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In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling
(TSM) approach, inwhich primarymodels arefitted to themicrobial growth data, and then secondarymodels are
fitted to the primary model parameters to represent their dependence with the environmental variables
(e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental work-
load and costs, and the improvement of model identifiability because primary and secondary models are fitted
simultaneously from non-isothermal data. Lactobacillus viridescenswas selected to this study because it is a lactic
acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the
growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the
number of experimental data and the time needed in each approach and the confidence intervals of the model
parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six
temperatures (total experimental time of 3540 h and 196 experimental data of microbial growth). Data for
OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588 h and
60 experimental data ofmicrobial growth), twoprofileswith increasing temperatures (IT) and twowith decreas-
ing temperatures (DT). The Baranyi and Roberts primarymodel and the square root secondarymodel were used
to describe themicrobial growth, inwhich the parameters b and Tmin (±95% confidence interval)were estimated
from the experimental data. The parameters obtained from TSM approach were b = 0.0290 (±0.0020) [1/
(h0.5 °C)] and Tmin = −1.33 (±1.26) [°C], with R2 = 0.986 and RMSE = 0.581, and the parameters obtained
with the OED approach were b = 0.0316 (±0.0013) [1/(h0.5 °C)] and Tmin = −0.24 (±0.55) [°C], with R2 =
0.990 and RMSE = 0.436. The parameters obtained from OED approach presented smaller confidence intervals
and best statistical indexes than those from TSMapproach. Besides, less experimental data and timewere needed
to estimate the model parameters with OED than TSM. Furthermore, the OEDmodel parameters were validated
with non-isothermal experimental data with great accuracy. In this way, OED approach is feasible and is a very
useful tool to improve the prediction of microbial growth under non-isothermal condition.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The development ofmathematical models consideringmicrobial be-
havior and the application of statistics and computational simulations
have resulted in successful predictions ofmicrobial growth in foods sub-
ject to a wide range of environmental conditions. The well-known clas-
sification of primary and secondary models was established more than
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20 years ago (Whiting and Buchanan, 1993) and have been widely
used. However, the values of the model parameters depend on the ap-
proach used for their estimation, and thus, the parameter estimation
is still a very important issue to be investigated.

The two-step modeling (TSM) approach is the traditional approach
used to estimate the primary and secondary model parameters, which
consists of the sequential fitting of the models. First, the primary
model is fitted to the experimental growth data under static environ-
mental conditions to estimate the growth parameters (μmax, λ, ymax,
and y0 are the most common parameters). Then the secondary model
is fitted to the primary model parameters to assess their dependence
with the environmental conditions (e.g., temperature, pH, aw)
(Whiting and Buchanan, 1993). After these two modeling steps, the
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parameters should be validated with new experimental data which
were not used in the estimation steps. A lot of experimental data are
needed to obtain the model parameters with TSM approach. Despite
its high workload, costs, and experimental efforts, the TSM approach
has been the most reported in the literature (Elias et al., 2016; Juneja
et al., 2009; Longhi et al., 2013; Tremarin et al., 2015, among others).

The optimal experimental design (OED) approach was introduced in
predictive microbiology at the end of the 1990s (Cunha et al., 1997;
Grijspeerdt and Vanrolleghem, 1999; Versyck et al., 1999) as an alterna-
tive approach to estimate primary and secondarymodel parameters from
experiments optimally designed. In the OED approach, the experiments
are designed optimizing a certain criterion based on the Fisher Informa-
tionMatrix, which takes into account themodel sensitivity to the param-
eters variations, to the experimental noise and to the constraints of the
system under study (Balsa-Canto et al., 2008; Bernaerts et al., 2000;
Franceschini and Macchietto, 2008; Munack, 1989). The experimental
data are obtained at the optimal designed conditions, and then, the pa-
rameters are estimated with the simultaneous fitting of the primary
and secondary models to the data. In general, experimental time, costs,
andworkload are reducedwith theOED approach, and themodel param-
eters had smaller confidence intervals than those estimated from TSM
approach (Brandão et al., 2001). Evenwith these advantages, theOEDap-
proach has not been widely used in predictive microbiology, maybe be-
cause of the complexity of the calculations in the optimization step.

