396839	8.15641118	2	721.295
291 47 NA		490	5.04466667	97.13228	8.15641118	2	721.295
292 47 NA		257	5.04766667	50.91461	8.15641118	2	721.295
293 47 NA		378	5.04866667	74.87125	8.15641118	2	721.295
294 47 NA		260	5.04866667	51.49875	8.15641118	2	721.295
295 47 NA		244	5.05166667	48.30089	8.15641118	2	721.295
296 47 NA		428	5.05116667	84.7329	8.15641118	2	721.295
297 47 NA		186	5.0525	36.81346	8.15641118	2	721.295
298 47 NA		218	5.05166667	43.15407	8.15641118	2	721.295
299 47 NA		6	5.049	1.188354	8.15641118	2	721.295
300 63 -0.04506734	9 NA	A	NA	NA	30.7922451	5	87.677
301 63 -0.68955240	6 NA	A	NA	NA	30.7922451	5	87.677
302 63 -0.41100557	' 8	3	4.948	0.606306	30.7922451	5	87.677
303 63 -0.7416379	8	30	4.94933333	6.061422	30.7922451	5	87.677
304 63 0.38482018	39	36	4.94883333	7.274442	30.7922451	5	87.677
305 63 0.6815820	7	17	4.95066667	3.433881	30.7922451	5	87.677
306 63 1.14299442	7 NA	A	NA	NA	30.7922451	5	87.677
307 63 -0.01472979	1 NA	A	NA	NA	30.7922451	5	87.677
308 63 NA		1	4.95066667	0.201993	30.7922451	5	87.677
309 63 0.04725916	2 NA	A	NA	NA	30.7922451	5	87.677
310 63 -0.31475655	8 NA	A	NA	NA	30.7922451	5	87.677
311 63 -0.7552115	6 NA	A	NA	NA	30.7922451	5	87.677
312 63 0.32592982	6 NA	A	NA	NA	30.7922451	5	87.677
313 63 0.03997703	1 NA	A	NA	NA	30.7922451	5	87.677
314 63 0.05286007	'1 NA	\	NA	NA	30.7922451	5	87.677
315 63 0.02774586	64 N <i>A</i>	A	NA	NA	30.7922451	5	87.677
316 63 0.22681930	9 NA	A	NA	NA	30.7922451	5	87.677

317	63	-0.788845973	NA	NA	NA	30.7922451	5	87.677
318	63	0.145475334	NA	NA	NA	30.7922451	5	87.677
319	63	-0.104553144	NA	NA	NA	30.7922451	5	87.677
320	63	0.00895923	NA	NA	NA	30.7922451	5	87.677
321	63	-0.461699167	NA	NA	NA	30.7922451	5	87.677
322	63	0.06615927	NA	NA	NA	30.7922451	5	87.677
323	63	0.329919463	NA	NA	NA	30.7922451	5	87.677
324	63	0.060900525	NA	NA	NA	30.7922451	5	87.677
325	63	-0.318052228		2 4.9515	0.403918	30.7922451	5	87.677
326	63	-0.358490863	NA	NA	NA	30.7922451	5	87.677
327	63	-0.382354602	NA	NA	NA	30.7922451	5	87.677
328	63	NA		3 4.95283333	0.605714	30.7922451	5	87.677
329	63	-0.586747476	NA	NA	NA	30.7922451	5	87.677
330	63	-0.128571073	NA	NA	NA	30.7922451	5	87.677
331	63	-0.291756346	NA	NA	NA	30.7922451	5	87.677
332	63	0.14520685	NA	NA	NA	30.7922451	5	87.677
333	63	-0.372762653	NA	NA	NA	30.7922451	5	87.677
334	63	-0.08571708	NA	NA	NA	30.7922451	5	87.677
335	63	-0.206219291	NA	NA	NA	30.7922451	5	87.677
336	63	0.657793711	NA	NA	NA	30.7922451	5	87.677
337	63	-0.260812087	NA	NA	NA	30.7922451	5	87.677
338	63	0.008410024	NA	NA	NA	30.7922451	5	87.677
339	63	-0.142591388	NA	NA	NA	30.7922451	5	87.677
340	63	-0.556946558	NA	NA	NA	30.7922451	5	87.677
341	63	0.436001324		NA	NA	30.7922451	5	87.677
342	63			NA	NA	30.7922451	5	87.677
343	63	0.355588833		NA	NA	30.7922451	5	87.677
344	63	0.768799136		NA	NA	30.7922451	5	87.677
345	63	-0.287568198		1 4.95633333		30.7922451	5	87.677
346	63	NA a construction		7 4.95633333		30.7922451	5	87.677
347	63	-0.280836978		1 4.958		30.7922451	5	87.677
348	63	-0.53812955		NA NA	NA NA	30.7922451	5	87.677
349	63	-0.111236307		NA NA	NA NA	30.7922451	5	87.677
350 351	63	0.107960022 -0.288523085		NA NA	NA NA	30.7922451 30.7922451	5	87.677
352	63	0.06759178		NA NA	NA NA	30.7922451	5	87.677 87.677
353	63	-0.159244928		NA NA	NA NA	30.7922451	5	87.677
354	63	0.134791201		NA NA	NA NA	30.7922451	5	87.677
355	63	-0.412325114		NA NA	NA NA	30.7922451	5	87.677
356	63	0.233747362		NA	NA	30.7922451	5	87.677
357	63	-0.403446803		NA	NA	30.7922451	5	87.677
358	63	-0.419562089		NA	NA	30.7922451	5	87.677
359	63	-0.673625858		NA	NA	30.7922451	5	87.677
360	63	0.92314251	NA	NA	NA	30.7922451	5	87.677
361	63	0.224676605		NA	NA	30.7922451	5	87.677
362	63	-0.221769899		NA	NA	30.7922451	5	87.677
								2

363	63	-0.138035117	NA		NA	NA	30.7922451	5	87.677
364	63	0.230550978	NA		NA	NA	30.7922451	5	87.677
365	63	-0.401732879	NA		NA	NA	30.7922451	5	87.677
366	63	-0.238394175	NA		NA	NA	30.7922451	5	87.677
367	63	-0.612771815	NA		NA	NA	30.7922451	5	87.677
368	63	-0.335983132	NA		NA	NA	30.7922451	5	87.677
369	63	-0.169059246	NA		NA	NA	30.7922451	5	87.677
370	63	-0.668173206	NA		NA	NA	30.7922451	5	87.677
371	63	-0.358622943	NA		NA	NA	30.7922451	5	87.677
372	89	-0.080980832	NA		NA	NA	11.5384615	4	136.764
373	89	0.070367549	NA		NA	NA	11.5384615	4	136.764
374	89	0.072772982	NA		NA	NA	11.5384615	4	136.764
375	89	0.577360235		1	5.14483333	0.19437	11.5384615	4	136.764
376	89	0.201607945		606	5.066	119.621	11.5384615	4	136.764
377	89	-0.652707814		573	5.07033333	113.0103	11.5384615	4	136.764
378	89	0.844120139		544	5.0725	107.2449	11.5384615	4	136.764
379	89	-0.370803109		190	5.073	37.45318	11.5384615	4	136.764
380	89	-0.448738719		125	5.07433333	24.63378	11.5384615	4	136.764
381	89	0.047192461		6	5.0765	1.181917	11.5384615	4	136.764
382	89	-0.380801244		40	5.07816667	7.876858	11.5384615	4	136.764
383	89	0.151203236		39	5.08033333	7.676662	11.5384615	4	136.764
384	89	0.092034696		17	5.0795	3.346786	11.5384615	4	136.764
385	89	-0.215012609	NA		NA	NA	11.5384615	4	136.764
386	89	-0.384554486	NA		NA	NA	11.5384615	4	136.764
387	89	-0.39224139	NA		NA	NA	11.5384615	4	136.764
388	89	0.07669825	NA		NA	NA	11.5384615	4	136.764
389	89	-0.371869776	NA		NA	NA	11.5384615	4	136.764
390	89	0.229530548	NA		NA	NA	11.5384615	4	136.764
391	89	-0.02649065	NA		NA	NA	11.5384615	4	136.764
392	89	0.100264686	NA		NA	NA	11.5384615	4	136.764
393	89	-0.125795016	NA		NA	NA	11.5384615	4	136.764
394	89	0.077509722	NA		NA	NA	11.5384615	4	136.764
395	89	-0.098693187	NA		NA	NA	11.5384615	4	136.764
396	89	-0.393281984	NA		NA	NA	11.5384615	4	136.764
397	89	-0.266623033	NA		NA	NA	11.5384615	4	136.764
398	89	-0.086847872	NA		NA	NA	11.5384615	4	136.764
399	89	0.225999738	NA		NA	NA	11.5384615	4	136.764
400	89	-0.522110569		259	5.1265	50.5218	11.5384615	4	136.764
401	89	0.110120596		30	5.1305	5.847383	11.5384615	4	136.764
402	89	-0.582980918		2	5.07866667	0.393804	11.5384615	4	136.764
403	89	-0.537671282	NA		NA	NA	11.5384615	4	136.764
404	89	-0.086933774		1	5.08	0.19685	11.5384615	4	136.764
405	89	-0.288644432	NA		NA	NA	11.5384615	4	136.764
406	89	-0.101259629	NA		NA	NA	11.5384615	4	136.764
407	89	-0.190418842		1	5.0825	0.196754	11.5384615	4	136.764
408	89	0.090181246	NA		NA	NA	11.5384615	4	136.764
100	57	0.070101240	1111		1 - 1 - 1	- 14 -	11.5501015	•	150.70 F