The temperature of chilled foods usually varies during transport, in re-
tail stores and at home, influencing the kinetics of microbial growth
(Kilcast and Subramaniam, 2000; Van Impe et al., 1992). The temperature
increase in the sub-optimal temperature range decreases the adaptation
time and increases themaximumspecific growth rate of the spoilage bac-
teria, which tends to reduce the food shelf life and quality (Elias et al.,
2016; Longhi et al., 2013; McDonald and Sun, 1999). Experiments per-
formed at non-isothermal condition can help to extract the influence of
temperature variations on the microbial growth parameters (Versyck
et al., 1999). It is important for predictivemicrobiology because the trans-
position of results from static conditions to dynamic conditions is, some-
times, not acceptable (Valdramidis et al., 2008). In the other words,
parameters estimated under dynamic conditions (OED approach) can be
more accurate thanparameters obtainedunder static conditions (TSMap-
proach) since they were obtained from optimal dynamic conditions.

Microbial growth is themost common cause of food spoilage, which
can be noticeable by visible aspects (slime), texture modifications
(polymer degradation), and/or undesirable flavor (Gram et al., 2002).
The shelf life of meat and meat products has been linked to the growth
of lactic acid bacteria, fromwhich the Lactobacillus has been indicated as
one of the main genus (Borch et al., 1996; Nychas et al., 2008), and the
Lactobacillus viridescens has been reported as one of the main specific
spoilage organisms (Dušková et al., 2013). In the literature, the growth
parameters of spoilage microorganisms have been estimated with TSM
approach, and for our knowledge, there are no studies for spoilage mi-
croorganisms with OED approach.

The objectives of this study were to apply the OED approach to esti-
mate the growth parameters of L. viridescens and to compare OED and
TSM approaches by assessing the fitting goodness and experimental
work required.
2. Materials and methods

2.1. Microorganism

Lyophilized L. viridescens (CCT 5843 ATCC 12706, Lot 22.07) was
purchased from André Tosello Foundation of Tropical Cultures (Campi-
nas, Brazil). The strains were rehydrated, grown into Man, Rogosa and
Sharpe (MRS) broth (Acumedia Manufactures, Michigan, USA), and
stored at−24 °C in Eppendorf tubes containing MRS:glycerol medium
(4:1 in volume, respectively).
2.2. Experimental procedures

Before inoculation, the strains of L. viridescens were reactivated in
MRS medium at 30 °C for 18 h. Microbial growths were performed in
250mL Erlenmeyer flasks with 160 mL of MRS medium and initial con-
centration of approximately 103 CFU/mL. Theflaskswere placed in incu-
bators (Dist, Florianópolis, Brazil) with temperature control, which was
recorded by data loggers (Testo 174, Lenzkirch, Germany) every 5 min.
The experiments were performed in duplicate under isothermal (4 °C,
8 °C, 12 °C, 16 °C, 20 °C, and 30 °C) and non-isothermal conditions (as
described below). All experiments were conducted until reaching the
stationary growth phase.

The microbial growth under non-isothermal conditions was
assessed by shifting between predetermined temperature plateaus.
Two increasing temperature profiles (IT) (4 °C, 8 °C, 12 °C, and 16 °C
(IT4–8–12-16), and 12 °C, 16 °C, 20 °C, and 25 °C (IT12–16–20-25)) and two
decreasing temperature profiles (DT) (16 °C, 12 °C, 8 °C, and 4 °C
(DT16–12–8-4), and 25 °C, 20 °C, 16 °C, 12 °C, 8 °C, and 4 °C (DT25–20–16-
12-8-4)) were selected. The time to shift (tshift) between each plateau
were optimally designed by the OED approach.

Temperature profiles were chosen based on preliminary tests (ex-
periments under different temperature plateaus) and previous studies
(Bernaerts et al., 2002; Longhi et al., 2013). Each temperature profile
was composed by, at least, four temperature plateaus that would im-
prove the model parameter decorrelation and enlarge the sub-optimal
temperature range (from 4 to 25 °C considering increasing and decreas-
ing temperature profiles). The maximum temperature difference be-
tween plateaus was 5 °C, aiming to avoid intermediate lag phases.
One experimental data at each tshift and, at least, three experimental
data at each temperature plateau were collected, improving the confi-
dence of parameters estimation (Grijspeerdt and De Reu, 2005).

Experimental growth data under dynamic refrigeration temperature
were used to validate the TSM and OED model parameters obtained.
Four different temperature profiles were chosen, in which the tempera-
ture switched between two plateaus after a regular time interval, as fol-
lows: 5 °C and 11 °C after each 24 h (TP5–11(24h)); 5 °C and 11 °C after
each 12 h (TP5–11(12h)); 5 °C and 8 °C after each 12 h (TP5–8(12h)); and
3 °C and 10 °C after each 12 h (TP3–10(12h)).

2.3. Growth modeling

The Baranyi and Roberts primary model (Baranyi and Roberts,
1994), shown in Eqs. (1) and (2), was used to describe the microbial
growth. The square root secondary model (Ratkowsky et al., 1982),
shown in Eq. (3), was used to describe the dependence of μmax parame-
ter with the temperature. In Eqs. (1), (2), and (3), y [ln CFU/mL] is the
natural logarithm of the cell concentration N [CFU/mL] at time t [h], Q
[dimensionless] is related to the physiological state of the cells at time
t, μmax [1/h] is the maximum specific growth rate, ymax [ln CFU/mL] is
the natural logarithm of the maximum cell concentration, T [°C] is the
temperature, Tmin [°C] is the theoreticalminimal temperature formicro-
bial growth, and b [1/(h0.5 °C)] is an empirical parameter. The initial
conditions to solve Eqs. (1) and (2) are y(0)= y0 andQ(0)=Q0, respec-
tively, in which y0 [ln CFU/mL] is the value of the natural logarithm of
initial cell concentration, and Q0 [dimensionless] is the value related to
the initial physiological state of cells.

dy
dt

¼ μmax
1

1þ exp −Qð Þ
� �

1− exp y−ymaxð Þ½ � ð1Þ

dQ
dt

¼ μmax ð2Þ

ffiffiffiffiffiffiffiffiffiffiffi
μmax

p ¼ b T−T minð Þ ð3Þ



Fig. 1. First step of TSM approach: fitting of the Baranyi and Roberts primary model (solid
lines) to the experimental data (symbols) of the growth of L. viridescens under isothermal
conditions at (a) 30 °C, 20 °C, and 16 °C; (b) 12 °C, 8 °C, and 4 °C; and 95% prediction
bounds of the mathematical model (dashed lines).
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2.4. Optimal experimental design

The basic concepts of OED approach were described in detail by
Franceschini and Macchietto (2008) and Versyck et al. (1999). The
OED approach applied in this study followed the method proposed by
Bernaerts et al. (2000); Bernaerts et al. (2002) and Grijspeerdt and De
Reu (2005). In summary, each tshift between plateaus in each experi-
mental setup was obtained by minimizing the E-modified criteria (the
ratio of the largest to the smallest eigenvalue of FIM) of the Fisher Infor-
mation Matrix (FIM), shown in Eq. (4).

FIM ¼
Zt f

0

∂y
∂p

� �T

W
∂y
∂p

� �
dt ð4Þ

in which ð∂y∂pÞ is the sensitivity matrix (i,j) of the model response (yi)

to themodel parameters (pj) variation; ð∂y∂pÞ
T
is the transpose of ð∂y∂pÞ;W is

a weightingmatrix; and tf is the final experimental time. The sensitivity
functions are calculated by numerical integration of their associated dif-
ferential equations. The y0 and ymax parameters were assumed as the
real values of the experimental curves, and the values of b and Tmin pa-
rameters of the square root secondarymodel obtained in TSM approach
were used as nominal parameters for computing the FIM.