409	89	-0.408782833	NA		NA	NA	11.5384615	4	136.764
410	89	-0.215344676	NA		NA	NA	11.5384615	4	136.764
411	89	0.19859197	NA		NA	NA	11.5384615	4	136.764
412	89	-0.465863081	NA		NA	NA	11.5384615	4	136.764
413	89	0.093097228	NA		NA	NA	11.5384615	4	136.764
414	89	0.248950352	NA		NA	NA	11.5384615	4	136.764
415	89	-0.015317307	NA		NA	NA	11.5384615	4	136.764
416	89	0.314243034		2	5.05816667	0.3954	11.5384615	4	136.764
417	89	-0.004378539	NA		NA	NA	11.5384615	4	136.764
418	89	0.103120311	NA		NA	NA	11.5384615	4	136.764
419	89	-0.282369948	NA		NA	NA	11.5384615	4	136.764
420	89	0.626929262	NA		NA	NA	11.5384615	4	136.764
421	89	0.99350244		1	5.06	0.197628	11.5384615	4	136.764
422	89	-0.666673946	NA		NA	NA	11.5384615	4	136.764
423	89	-0.704817359		806	5.07083333	158.9482	11.5384615	4	136.764
424	89	-0.245373314		140	1.93566667	72.3265	11.5384615	4	136.764
425	89	-0.569614119		170	5.076	33.49094	11.5384615	4	136.764
426	89	-0.166849592		153	5.07783333	30.13096	11.5384615	4	136.764
427	89	-0.227442578		84	5.08083333	16.53272	11.5384615	4	136.764
428	89	-0.621744501	NA		NA	NA	11.5384615	4	136.764
429	89	-0.354942055		3	5.079	0.590667	11.5384615	4	136.764
430	89	0.553230903	NA		NA	NA	11.5384615	4	136.764
431	89	-0.282567606	NA		NA	NA	11.5384615	4	136.764
432	89	-0.386290948	NA		NA	NA	11.5384615	4	136.764
433	89	0.022929839	NA		NA	NA	11.5384615	4	136.764
434	89	-0.409188069	NA		NA	NA	11.5384615	4	136.764
435	89	0.007813853	NA		NA	NA	11.5384615	4	136.764
436	89	-0.310652992	NA		NA	NA	11.5384615	4	136.764
437	89	0.21971238	NA		NA	NA	11.5384615	4	136.764
438	89	0.099957676	NA		NA	NA	11.5384615	4	136.764
439	89	0.355212287	NA		NA	NA	11.5384615	4	136.764
440	89	0.240051192	NA		NA	NA	11.5384615	4	136.764
441	89	-0.005624305	NA		NA	NA	11.5384615	4	136.764
442	89	-0.045058845	NA		NA	NA	11.5384615	4	136.764
443	89	0.048464877	NA		NA	NA	11.5384615	4	136.764
444	89	-0.201987258	NA		NA	NA	11.5384615	4	136.764
445	89	-0.044764428		1	5.0625	0.197531	11.5384615	4	136.764
446	89	0.079165254		683	5.06733333	134.7849	11.5384615	4	136.764
447	89	-0.572035576		505	5.07166667	99.57279	11.5384615	4	136.764
448	89	0.075846174		213	5.07566667	41.96493	11.5384615	4	136.764
449	89	-0.046457108		103	5.07516667	20.2949	11.5384615	4	136.764
450	89	0.194203844		7	5.07566667	1.379129	11.5384615	4	136.764
451	89	0.168033567	NA	-	NA	NA	11.5384615	4	136.764
452	89	-0.49692163	NA		NA	NA	11.5384615	4	136.764
453	89	-0.033657978	NA		NA	NA	11.5384615	4	136.764
454	89	-0.518980658	NA		NA	NA	11.5384615	4	136.764
		0.010700000			,			•	