The fully relative sensitivity functions were chosen for this study, as
proposed by Bernaerts et al. (2002), because model parameters exhibit
a considerable difference in order of magnitude.

2.5. Parameter estimation

The experimental data under isothermal conditionswere used to es-
timate the parameters by the TSM approach. The primary model
(Eqs. (1) and (2)) was fitted to growth data (y vs. t) generating the pri-
mary model parameters, and subsequently, the secondary model
(Eq. (3)) was fitted to the primary model parameters as a function of
the temperature.

Non-isothermal growth data were used to estimate the parameters
of the Baranyi and Roberts primary model and the square root second-
ary model simultaneously, fitting the equations to the growth data of
each profile and applying the OED approach to calculate the tshift values
for the next profile. The parameters were estimated by three different
approaches: IT-OED (the two increasing temperature experiments to-
gether), DT-OED (the two decreasing temperature experiments togeth-
er), and OED (the four increasing and decreasing temperature
experiments together).

Fitting procedure was performed with the solver add-in available in
the software Office Excel 2010 (Microsoft, Redmond, WA, USA) that
uses the GRG non-linear solving method. Five different values of initial
try obtained randomly were evaluated in the parameter estimation
(to avoid local minimum). The differential equations were solved
using the Runge–Kutta 4th-order method, applying the adequate initial
conditions to each model.

The 95% confidence intervals (CI) of the model parameters (Eq. (5))
and the 95% prediction bounds of the mathematical models (Eq. (6))
were computed in the fitting procedure.

CI ¼ par� tn
ffiffiffi
S

p
ð5Þ

IP ¼ ypdt � tn
ffiffiffiffiffiffiffiffiffiffi
vSvT

p
ð6Þ

inwhichpar is the parameter estimated by thefitting, tn is computed
using the inverse of Student's t cumulative distribution function, S is a
vector of the diagonal elements from the estimated covariance matrix
of the coefficient estimates, (XTX)−1s2, X is the Jacobian of the fitted
values with respect to the parameters, XT is the transpose of X, s2 is
the mean squared error, and v is defined as the Jacobian evaluated at a
specified predictor value.

The coefficient of determination (R2, Eq. (7)) and the root mean
squared error (RMSE, Eq. (6)) were used to assess the ability of the
mathematical models in representing the growth data.

R2 ¼ 1−

Xn
i¼1

yobs ið Þ−ypdt ið Þ
h i2

Xn
i¼1

yobs ið Þ−yobs
h i2 ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

yobs ið Þ−ypdt ið Þ
h i2

n−np

vuuuut ð8Þ

in which n is the number of experimental data, np is the number of
parameters of the model, ypdt is the value predicted by the mathemati-
cal model, yobs is the observed experimental data, and yobs is the mean
value of the observed experimental data.

The bias factor (Eq. (9)) and the accuracy factor (Eq. (10)) (Ross,
1996) were used to assess the ability of the mathematical models in
predicting the growth data under non-isothermal conditions.

bias ¼ 10

Xn
i¼1

log ypdt ið Þ
yobs ið Þ

� �
n ð9Þ

accuracy ¼ 10

Xn
i¼1

log ypdt ið Þ
yobs ið Þ

			 			
n ð10Þ



Fig. 2. Second step of TSMapproach:fitting of the square root secondarymodel (solid line)
to the μmax parameter data (symbols), and 95% prediction bounds of the mathematical
model (dashed lines).

Table 1
Values of the square root model parameters b and Tmin (±95% confidence intervals), and
the statistical indexes (R2 e RMSE) of the model fitting obtained in each approach.

Approach b [1/(h0.5 °C)] Tmin [°C] R2 RMSE

TSM 0.0290 (±0.0020) −1.33 (±1.26) 0.986 0.581
IT-OED 0.0314 (±0.0019) 0.12 (±0.71) 0.995 0.317
DT-OED 0.0295 (±0.0019) −1.57 (±1.05) 0.999 0.259
OED 0.0316 (±0.0013) −0.24 (±0.55) 0.990 0.436
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3. Results and discussion

The experimental data collected at six isothermal conditions (4 °C,
8 °C, 12 °C, 16 °C, 20 °C, and 30 °C) and the fitted Baranyi and Roberts
primarymodel are shown in Fig. 1. In all model fitting under isothermal
conditions, a very short lag time was observed, and thus, the microor-
ganismwas considered fully adapted. The values of the ymax parameter
were similar in all model fitting (average value of ymax equal to 21.09,
with standard deviation of 0.82). In a second step, the square root sec-
ondary model was fitted to the μmax parameter data, as shown in
Fig. 2. The values of the b and Tmin parameters of the square root second-
arymodel for the TSM approach are shown in Table 1, aswell as the sta-
tistical indexes R2 and RMSE of the fitting.

The four non-isothermal experiments (IT4–8–12-16, IT12–16–20-25,
DT16–12–8-4, and DT25–20–16-12-8-4) used to estimate the model parame-
terswith theOED approachwere optimized computing the FIM. The op-
timal times to shift the temperature (tshift(n)) and the final experimental
time (tf) found in the optimization are shown in Table 2. The experi-
mental data collected at the four experiments were used to estimate si-
multaneously the parameters of the Baranyi andRoberts primarymodel
and the square root secondary model. The experimental data as well as
the fitting of themodels are shown in Fig. 3. The values of b and Tmin pa-
rameters of the square root secondary model, from the OED approach,
are shown in Table 1, as well as the statistical indexes R2 and RMSE of
the fitting.

Besides, the experimental data of the non-isothermal experiments
were used to estimate the model parameters in each case: the two in-
creasing temperature profiles (IT-OED), the two decreasing tempera-
ture profiles (DT-OED), and the four increasing and decreasing
Table 2
Optimal times to shift (tshift) and total experimental time (tf) found in the computation of
the FIM for each temperature profile.

Experiment tshift1 (h) tshift2 (h) tshift3 (h) tshift4 (h) tshift5 (h) tf (h)

IT4–8–12-16 63.0 91.5 105.0 168.0
IT12–16–20-25 20.1 32.0 40.0 60.0
DT16–12–8-4 11.9 32.0 72.9 192.0
DT25–20–16-12-8-4 4.3 10.8 20.7 37.5 71.6 168.0
temperature profiles (OED). The values of b and Tmin parameters of
the square root secondary model for the IT-OED and DT-OED are
shown in Table 1, as well as the statistical indexes R2 and RMSE of the
model fitting.

The results presented in the Table 1 show that the values of b and
Tmin parameters, estimated with IT-OED, DT-OED, and OED, were close
to the parameters estimated with the traditional TSM approach. How-
ever, smaller confidence intervals of the model parameters were
found with IT-OED, DT-OED, and OED. Furthermore, best statistical in-
dexes R2 and RMSE were found with the OED approach, in comparison
with the results of the traditional TSM approach.
Fig. 3. Unique step of OED approach: simultaneous fitting of the Baranyi and Roberts
primary model and square root secondary model (solid lines) to the experimental data
(symbols) of the growth of L. viridescens under optimal non-isothermal conditions for
profiles (a) IT4–8–12-16, (b) IT12–16–20-25, (c) DT16–12–8-4, and (d) DT25–20–16-12-8-4; the
experimental temperature profile (dotted lines), and 95% prediction bounds of the
mathematical model (dashed lines).



Table 3
Number of experimental data and time needed to estimate the model parameters in each
condition (isothermal and optimal non-isothermal).