455	89	-0.025600493	NA		NA	NA	11.5384615	4	136.764
456	89	0.305065491	NA		NA	NA	11.5384615	4	136.764
457	89	-0.412628171	NA		NA	NA	11.5384615	4	136.764
458	89	-0.627487892	NA		NA	NA	11.5384615	4	136.764
459	89	-0.168797568	NA		NA	NA	11.5384615	4	136.764
460	89	0.483065245	NA		NA	NA	11.5384615	4	136.764
461	89	0.073363165	NA		NA	NA	11.5384615	4	136.764
462	89	0.055272105	NA		NA	NA	11.5384615	4	136.764
463	89	0.142696803		2	5.05083333	0.395974	11.5384615	4	136.764
464	89	0.024437178	NA		NA	NA	11.5384615	4	136.764
465	89	-0.185853488	NA		NA	NA	11.5384615	4	136.764
466	89	-0.220664053	NA		NA	NA	11.5384615	4	136.764
467	89	0.348787908	NA		NA	NA	11.5384615	4	136.764
468	89	0.445946095	NA		NA	NA	11.5384615	4	136.764
469	89	0.174920934	NA		NA	NA	11.5384615	4	136.764
470	112	0.018334106		2	4.96583333	0.402752	18.0323906	4	64.529
471	112	0.390985451	NA		NA	NA	18.0323906	4	64.529
472	112	-0.183757848		52	4.96766667	10.46769	18.0323906	4	64.529
473	112	-0.495124146		133	4.9615	26.80641	18.0323906	4	64.529
474	112	-0.766810803	NA		NA	NA	18.0323906	4	64.529
475	112	-0.01576889	NA		NA	NA	18.0323906	4	64.529
476	112	-0.472466645	NA		NA	NA	18.0323906	4	64.529
477	112	0.203031828	NA		NA	NA	18.0323906	4	64.529
478	112	-0.249384239	NA		NA	NA	18.0323906	4	64.529
479	112	-0.145572907	NA		NA	NA	18.0323906	4	64.529
480	112	1.2648403	NA		NA	NA	18.0323906	4	64.529
481	112	-0.028135358	NA		NA	NA	18.0323906	4	64.529
482	112	0.345728424	NA		NA	NA	18.0323906	4	64.529
483	112	-0.32017504	NA		NA	NA	18.0323906	4	64.529
484	112	0.070409901	NA		NA	NA	18.0323906	4	64.529
485	112	1.303452345	NA		NA	NA	18.0323906	4	64.529
486	112	1.21664922	NA		NA	NA	18.0323906	4	64.529
487	112	1.571635836	NA		NA	NA	18.0323906	4	64.529
488	112	-0.755636023	NA		NA	NA	18.0323906	4	64.529
489	112	-0.678623268	NA		NA	NA	18.0323906	4	64.529
490	112	-0.027533892	NA		NA	NA	18.0323906	4	64.529
491	112	-0.649696536	NA		NA	NA	18.0323906	4	64.529
492	112	-0.730952691	NA		NA	NA	18.0323906	4	64.529
493	112	NA		1	4.97233333	0.201113	18.0323906	4	64.529
494	112	0.331830542	NA		NA	NA	18.0323906	4	64.529
495	112	0.894821749	NA		NA	NA	18.0323906	4	64.529
496	112	0.170890079	NA		NA	NA	18.0323906	4	64.529
497	112	-0.218615429	NA		NA	NA	18.0323906	4	64.529
498	112	-0.015183342	NA		NA	NA	18.0323906	4	64.529
499	112	-0.453401891	NA		NA	NA	18.0323906	4	64.529
500	112	0.128998298	NA		NA	NA	18.0323906	4	64.529