Temperature Experimental time (h) Experimental data

4 2257 38
8 668 41
12 251 29
16 191 33
20 112 28
30 61 27
Total of TSM 3540 196
4-8-12-16 168 14
12-16-20-30 60 14
Subtotal of IT-OED 228 28
16-12-8-4 192 14
25-2016-12-8-4 168 18
Subtotal of DT-OED 360 32
Total of OED 588 60

Fig. 4. Predictions of the growth of L. viridescens under non-isothermal conditions by TSM
(dashed bold lines) and OED (continuous bold lines) model parameters, 95% prediction
bounds of the mathematical model (dashed lines), experimental data of the microbial
growth (symbols), experimental temperature profiles (dotted lines).
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The number of experimental data and the resulting experimental
time needed to estimate the model parameters in each approach are
shown in Table 3. One observes that the lower incubation temperatures
result in higher experimental time to obtain themicrobial growth curve.
This relation was clearly observed comparing the results under isother-
mal conditions, in which 63.8% of the experimental time (2257 h) was
spent in the kinetic at 4 °C. On the other hand, reliable model parame-
ters at low temperatures are essential in the study of shelf life of refrig-
erated foods, and thus, experiments in low temperatures are essential to
validate the mathematical model and avoid extrapolation. A great ad-
vantage of the OED approach is the optimal duration time of the exper-
iment in each temperature plateau. In the experiment at 4 °C, only
63.0 h was spent for the IT4–8–12-16 profile, 119.1 h for the DT16–12–8-4
profile, and 96.4 h for the DT25–20–16-12-8-4 profile. Furthermore, in the
OED approach, a relative temperature range is analyzed in each experi-
ment instead of only a constant temperature. These experimental char-
acteristics result in smaller number of experimental data and shorter
time to estimate the model parameters, as can be seen in Table 3.

The results presented in the Table 3 show that a total experimental
time of 3540 h and 196 experimental data were needed to estimate
the model parameters with TSM approach. On the other hand, only a
total experimental time of 588 h and 60 experimental datawere needed
to estimate the model parameters with OED approach.

TSM and OED model parameters were validated by comparing
model predicted values to experimental data of non-isothermal growth
curves at four different temperature profiles (TP5–11(24h), TP5–11(12h),
TP5–8(12h) and TP3–10(12h)), as shown in Fig. 4. The statistical indexes
(RMSE, bias factor and accuracy factor) obtained in this validation step
are shown in Table 4. In all cases, RMSE value was close to zero, and
bias factor and accuracy factor values were close to one, indicating the
validity of the estimated TSM and OEDmodel parameters. RMSE values
and accuracy factor values obtained by predictions with the OEDmodel
parameters were lower than the same indexes in predictions using TSM
model parameters (exception to RMSE value of the TP5–8(12h) profile).
Furthermore, the bias factor values obtained by predictions with OED
model parameters were closer to the unit than the bias factor values es-
timated when using TSM model parameters. Therefore, comparing the
statistical indexes, OEDmodel parameters led to a slightly better predic-
tion of the experimental data under non-isothermal condition than the
TSMmodel parameters, althoughmodel predictions and 95% prediction
bounds were very similar to both TSM and OED (as shown in Fig. 4).

4. Conclusion

The results presented in the current study show that the OED ap-
proach allows estimating themicrobial growth parameterswith smaller
confidence intervals and best statistical indexes than those estimated
from the TSM approach. Furthermore, in the OED approach, only 31%
of experimental data and 17% of time were needed than those needed
by the TSM approach. The OED model parameters were validated with
non-isothermal experimental data with great accuracy. In this way,
the OED approach should be widely applied to estimate the model pa-
rameters in predictive microbiology.
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Table 4
Statistical indexes (RMSE, bias factor, and accuracy factor) obtained in the validation of
model parameters of the TSM and OED approaches under four different non-isothermal
conditions.

Temperature profile Approach RMSE Bias factor Accuracy factor

TP5–11(24h) TSM 1.116 1.033 1.062
OED 1.100 1.020 1.057

TP5–11(12h) TSM 0.915 1.028 1.033
OED 0.677 1.012 1.028

TP5–8(12h) TSM 1.518 1.019 1.073
OED 1.627 0.982 1.065

TP3–10(12h) TSM 1.321 1.065 1.066
OED 0.991 1.048 1.050
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ijfoodmicro.2016.06.042.
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