501	112	-0.241695246	NA	NA	NA	18.0323906	4	64.529
502	112	0.229492708	NA	NA	NA	18.0323906	4	64.529
503	112	-0.191337706	1	4.9655	0.20139	18.0323906	4	64.529
504	112	1.008574345	NA	NA	NA	18.0323906	4	64.529
505	112	0.563215417	NA	NA	NA	18.0323906	4	64.529
506	112	0.496627975	NA	NA	NA	18.0323906	4	64.529
507	112	0.183117049	NA	NA	NA	18.0323906	4	64.529
508	112	0.188840789	NA	NA	NA	18.0323906	4	64.529
509	112	-0.81800184	NA	NA	NA	18.0323906	4	64.529
510	112	-0.342582072	NA	NA	NA	18.0323906	4	64.529
511	112	-0.715370946	NA	NA	NA	18.0323906	4	64.529
512	112	-0.854491543	NA	NA	NA	18.0323906	4	64.529
513	112	-0.889986194	NA	NA	NA	18.0323906	4	64.529
514	112	-0.434354275	NA	NA	NA	18.0323906	4	64.529
515	112	0.994892121	NA	NA	NA	18.0323906	4	64.529
516	112	-0.084250575	NA	NA	NA	18.0323906	4	64.529
517	112	1.003906929	NA	NA	NA	18.0323906	4	64.529
518	112	1.37503761	NA	NA	NA	18.0323906	4	64.529
519	112	0.832546441	NA	NA	NA	18.0323906	4	64.529
520	112	-0.108527741	NA	NA	NA	18.0323906	4	64.529
521	112	0.02598319	NA	NA	NA	18.0323906	4	64.529
522	112	0.400910753	NA	NA	NA	18.0323906	4	64.529
523	112	1.033691096	NA	NA	NA	18.0323906	4	64.529
524	112	0.342871849	NA	NA	NA	18.0323906	4	64.529
525	112	0.014248549	2	4.97466667	0.402037	18.0323906	4	64.529
526	112	-0.422570507	34	4.96583333	6.846786	18.0323906	4	64.529
527	112	-0.843334543	68	4.9755	13.66697	18.0323906	4	64.529
528	112	-0.441453798	NA	NA	NA	18.0323906	4	64.529
529	112	0.863407284	NA	NA	NA	18.0323906	4	64.529
530	114	NA	318	4.97333333	63.94102	29.5762712	4	15961.816
531	114	NA	217	4.97416667	43.6254	29.5762712	4	15961.816
532	114	NA	1	4.9755	0.200985	29.5762712	4	15961.816
533	114	NA	1	4.97766667	0.200897	29.5762712	4	15961.816
534	114	NA	1	4.98333333	0.200669	29.5762712	4	15961.816
535	114	NA	1	4.97766667	0.200897	29.5762712	4	15961.816
536	114	NA	1	4.97716667	0.200918	29.5762712	4	15961.816
537	114	NA	74	4.97683333	14.86889	29.5762712	4	15961.816

Anexo 4

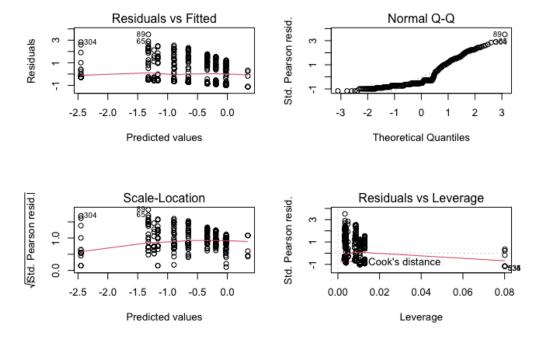


Figura A4. Análise dos resíduos para o modelo GLM com a distância e % de vegetação.

Anexo 5

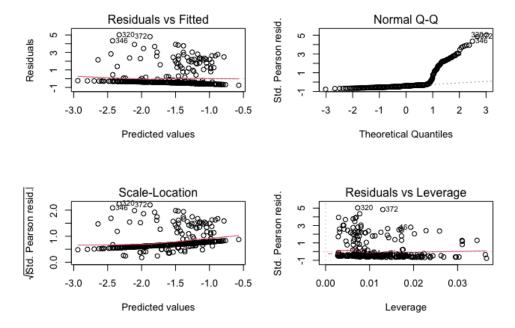


Figura A5. Análise dos resíduos para o modelo GLM com SRN e % de vegetação.

Anexo 6

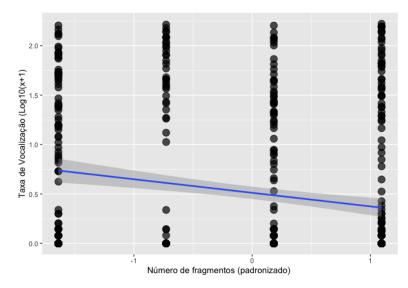


Figura A6: Regressão negativa entre taxa de vocalização e número de fragmentos (mancha).

Anexo 7

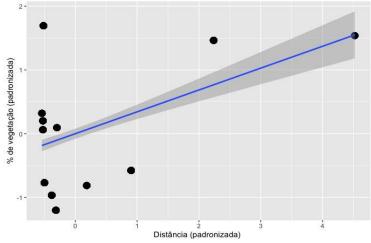


Figura A7. Regressão positiva entre porcentagem de vegetação e distância.